Genesis of Himalayan leucogranite and its potentiality of rare-metal mineralization
-
摘要: 喜马拉雅淡色花岗岩世界瞩目,具有重要的理论研究和找矿意义,但是其成因争议较大。本文统计了两千余件样品的全岩主微量地球化学、Sr-Nd-Pb-Hf同位素、锆石/独居石/磷钇矿等副矿物原位U-Pb年龄和锆石Hf同位素等,试图全面地总结喜马拉雅淡色花岗岩的研究进展和现状。喜马拉雅淡色花岗岩分为南北两带,北带花岗岩主要出露于特提斯喜马拉雅和片麻岩穹隆中,而南带花岗岩主要发育在高喜马拉雅顶部和东-西构造结中。从北往南,成岩时代逐渐变新;南北两带均以二云母花岗岩和(石榴石-电气石)白云母花岗岩为主,两期(始新世和中新世)中-基性岩脉和埃达克质岩主要在北带中发育。新生代岩浆活动分为5个阶段:49~40 Ma、39~29 Ma、28~15 Ma、14~7 Ma、6~0.7 Ma,分别主要与新特提斯洋壳板片断离、印度陆壳板片的低角度俯冲、断离或回撤、南北向撕裂(裂谷)和东西构造结的快速隆升有关。喜马拉雅淡色花岗岩起源于高喜马拉雅杂岩系的不一致(不平衡)部分熔融,并经历了矿物分离结晶的高分异演化。淡色花岗岩属于强过铝质岩石,具有高Si、K、Na,低Ca、Fe、Mg、Ti、Mn,高的Rb/Sr、Y/Ho值,低的Th/U、Nb/Ta、Zr/Hf、K/Rb值,稀土元素总量较低,负Eu异常明显的地球化学特征。随着成岩时代变新,Sr-Nd-Pb-Hf等同位素都指示岩浆源区中古老地壳物质的占比逐步增加。喜马拉雅淡色花岗岩/伟晶岩中Li、Be、W、Sn、Ta、Cs和Rb等稀有元素的富集系数大于10,伟晶岩属于典型的LCT型伟晶岩。喜马拉雅新生代淡色花岗岩带有望成为一条新的世界级的Li-Be-Sn-W-Ta稀有金属成矿带。Abstract: The Himalayan leucogranite attracts the attention of the world and has important theoretical and prospecting significances, but its genesis is controversial. In this paper, the geochemistry of whole rock main and trace elements, Sr-Nd-Pb-Hf isotopes, in-situ U-Pb ages of zircon/monazite/xenotime and other accessory minerals, and zircon Hf isotopes of secondary minerals from more than 2000 samples have been reviewed, in order to comprehensively summarize the research progresses and status of Himalayan leucogranites. The Himalayan leucogranites are divided into two zones.The northern zone is mainly exposed in the Tethyan Himalayas and gneiss dome, and the southern zone is mainly developed in the top of the Great Himalayan Copmlex and the Western-Eastern Himalayan Syntaxis. From north to south, the petrogenetic ages become younger gradually. There are two-mica granites and (garnet-tourmaline) muscovite granites in the northern and southern zones, and two stages (Eocene and Miocene) intermediate-basic dikes and adakite rocks are mainly developed in the northern zone. The Cenozoic magmatic activity can be divided into five stages: 49-40 Ma, 39-29 Ma, 28-15 Ma, 14-7 Ma and 6-0.7 Ma, which are mainly related to the separation of the New Tethyan oceanic plate, the low angle subduction, detachment or retraction, the north-south tearing (north-south-trending rift) of the Indian continental plate, and the rapid uplift of the Himalayan syntaxes, respectively. The Himalayan leucogranites originated from the incongruent (disequilibrium) partial melting of the Great Himalayan Complex and underwent highly differentiated evolution of mineral separation crystallization. The leucogranites are characterized by high Si, K, Na, low Ca, Fe, Mg, Ti, Mn, strong peraluminite, low total rare earth elements, obvious negative Eu anomaly, high Rb/Sr, Y/Ho values, and low Th/U, Nb/Ta, Zr/Hf, K/Rb values. As the petrogenetic ages become younger, the Sr-Nd-Pb-Hf isotopes show that the proportion of older crustal material in the magmatic source area increases gradually. The enrichment coefficients of rare elements such as Li, Be, W, Sn, Ta, Cs and Rb in the Himalayan leucogranite are greater than 10 relative to the total crustal value, and they belong to LCT-type pegmatite. The Cenozoic leucogranite belt of the Himalayas is expected to be a new world-class Li-Be-Sn-W-Ta rare metal metallogenic belt.
-
Key words:
- leucogranite /
- highly fractionated granite /
- Cenozoic /
- rare-metal mineralization /
- Himalaya
-
Aikman A B,Harrison T M,Hermann J,2012a.Age and thermal history of Eo-and Neohimalayan granitoids,eastern Himalaya[J].Journal of Asian Earth Sciences,51:85-97.
Aikman A B,Harrison T M,Hermann J,2012b.The origin of Eo-andNeo-himalayan granitoids,Eastern Tibet[J].Journal of Asian Earth Sciences,58:143-157.
Allègre C,Othman D,1980.Nd-Sr isotopic relationship in granitoid rocks and continental crust development:a chemical approach to orogenesis[J].Nature,286:335-342.
Ayres M,Harris N,1997.REE fractionation and Nd-isotope disequilibrium during crustal anatexis:constraints from Himalayan leucogranites[J].Chemical Geology,139(1):249-269.
Ballouard C,Poujol M,Boulvais P,et al.,2016.Nb-Ta fractionation in peraluminous granites:A marker of the magmatic-hydrothermal transition[J].Geology,44(3):231-234.
Barbarin B,1999.A review of the relationships between granitoid types,their origins and their geodynamic environments[J].Lithos,46(3):605-626.
Barbey P,Brouand M,Le Fort P,et al.,1996.Granite-migmatite genetic link:the example of the Manaslu granite and Tibetan Slab migmatites in central Nepal[J].Lithos,38(1):63-79.
Bartoli O,Acosta-Vigil A,Cesare B,et al.,2019.Geochemistry of Eocene-Early Oligocene low-temperature crustal melts from Greater Himalayan Sequence (Nepal):a nanogranitoid perspective[J].Contributions to Mineralogy and Petrology,174(10):82.
Bau M,1996.Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems:evidence from Y/Ho,Zr/Hf,and lanthanide tetrad effect[J].Contributions to Mineralogy and Petrology,123(3):323-333.
Bird P,1978.Initiation of intracontinental subduction in the Himalaya[J].Journal of Geophysical Research:Solid Earth,83(B10):4975-4987.
Brubacher A D,Larson K P,Cottle J M,et al.,2021.Progressive development of E-W extension across the Tibetan plateau:A case study of the Thakkhola graben,west-central Nepal[J].International Geology Review,63(15):1900-1919.
Burchfiel B C,Chen Z,Hodges K V,et al.,1992.The South Tibetan detachment system,Himalayan orogen:Extension contemporaneous with and parallel to shortening in a collisional mountain belt[J].Geological Society of America Special Papers,269:1-41.
Burchfiel B C,Royden L H,1985.North-south extension within the convergent Himalayan region[J].Geology,13(10):679-682.
Burg J P,Bouilhol P,2019.Timeline of the South-Tibet-Himalayan belt:the geochronological record of subduction,collision,and underthrusting from zircon and monazite U-Pb ages[J].Canadian Journal of Earth Sciences,56(12):1318-1332.
Burg J P,Brunel M,Gapais D,et al.,1984.Deformation of leucogranites of the crystalline Main Central Sheet in southern Tibet (China)[J].Journal of Structural Geology,6(5):535-542.
Butler R W H,2019.Tectonic evolution of the Himalayan syntaxes:the view from Nanga Parbat[J].Geological Society,London,Special Publications,483:215-254.
Cao H W,Huang Y,Li G M,et al.,2018.Late Triassic sedimentary records in the northern Tethyan Himalaya:tectonic link with Greater India[J].Geoscience Frontiers,9(1):273-291.
Cao H W,Li G M,Zhang R Q,et al.,2021.Genesis of the Cuonadong tin polymetallic deposit in the Tethyan Himalaya:Evidence from geology,geochronology,fluid inclusions and multiple isotopes[J].Gondwana Research,92:72-101.
Cao H W,Li G M,Zhang Z,et al.,2020.Miocene Sn polymetallic mineralization in the Tethyan Himalaya,southeastern Tibet:A case study of the Cuonadong deposit[J].Ore Geology Reviews,119:103403.
Cao H W,Zou H,Bagas L,et al.,2019.The Laqiong Sb-Au deposit:Implications for polymetallic mineral systems in the Tethys-Himalayan zone of southern Tibet,China[J].Gondwana Research,72:83-96.
Carosi R,Montomoli C,Iaccarino S,2018.20 years of geological mapping of the metamorphic core across Central and Eastern Himalayas[J].Earth-Science Reviews,177:124-138.
Carosi R,Montomoli C,Langone A,et al.,2015.Eocene partial melting recorded in peritectic garnets from kyanite-gneiss,Greater Himalayan Sequence,central Nepal[J].Geological Society,London,Special Publications,412:111-129.
Carosi R,Montomoli C,Rubatto D,et al.,2013.Leucogranite intruding the South Tibetan Detachment in western Nepal:implications for exhumation models in the Himalayas[J].Terra Nova,25(6):478-489.
erny P,Blevin P L,Cuney M,et al.,2005.Granite-Related Ore Deposits[C]//One Hundredth Anniversary Volume,Society of Economic Geologists.337-370.
Chen H,Hu G Y,Zeng L S,et al.,2022.Miocene crustal anatexis of Paleozoic orthogneiss in the Zhada area,western Himalaya[J].Acta Geologica Sinica-English Edition.https://doi.org/10.1111/1755-6724.14897
Chen J,Gaillard F,Villaros A,et al.,2018.Melting conditions in the modern Tibetan crust since the Miocene[J].Nature Communications,9(1):3515.
Chen S S,Fan W M,Shi R D,et al.,2021.The Tethyan Himalaya igneous province:Early melting products of the Kerguelen mantle plume[J].Journal of Petrology,62(11):egab069.
Chen S,Zhang B,Zhang J,et al.,2022.Tectonic transformation from orogen-perpendicular to orogen-parallel extension in the North Himalayan Gneiss Domes:Evidence from a structural,kinematic,and geochronological investigation of the Ramba gneiss dome[J].Journal of Structural Geology,155:104527.
Chen X,Zhang G,Gao R,et al.,2021.Petrogenesis of highly fractionated leucogranite in the Himalayas:The Early Miocene Cuonadong example[J].Geological Journal,56(7):3791-3807.
Cheng L,Zhang C,Yang X,2020.Petrogenesis of deformed tourmaline leucogranite in the Gurla Mandhata metamorphic core complex,Southwestern Tibet[J].Lithos,364-365:105533.
Clemens J D,Stevens G,2012.What controls chemical variation in granitic magmas?[J].Lithos,134-135:317-329.
Copeland P,Parrish R R,Harrison T M,1988.Identification of inherited radiogenic Pb in monazite and its implications for U-Pb systematics[J].Nature,333:760.
Cottle J,Lederer G,Larson K,2019.The Monazite Record of Pluton Assembly:Mapping Manaslu Using Petrochronology[J].Chemical Geology,530:119309.
Cottle J M,Searle M P,Jessup M J,et al.,2015.Rongbuk re-visited:Geochronology of leucogranites in the footwall of the South Tibetan Detachment System,Everest Region,Southern Tibet[J].Lithos,227:94-106.
Crowley J L,Waters D J,Searle M P,et al.,2009.Pleistocene melting and rapid exhumation of the Nanga Parbat massif,Pakistan:Age and P-T conditions of accessory mineral growth in migmatite and leucogranite[J].Earth and Planetary Science Letters,288(3-4):408-420.
Dai Z,Dong L,Li G,et al.,2020.Crustal thickening prior to 43 Ma in the Himalaya:Evidence from lower crust-derived adakitic magmatism in Dala,eastern Tethyan Himalaya,Tibet[J].Geological Journal,55(5):4021-4046.
Debon F,Le Fort P,1983.A chemical-mineralogical classification of common plutonic rocks and associations[J].Transactions of the Royal Society of Edinburgh:Earth Sciences,73(3):135-149.
Defant M J,Drummond M S,1990.Derivation of some modern arc magmas by melting of young subducted lithosphere[J].Nature,347(6294):662-665.
Ding H,Kohn M J,Zhang Z,2021.Long-lived (ca.22-24 Myr) partial melts in the eastern Himalaya:Petrochronologic constraints and tectonic implications[J].Earth and Planetary Science Letters,558:116764.
Drummond M S,Defant M J,1990.A model for Trondhjemite-Tonalite-Dacite Genesis and crustal growth via slab melting:Archean to modern comparisons[J].Journal of Geophysical Research:Solid Earth,95(B13):21503-21521.
Dyck B,Waters D J,St-Onge M R,et al.,2020.Muscovite dehydration melting:Reaction mechanisms,microstructures,and implications for anatexis[J].Journal of Metamorphic Geology,38(1):29-52.
Fan J J,Wang Q,Li J,et al.,2021.Boron and molybdenum isotopic fractionation during crustal anatexis:Constraints from the Conadong leucogranites in the Himalayan Block,South Tibet[J].Geochimica et Cosmochimica Acta,297:120-142.
Fan Y,Zhang J,Lin C,et al.,2021.The Miocene granitic magmatism constrains the early E-W extension in the Himalayan Orogen:A case study of Kung Co leucogranite[J].Lithos:106295.
Gao L E,Zeng L,Zhao L,et al.,2021.Geochemical behavior of rare metals and high field strength elements during granitic magma differentiation:A recordfrom the Borong and Malashan Gneiss Domes,Tethyan Himalaya,southern Tibet[J].Lithos,398-399:106344.
Gao L E,Zeng L S,2014.Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss dome,southern Tibet[J].Geochimica et Cosmochimica Acta,130:136-155.
Gao L E,Zeng L S,Asimow P D,2017.Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources:The Himalayan leucogranites[J].Geology,45:39-42.
Gao L E,Zeng L S,Gao J H,et al.,2016.Oligocene crustal anatexis in the Tethyan Himalaya,southern Tibet[J].Lithos,264:201-209.
Gao P,Yakymchuk C,Zhang J,et al.,2022.Preferential dissolution of uranium-rich zircon can bias the hafnium isotope compositions of granites[J].Geology,50:336-340.
Gao P,Zheng Y F,Mayne M J,et al.,2021a.Miocene high-temperature leucogranite magmatism in the Himalayan orogen[J].GSA Bulletin,133(3-4):679-690.
Gao P,Zheng Y F,Yakymchuk C,et al.,2021b.The effects of source mixing and fractional crystallization on the composition of Eocene granites in the Himalayan orogen[J].Journal of Petrology,62(7):egab037.
Gao P,Zheng Y F,Zhao Z F,et al.,2021c.Source diversity in controlling the compositional diversity of the Cenozoic granites in the Tethyan Himalaya[J].Lithos,388-389:106072.
Goscombe B,Gray D,Foster D A,2018.Metamorphic response to collision in the Central Himalayan Orogen[J].Gondwana Research,57:191-265.
Gou Z,Dong X,Wang B,2019.Petrogenesis and Tectonic Implications of the Paiku Leucogranites,Northern Himalaya[J].Journal of Earth Science,30(3):525-534.
Gou Z B,Zhang Z M,Dong X,et al.,2016.Petrogenesis and tectonic implications of the Yadong leucogranites,southern Himalaya[J].Lithos,256-257:300-310.
Groppo C,Rolfo F,Indares A,2012.Partial melting in the higher himalayan crystallines of eastern Nepal:the effect of decompression and implications for the'channel flow'Model[J].Journal of Petrology,53(5):1057-1088.
Guo Z,Wilson M,2012.The Himalayan leucogranites:Constraints on the nature of their crustal source region and geodynamic setting[J].Gondwana Research,22:360-376.
Hamet J,Alleègre C J,1976.Rb-Sr systematics in granite from central Nepal (Manaslu):Significance of the Oligocene age and high 87Sr/86Sr ratio in Himalayan orogeny[J].Geology,4(8):470-472.
Hammerli J,Kemp A I S,2021.Combined Hf and Nd isotope microanalysis of co-existing zircon and REE-rich accessory minerals:High resolution insights into crustal processes[J].Chemical Geology,581:120393.
Harris N,Ayres M,1998.The implications of Sr-isotope disequilibrium for rates of prograde metamorphism and melt extraction in anatectic terrains[J].Geological Society,London,Special Publications,138(1):171-182.
Harris N,Ayres M,Massey J,1995.Geochemistry of granitic melts produced during the incongruent melting of muscovite:Implications for the extraction of Himalayan leucogranite magmas[J].Journal of Geophysical Research:Solid Earth,100(B8):15767-15777.
Harris N,Massey J,1994.Decompression and anatexis of Himalayan metapelites[J].Tectonics,13(6):1537-1546.
Harris N,Massey J,Inger S,1993.The role of fluids in the formation of High Himalayan leucogranites[J].Geological Society,London,Special Publications,74(1):391-400.
Harris N,Vance D,Ayres M,2000.From sediment to granite:timescales of anatexis in the upper crust[J].Chemical Geology,162(2):155-167.
Harris N B W,Caddick M,Kosler J,et al.,2004.The pressure-temperature-timepath of migmatites from the Sikkim Himalaya[J].Journal of Metamorphic Geology,22(3):249-264.
Harris N B W,Inger S,1992.Trace element modelling of pelite-derived granites[J].Contributions to Mineralogy and Petrology,110(1):46-56.
Harris N B W,Pearce J A,Tindle A G,1986.Geochemical characteristics of collision-zone magmatism[J].Geological Society,London,Special Publications,19(1):67-81.
Harrison T M,McKeegan K D,Le Fort P,1995.Detection of inherited monazite in the Manaslu leucogranite by 208Pb/232Th ion microprobe dating:Crystallization age and tectonic implications[J].Earth and Planetary Science Letters,133(3):271-282.
He S X,Liu X C,Yang L,et al.,2021.Multistage magmatism recorded in a single gneiss dome:Insights from the Lhagoi Kangri leucogranites,Himalayan orogen[J].Lithos,(398-399):106222.
Hodges K,Bowring S,Davidek K,et al.,1998.Evidence for rapid displacement on Himalayan normal faults and the importance of tectonic denudation in the evolution of mountain ranges[J].Geology,26(6):483-486.
Hodges K V,2000.Tectonics of the Himalaya and southern Tibet from two perspectives[J].Geological Society of America Bulletin,112(3):324-350.
Hodges K V,Parrish R R,Housh T B,et al.,1992.Simultaneous Miocene extension and shortening in the Himalayan orogen[J].Science,258(5087):1466-1470.
Hopkinson T,Harris N,Roberts N,et al.,2020.Evolution of the melt source during protracted crustal anatexis;an example from the Bhutan Himalaya[J].Geology,48(1):87-91.
Hopkinson T N,Harris N B W,Warren C J,et al.,2017.The identification and significance of pure sediment-derived granites[J].Earth and Planetary Science Letters,467:57-63.
Horton F,Lee J,Hacker B,et al.,2015.Himalayan gneiss dome formation in the middle crust and exhumation by normal faulting:New geochronology of Gianbul dome,northwestern India[J].Geological Society of America Bulletin,127(1-2):162-180.
Hou Z Q,Zheng Y C,Zeng L S,et al.,2012.Eocene-Oligocene granitoids in southern Tibet:Constraints on crustal anatexis and tectonic evolution of the Himalayan orogen[J].Earth and Planetary Science Letters,349-350:38-52.
Hu X M,Garzanti E,Wang J G,et al.,2016.The timing of India-Asia collision onset-facts,theories,controversies[J].Earth-Science Reviews,160:264-299.
Huang C,Zhao Z,Li G,et al.,2017.Leucogranites in Lhozag,southern Tibet:Implications for the tectonic evolution of the eastern Himalaya[J].Lithos,294-295:246-262.
Huang F,Bai R,Deng G,et al.,2021.Barium isotope evidence for the role of magmatic fluids in the origin of Himalayan leucogranites[J].Science Bulletin,66:2329-2336.
Huang Y,Cao H W,Li G M,et al.,2018.Middle-late Triassic bimodal intrusive rocks from the Tethyan Himalaya in South Tibet:Geochronology,petrogenesis and tectonic implications[J].Lithos,318-319:78-90.
Iaccarino S,Montomoli C,Carosi R,et al.,2017.Pressure-temperature-deformation-time constraints on the South Tibetan Detachment System in the Garhwal Himalaya (NW India)[J].Tectonics,36(11):2281-2304.
Imayama T,Arita K,Fukuyama M,et al.,2019.1.74 Ga crustal melting after rifting at the northern Indian margin:investigation of mylonitic orthogneisses in the Kathmandu area,central Nepal[J].International Geology Review,61(10):1207-1221.
Inger S,Harris N,1993.Geochemical Constraints on Leucogranite Magmatism in the Langtang Valley,NepalHimalaya[J].Journal of Petrology,34(2):345-368.
Jacob J B,Moyen J F,Fiannacca P,et al.,2021.Crustal melting vs.fractionation ofbasaltic magmas:Part 2,Attempting to quantify mantle and crustal contributions in granitoids[J].Lithos,402-403:106292.
Jessup M J,Langille J M,Cottle J M,et al.,2016.Crustal thickening,Barrovian metamorphism,and exhumation of mid‐crustal rocksduring doming and extrusion:Insights from the Himalaya,NW India[J].Tectonics,35(1):160-186.
Jessup M J,Langille J M,Diedesch T F,et al.,2019.Gneiss Dome Formation in the Himalaya and southern Tibet[J].Geological Society,London,Special Publications,483:401-422.
Ji M,Gao X Y,Zheng Y F,2022.Geochemical evidence for partial melting of progressively varied crustal sources for leucogranites during the Oligocene-Miocene in the Himalayan orogen[J].Chemical Geology,589:120674.
Ji M,Gao X Y,Zheng Y F,et al.,2021.Metapelites record two episodes of decompressional metamorphism in the Himalayan orogen[J].Lithos:106183.
Ji W Q,Wu F Y,Liu X C,et al.,2020a.Pervasive Miocene melting of thickened crust from the Lhasa terrane to Himalaya,southern Tibet and its constraint on generation of Himalayan leucogranite[J].Geochimica et Cosmochimica Acta,278:137-156.
Ji W Q,Wu F Y,Wang J M,et al.,2020b.Early evolution of Himalayan orogenic belt and generation of Middle Eocene magmatism:constraint from haweng granodiorite porphyry in the Tethyan Himalaya[J].Frontiers in Earth Science,8:1-17.
Ji W Q,Wu F Y,Chung S L,et al.,2016.Eocene Neo-Tethyan slab breakoff constrained by 45 Ma oceanic island basalt-type magmatism in southern Tibet[J].Geology,44(4):283-286.
Joshi P R,1988.Geology and Exploration for Tin-Mineralization in the Himalyas of Nepal,in Geology of Tin Deposits in Asia and the Pacific[M].Springer:Berlin,Heidelberg,617-626.
Kapp P,Decelles P G,2019.Mesozoic-Cenozoic geologicalevolution of the Himalayan-Tibetan orogen and working tectonic hypotheses[J].American Journal of Science,319:159-254.
Karimzadeh Somarin A,Ashley P,2004.Hydrothermal alteration and mineralisation of the Glen Eden Mo-W-Sn deposit:a leucogranite-related hydrothermal system,Southern New England Orogen,NSW,Australia[J].Mineralium Deposita,39(3):282-300.
Kawabata R,Imayama T,Bose N,et al.,2021.Tectonic discontinuity,partial melting and exhumation in the Garhwal Himalaya (Northwest India):Constrains from spatial and temporal pressure-temperature conditions along the Bhagirathi valley[J].Lithos:106488.
Kellett D A,Cottle J M,Larson K P,2019.The South Tibetan Detachment System:history,advances,definition and future directions[J].Geological Society,London,Special Publications,483:377-400.
Khanal G P,Wang J M,Larson K P,et al.,2021.Eocene Metamorphism and Anatexis in the Kathmandu Klippe,central Nepal:Implications for early crustal thickening and initial rise of the Himalaya[J].Tectonics,40(4):e2020TC006532.
King J,Harris N,Argles T,et al.,2007.First field evidence of southward ductile flow of Asian crust beneath southern Tibet[J].Geology,35(8):727-730.
King J,Harris N,Argles T,et al.,2011.Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet[J].Geological Society of America Bulletin,123(1/2):218-239.
Kohn M J,2014.Himalayan metamorphism and its tectonic implications[J].Annual Review of Earth and Planetary Sciences,42(1):381-419.
Kumar S,Pundir S,2021.Tectono-magmatic evolution of granitoids in the Himalaya and Trans-Himalaya[J].Himalayan Geology,42:213-246.
Larson K P,Cottle J M,Camacho A,et al.,2022.Miocene anatexis,cooling and exhumation in the Khumbu Himal,Nepal[J].International Geology Review:1-26.
Larson K P,Godin L,Davis W J,et al.,2010.Out-of-sequence deformation and expansion of the Himalayan orogenic wedge:Insight from the Changgo culmination,south central Tibet[J].Tectonics,29(4):TC4013.
Le Fort P,1973.Les leucogranites a tourmaline de l'Himalaya sur l'exemple du granite du Manaslu (Nepal central)[J].Bulletin de la SociétéGéologique de France,S7-XV (5-6):555-561.
Le Fort P,1981.Manaslu leucogranite:a collision signature of the Himalaya:a model for its genesis and emplacement[J].Journal of Geophysical Research:Solid Earth,86(B11):10545-10568.
Le Fort P,Cuney M,Deniel C,et al.,1987.Crustal generation of the Himalayan leucogranites[J].Tectonophysics,134(1):39-57.
Le Maitre R W,2002.Igneous Rocks:A Classification and Glossary of Terms[M].Cambridge University Press.
Lederer G W,Cottle J M,Jessup M J,et al.,2013.Timescales of partial melting in the Himalayan middle crust:insight from the Leo Pargil dome,northwest India[J].Contributions to Mineralogy and Petrology,166(5):1415-1441.
Lee J,Whitehouse M J,2007.Onset of mid-crustal extensional flow in southern Tibet:Evidence from U/Pb zircon ages[J].Geology,35(1):45-48.
Lehmann B,Harmanto,1990.Large-scale tin depletion in the Tanjungpandan tin granite,Belitung Island,Indonesia[J].Economic Geology,85(1):99-111.
Leloup P H,Liu X,Mahéo G,et al.,2015.New constraints on the timing of partial melting and deformation along the Nyalam section (central Himalaya):implications for extrusion models[J].Geological Society,London,Special Publications,412:131-175.
Leloup P H,Mahéo G,Arnaud N,et al.,2010.The South Tibet detachment shear zone in the Dinggye area:Time constraints on extrusion models of the Himalayas[J].Earth and Planetary Science Letters,292(1):1-16.
Lin C,Zhang J,Wang X,et al.,2021.Himalayan Miocene adakitic rocks,a case study of the Mayum pluton:Insights into geodynamic processes within the subducted Indian continentallithosphere and Himalayan mid-Miocene tectonic regime transition[J].GSA Bulletin,133(3-4):591-611.
Lin C,Zhang J,Wang X,et al.,2020a.Oligocene initiation of the South Tibetan Detachment System:Constraints from syn-tectonic leucogranites in the Kampa Dome,Northern Himalaya[J].Lithos,354-355:105332.
Lin C,Zhang J,Wang X,et al.,2020b.Late triassic back-arc spreading and initial opening of the Neo-Tethyan Ocean in the northern margin of Gondwana:Evidences from Late Triassic BABB-type basaltsin the Tethyan Himalaya,Southern Tibet[J].Lithos,358-359:105408.
Liu C,Wang R C,Wu F Y,et al.,2020.Spodumene pegmatites from the Pusila pluton in the higher Himalaya,South Tibet:Lithium mineralization in a highly fractionated leucogranite batholith[J].Lithos,358-359:105421.
Liu X C,Wu F Y,Yu L J,et al.,2016a.Emplacement age of leucogranite in the Kampa Dome,southern Tibet[J].Tectonophysics,667:163-175.
Liu Z C,Wang J G,Liu X C,et al.,2021.Middle Miocene ultrapotassic magmatism in the Himalaya:A response to mantle unrooting process beneath the orogen[J].Terra Nova,33(3):240-251.
Liu Z C,Wu F Y,Liu X C,et al.,2019.Mineralogical evidence for fractionation processes in the Himalayan leucogranites of the Ramba Dome,southern Tibet[J].Lithos,340-341:71-86.
Liu Z C,Wu F Y,Ding L,et al.,2016.Highly fractionated Late Eocene (~35 Ma) leucogranite in the Xiaru Dome,Tethyan Himalaya,South Tibet[J].Lithos,240-243:337-354.
Liu Z C,Wu F Y,Ji W Q,et al.,2014.Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model[J].Lithos,208-209:118-136.
Liu Z C,Wu F Y,Qiu Z L,et al.,2017.Leucogranite geochronological constraints on the termination of the South Tibetan Detachment in eastern Himalaya[J].Tectonophysics,721:106-122.
Maniar P D,Piccoli P M,1989.Tectonic discrimination of granitoids[J].Geological Society of America Bulletin,101(5):635-643.
Martin A J,2017.A review of Himalayan stratigraphy,magmatism,and structure[J].Gondwana Research,49:42-80.
McDonough W F,Sun S S,1995.The composition of the Earth[J].Chemical Geology,120(3-4):223-253.
Meinert L D,Dipple G M,Nicolescu S,et al.,2005.World Skarn Deposits[C]//One Hundredth Anniversary Volume,Society of Economic Geologists.299-336.
Meng Z Y,Gao X Y,Chen R X,et al.,2021.Fluid-present and fluid-absent melting of muscovite in migmatites in the Himalayan orogen:Constraints from major and trace element zoning and phase equilibrium relationships[J].Lithos,388-389:106071.
Metcalfe I,2021.Multiple Tethyan Ocean basins and orogenic belts in Asia[J].Gondwana Research,100:87-130.
Mitchell A H G,1979.Rift-,Subduction-and Collision-Related Tin Belts[J].Bulletin of the Geological Society of Malaysia,11:81-102.
Montomoli C,Iaccarino S,Antolin B,et al.,2017.Tectono-metamorphic evolution of the Tethyan Sedimentary Sequence (Himalayas,SE Tibet)[J].Italian Journal of Geosciences,136(1):73-88.
Murphy M A,Harrison T M,1999.Relationship between leucogranites and the Qomolangma detachment in the Rongbuk Valley,south Tibet[J].Geology,27(9):831-834.
Murphy M A,Yin A,Kapp P,et al.,2002.Structural evolution of the Gurla Mandhata detachment system,southwest Tibet:Implications for the eastward extent of the Karakoram fault system[J].Geological Society of America Bulletin,114(4):428-447.
Nabelek P I,2020.Petrogenesis of leucogranites in collisional orogens[J].Geological Society,London,Special Publications,491:179-207.
Nábělek P I,Liu M,2004.Petrologic and thermal constraints on the origin of leucogranites in collisional orogens[J].Earth and Environmental Science Transactions of the Royal Society of Edinburgh,95(1-2):73-85.
Nábělek P I,Nábělek J L,2014.Thermal characteristics of the Main Himalaya Thrust and the Indian lower crust with implications for crustal rheology and partial melting in the Himalaya orogen[J].Earth and Planetary Science Letters,395:116-123.
Neogi S,Bolton E W,Chakraborty S,2014.Timescales of disequilibrium melting in the crust:constraints from modelling the distribution of multiple trace elements and a case study from the Lesser Himalayan rocks of Sikkim[J].Contributions to Mineralogy and Petrology,168(2):1020.
Neogi S,Dasgupta S,Fukuoka M,1998.High P-T polymetamorphism,dehydration melting,and generation of migmatites and granites in the higher himalayan crystalline complex,Sikkim,India[J].Journal of Petrology,39(1):61-99.
O'Brien P J,2019.Eclogites and other high-pressure rocks in the Himalaya:a review[J].Geological Society,London,Special Publications,483:183-213.
Pan G T,Wang L Q,Li R S,et al.,2012.Tectonic evolution of the Qinghai-Tibet Plateau[J].Journal of Asian Earth Sciences,53:3-14.
Patiño Douce A E,Harris N,1998.Experimental constraints on Himalayan anatexis[J].Journal of Petrology,39(4):689-710.
Pearce J A,Harris N B,Tindle A G,1984.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].Journal of petrology,25(4):956-983.
Pognante U,1992.Migmatites and Leucogranites of tertiary age from the high Himalayan Crystallines of Zanskar (NW India):a case history of anatexis of Palaeozoic orthogneisses[J].Mineralogy and Petrology,46(4):291-313.
Prince C,Harris N,Vance D,2001.Fluid-enhanced melting during prograde metamorphism[J].Journal of the Geological Society,158(2):233-241.
Romer R L,Kroner U,2016.Phanerozoic tin and tungsten mineralization—Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting[J].Gondwana Research,31:60-95.
Romer R L,Pichavant M,2021.Rare metal granites and pegmatites,in encyclopedia of geology (Second Edition)[M].Academic Press:Oxford.840-846.
Rudnick R L,Gao S,2014.Composition of the continental crust,in treatise on geochemistry (Second Edition)[M],Elsevier:Oxford.1-51.
Scaillet B,France-Lanord C,Le Fort P,1990.Badrinath-Gangotri plutons (Garhwal,India):petrological and geochemical evidence for fractionation processes in a highHimalayan leucogranite[J].Journal of Volcanology and Geothermal Research,44(1):163-188.
Scaillet B,Pichavant M,Roux J,1995.Experimental crystallization of leucogranite magmas[J].Journal of Petrology,36(3):663-705.
Schärer U,Xu R H,Allègre C J,1986.U-(Th)-Pb systematics and ages of Himalayan leucogranites,South Tibet[J].Earth and Planetary Science Letters,77(1):35-48.
Schmidt C,Romer R L,Wohlgemuth-Ueberwasser C C,et al.,2020.Partitioning of Sn and W between granitic melt and aqueous fluid[J].Ore Geology Reviews,117:103263.
Searle M P,2019.Timing of subduction initiation,arc formation,ophiolite obduction and India-Asia collision in the Himalaya[J].Geological Society,London,Special Publications,483:19-37.
Searle M P,Noble S R,Hurford A J,et al.,1999.Age of crustal melting,emplacement and exhumation history of the Shivling leucogranite,Garhwal Himalaya[J].Geological Magazine,136(5):513-525.
Searle M P,Parrish R R,Hodges K V,et al.,1997.Shisha Pangma leucogranite,South Tibetan Himalaya;field relations,geochemistry,age,origin,and emplacement[J].Journal of Geology,105(3):295-317.
Sen A,Sen K,Chatterjee A,et al.,2022.Understanding pre-and syn-orogenic tectonic evolution in western Himalaya through age and petrogenesis of Palaeozoic and Cenozoic granites from upper structural levels of Bhagirathi Valley,NW India[J].Geological Magazine,159(1):97-123.
Shellnutt J G,2018.The panjal traps,in large igneous provinces from Gondwana and adjacent regions[M],Sensarma S.,Storey B.C.,Editors,Geological Society,London,Special Publications.59-86.
Shi Q,He Y,Zhao Z,et al.,2021.Petrogenesis of Himalayan leucogranites:perspective from a combined elemental and Fe-Sr-Nd isotope study[J].Journal of Geophysical Research:Solid Earth,126(8):e2021JB021839.
Shuai X,Li S M,Zhu D C,et al.,2021.Tetrad effect of rare earth elements caused by fractional crystallization in high-silica granites:An example from Central Tibet[J].Lithos,384-385:105968.
típskáP,Závada P,Collett S,et al.,2020.Eocene migmatite formation and diachronous burial revealed by petrochronology in NW Himalaya,Zanskar[J].Journal of Metamorphic Geology,38(6):655-691.
Sun S S,McDonough W F,1989.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J].Geological Society,London,Special Publications,42(1):313-345.
Sylvester P J,1998.Post-collisional strongly peraluminous granites[J].Lithos,45(1-4):29-44.
Ur Rehman H,2019.Geochronological enigma of the HP-UHP rocks in the Himalayan orogen[J].Geological Society,London,Special Publications,474:183-207.
VisonàD,Lombardo B,2002.Two-mica and tourmaline leucogranites from the Everest-Makalu region (Nepal-Tibet).Himalayan leucogranite genesis by isobaric heating?[J].Lithos,62(3-4):125-150.
Wang J M,Lanari P,Wu F Y,et al.,2021.First evidence of eclogites overprinted by ultrahigh temperature metamorphism in Everest East,Himalaya:Implications for collisional tectonics on early Earth[J].Earth and Planetary Science Letters,558:116760.
Wang R,Weinberg R F,Zhu D C,et al.,2022.The impact of a tear in the subducted Indian plate on the Miocene geology of the Himalayan-Tibetan orogen[J].Geological Society of America Bulletin,134(3-4):681-690.
Wang R C,Wu F Y,Xie L,et al.,2017.A preliminary study of rare-metal mineralization in the Himalayan leucogranite belts,South Tibet[J].Science China Earth Sciences,60(9):1655-1663.
Wang S,Replumaz A,Chevalier M L,et al.,2022b.Decoupling between upper crustal deformation of southern Tibet and underthrusting of Indian lithosphere[J].Terra Nova,34(1):62-71.
Wang X X,Zhang J J,Liu J,et al.,2013.Middle-Miocene transformation of tectonic regime in the Himalayan orogen[J].Chinese Science Bulletin,58(1):108-117.
Wang Y,Zeng L,Gao L E,et al.,2022.Eocene thickening without extra heat in a collisional orogenic belt:A record from Eocene metamorphism in mafic dike swarms within the Tethyan Himalaya,southern Tibet[J].GSA Bulletin:134(5-6):1217-1230.
Wang Z Z,Liu S A,Liu Z C,et al.,2020.Extreme Mg and Zn isotope fractionation recorded in the Himalayan leucogranites[J].Geochimica et Cosmochimica Acta,278:305-321.
Warren C J,Grujic D,Kellett D A,et al.,2011.Probing the depths of the India-Asia collision:U-Th-Pb monazite chronology of granulites from NW Bhutan[J].Tectonics,30(2):TC2004.
Watson E B,Harrison T M,1983.Zircon saturation revisited:temperature and composition effects in a variety of crustal magma types[J].Earth and Planetary Science Letters,64(2):295-304.
Webb A A G,Guo H,Clift P D,et al.,2017.The Himalaya in 3D:Slab dynamics controlled mountain building and monsoon intensification[J].Lithosphere,9(4):637-651.
Weinberg R F,2016.Himalayan leucogranites and migmatites:nature,timing and duration of anatexis[J].Journal of Metamorphic Geology,34:821-843.
Weinberg R F,Hasalová P,2015.Water-fluxed melting of the continental crust:A review[J].Lithos,212-215:158-188.
Whittington A,Harris N BW,Ayres M W,et al.,2000.Tracing the origins of the western Himalaya:an isotopic comparison of the Nanga Parbat massif and Zanskar Himalaya[J].Geological Society,London,Special Publications,170(1):201-218.
Windley B F,1988.Tectonic framework of the Himalaya,Karakoram and Tibet,and problems of their evolution[J].Philosophical Transactions of the Royal Society of London.Series A,Mathematical and Physical Sciences,326(1589):3-16.
Wolf M,Romer R L,Glodny J,2019.Isotope disequilibrium during partial melting of metasedimentary rocks[J].Geochimica et Cosmochimica Acta,257:163-183.
Wu F Y,Liu X C,Ji W Q,et al.,2017.Highly fractionated granites:Recognition and research[J].Science China Earth Sciences,60(7):1201-1219.
Wu F Y,Liu X C,Liu Z C,et al.,2020.Highly fractionated Himalayan leucogranites and associated rare-metal mineralization[J].Lithos,352-353:105319.
Xia Q X,Chen Y X,Chen R X,et al.,2022.Elevation of zircon Hf isotope ratios during crustal anatexis:Evidence from migmatites close to the eastern Himalayan syntaxis in southeastern Tibet[J].Lithos,412-413:106592.
Xie L,Tao X,Wang R,et al.,2020.Highly fractionated leucogranites in the eastern Himalayan Cuonadong dome and related magmatic Be-Nb-Ta and hydrothermal Be-W-Sn mineralization[J].Lithos,354-355:105286.
Yang L,Liu X C,Wang J M,et al.,2019.Is Himalayan leucogranite a product by in situ partial melting of the Greater Himalayan Crystalline?A comparative study of leucosome and leucogranite from Nyalam,southern Tibet[J].Lithos,342-343:542-556.
Yang R,Herman F,Liu T,et al.,2021.Enhanced Quaternary exhumation in the Namche Barwa syntaxis,eastern Himalaya[J].Geology,49(8):958-962.
Yang T,Ma Y,Bian W,et al.,2015.Paleomagnetic results from the Early Cretaceous Lakang Formation lavas:Constraints on the paleolatitude of the Tethyan Himalaya and the India-Asia collision[J].Earth and Planetary Science Letters,428:120-133.
Yang X,Jin Z,Ernst H,et al.,2001.Experimental study on dehydration melting of natural biotite-plagioclase gneiss from High Himalayas and implications for Himalayan crust anatexis[J].Chinese Science Bulletin,46(1001-6538):867-872.
Yang X Y,Zhang J J,Qi G W,et al.,2009.Structure and deformation around the Gyirong basin,north Himalaya,and onset of the south Tibetan detachment system[J].Science in China Series D:Earth Sciences,52(8):1046-1058.
Yin A,2006.Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry,exhumation history,and foreland sedimentation[J].Earth-Science Reviews,76(1-2):1-131.
Zeitler P K,Chamberlain C P,1991.Petrogenetic and tectonic significance of young leucogranites from the northwestern Himalaya,Pakistan[J].Tectonics,10(4):729-741.
Zeng L S,Liu J,Gao L E,et al.,2009.Early Oligocene anatexis in the Yardoi gneiss dome,southern Tibet and geological implications[J].Chinese Science Bulletin,54(1):104-112.
Zeng L,Gao L E,Dong C,et al.,2012.High-pressure melting of metapelite and the formation of Ca-rich granitic melts in the Namche Barwa Massif,southern Tibet[J].Gondwana Research,21(1):138-151.
Zeng L S,Gao L E,Tang S H,et al.,2015.Eocene magmatism in the Tethyan Himalaya,southern Tibet[J].Geological Society,London,Special Publications,412:287-316.
Zhang G,Wang J,Webb A A G,et al.,2021.The protoliths of central Himalayan eclogites[J].GSA Bulletin,DOI:https://doi.org/10.1130/B36080.1
Zhang H,Harris N,Parrish R,et al.,2004.Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform[J].Earth and Planetary Science Letters,228(1-2):195-212.
Zhang J J,Santosh M,Wang X X,et al.,2012.Tectonics of the northern Himalaya since the India-Asia collision[J].Gondwana Research,21:939-960.
Zhang L K,Li G M,Santosh M,et al.,2019.Cambrian magmatism in the Tethys Himalaya and implications for the evolution of the Proto-Tethys along the northern Gondwana margin:A case study and overview[J].Geological Journal,54(4):2545-2565.
Zhang L K,Li G M,Cao H W,et al.,2020.Activity of the south Tibetan detachment system:Constraints from leucogranite ages in the eastern Himalayas[J].Geological Journal,55(5):5540-5573.
Zhang Z,Ding H,Palin R M,et al.,2022.On the origin of high-pressure mafic granulite in the Eastern Himalayan Syntaxis:implications for the tectonic evolution of the Himalayan orogen[J].Gondwana Research,104:4-22.
Zhang Z,Li G M,Zhang L K,et al.,2021.Neoproterozoic bimodal magmatism in the eastern Himalayan orogen:Tectonic implications for the Rodinia supercontinent evolution[J].Gondwana Research,94:87-105.
Zhang Z M,Xiang H,Ding H X,et al.,2017.Miocene orbicular diorite in east-central Himalaya:Anatexis,melt mixing,and fractional crystallization of the Greater Himalayan Sequence[J].Geological Society of America Bulletin,129(7-8):869-885.
Zhang Z M,Ding H X,Dong X,et al.,2018.High-temperature metamorphism,anataxis and tectonic evolution of a mafic granulite from the eastern Himalayan orogen[J].Journal of Earth Science,29(5):1010-1025.
Zheng Y C,Hou Z Q,Fu Q,et al.,2016.Mantle inputs to Himalayan anatexis:Insights from petrogenesis of the Miocene Langkazi leucogranite and its dioritic enclaves[J].Lithos,264:125-140.
Zhu D C,Chung S L,Mo X X,et al.,2009.The 132 Ma Comei-Bunbury large igneous province:Remnants identified in present-day southeastern Tibet and southwestern Australia[J].Geology,37(7):583-586.
边千韬,丁林,2006.特提斯喜马拉雅带东段哲古错含金(砷)细粒石英闪长岩的发现及其意义[J].岩石学报,22(4):977-988.
卞爽,于志泉,龚俊峰,等,2021.青藏高原近南北向裂谷的时空分布特征及动力学机制[J].地质力学学报,27(2):178-194.
曹华文,李光明,张林奎,等,2020.西藏山南列麦始新世花岗岩独居石U-Th-Pb年龄及地质意义[J].沉积与特提斯地质,40(2):31-42.
曾令森,高利娥,2017.喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩[J].岩石学报,33(5):1420-1444.
陈毓蔚,许荣华,1981.西藏南部中酸性岩中锆石铀-铅计时讨论[J].地球化学,10(2):128-135.
付建刚,李光明,王根厚,等,2021.西藏拉隆穹窿地质特征和Be-Nb-Ta稀有金属矿化的厘定及其战略意义[J].大地构造与成矿学,45(5):913-933.
高利娥,曾令森,严立龙,等,2021.喜马拉雅淡色花岗岩——关键金属Sn-Cs-Tl的富集机制[J].岩石学报,37(10):2923-2943.
郝光明,曾令森,赵令浩,2021.西藏南部南迦巴瓦地区中新世—上新世地壳深熔作用[J].岩石学报,37(11):3501-3512.
李光明,张林奎,焦彦杰,等,2017.西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义[J].矿床地质,36(4):1003-1008.
李光明,张林奎,张志,等,2021.青藏高原南部的主要战略性矿产:勘查进展、资源潜力与找矿方向[J].沉积与特提斯地质,41(2):351-360.
李开玉,Marie-Luce C,李海兵,等,2020.藏南冲巴雍错淡色花岗岩体热年代学及其对藏南拆离系和亚东裂谷构造活动时限的制约[J].岩石学报,36(10):3097-3116.
李统锦,赵斌,张玉泉,等,1981.西藏南部花岗岩类熔化实验的初步研究[J].地球化学,(3):261-267.
刘晨,王汝成,吴福元,等,2021.珠峰地区锂成矿作用:喜马拉雅淡色花岗岩带首个锂电气石-锂云母型伟晶岩[J].岩石学报,37(11):3287-3300.
刘志超,刘小驰,俞良军,等,2020a.喜马拉雅康巴淡色花岗岩的高分异成因及岩浆-热液演化特征[J].南京大学学报(自然科学),56(6):800-814.
刘志超,吴福元,刘小驰,等,2020b.喜马拉雅淡色花岗岩结晶分异机制概述[J].岩石学报,36(12):3551-3571.
潘晶铭,张玉泉,洪文兴,1981.西藏南部花岗岩类副成分矿物特征[J].地球化学,10(1):42-48.
秦克章,赵俊兴,何畅通,等,2021.喜马拉雅琼嘉岗超大型伟晶岩型锂矿的发现及意义[J].岩石学报,37(11):3277-3286.
田怡红,曾令森,高利娥,等,2021.藏南特提斯喜马拉雅晚二叠世酸性岩浆作用及其构造意义[J].岩石学报,37(10):3035-3047.
涂光炽,张玉泉,赵振华,等,1981.西藏南部花岗岩类的特征和演化[J].地球化学,10(1):1-7.
王俊文,成忠礼,桂训唐,等,1981.西藏南部某些中酸性岩体的铷-锶同位素研究[J].地球化学,10(3):242-246.
王汝成,吴福元,谢磊,等,2017.藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究[J].中国科学:地球科学,47(8):871-880.
王一先,赵振华,王中刚,1981.西藏南部花岗岩类中微量元素的某些地球化学特征[J].地球化学,10(1):49-56.
王中刚,张玉泉,赵惠兰,1981.西藏南部花岗岩类的岩石化学研究[J].地球化学,10(1):19-25.
吴福元,刘志超,刘小驰,等,2015.喜马拉雅淡色花岗岩[J].岩石学报,31(1):1-36.
吴福元,王汝成,刘小驰,等,2021.喜马拉雅稀有金属成矿作用研究的新突破[J].岩石学报,37(11):3261-3276.
谢磊,王汝成,田恩农,等,2021.喜马拉雅夏如渐新世淡色花岗岩铌钽钨成矿作用[J].科学通报,66(35):4574-4591.
谢学锦,任天祥,孙焕振,2017.中国地球化学图集[M].北京:地质出版社.
谢应雯,张玉泉,邓秉均,1981.西藏花岗岩类中长石的特征与花岗岩类的演化[J].地球化学,10(1):36-41.
张克信,潘桂棠,何卫红,等,2015.中国构造-地层大区划分新方案[J].地球科学(中国地质大学学报),40(2):206-233.
张玉泉,戴橦谟,洪阿实,1981a.西藏高原南部花岗岩类同位素地质年代学[J].地球化学,10(1):8-18.
张玉泉,王中刚,赵振华,等,1981b.从中酸性的岩浆活动论西藏高原地壳运动特征[J].地球化学,10(2):136-141.
张泽明,丁慧霞,董昕,等,2018a.冈底斯弧的岩浆作用:从新特提斯俯冲到印度亚洲碰撞[J].地学前缘,25(6):78-91.
张泽明,康东艳,丁慧霞,等,2018b.喜马拉雅造山带的部分熔融与淡色花岗岩成因机制[J].地球科学(中国地质大学学报),43(1):82-98.
张泽明,丁慧霞,董昕,等,2019.喜马拉雅造山带两种不同类型榴辉岩与印度大陆差异性俯冲[J].地球科学,44(5):1602-1619.
张志,李光明,张林奎,等,2020.藏南错那洞穹隆早渐新世含绿柱石花岗伟晶岩的成因机制及其地质意义[J].沉积与特提斯地质,40(2):14-30.
赵振华,王一先,钱志鑫,等,1981.西藏南部花岗岩类稀土元素地球化学[J].地球化学,10(1):26-35.
周起凤,秦克章,何畅通,等,2021.喜马拉雅东段库曲岩体锂、铍和铌钽稀有金属矿物研究及指示意义[J].岩石学报,37(11):3305-3324.
-
计量
- 文章访问数: 2808
- PDF下载数: 194
- 施引文献: 0