Comparison of engineering characteristics of calcareous sands in the South China Sea and Arabian Bay
-
摘要:
钙质砂在我国南海有广泛的分布。随着海上石油工业和海洋资源的开发利用,钙质砂问题日益得到重视。用室内试验的方法,采用相同级配的南海钙质砂和阿拉伯湾钙质砂进行了分析,结果显示,相同级配的南海钙质砂和阿拉伯湾钙质砂的最大最小干密度存在明显差异,南海钙质砂均低于阿拉伯湾钙质砂。同时在级配以及密实度相同的条件下,南海钙质砂的应力-应变关系表现为硬化,而阿拉伯湾钙质砂表现为软化; 两者在Dr=0.3时,内摩擦角接近,均为33°左右,但随着相对密实度的增加,南海钙质砂内摩擦角增长速度更快,在Dr=0.8时达到37.7°,明显高于相同密实度的阿拉伯湾钙质砂的34.9°。电镜分析显示,在微观结构上,南海钙质砂的颗粒多棱角,内孔隙更加发育,这是造成南海钙质砂与阿拉伯湾钙质砂物理力学性质差异的重要原因之一。
Abstract:Calcareous sand is widely spread in the South China Sea. As a special type of soil, its physical and mechanic properties vary from place to place, that always bring troubles to engineers to determine the parameters for design. With the rapid development of ocean engineering, this problem has caught great attention in practice. In this paper, the physical and mechanic properties of calcareous sand from the South China Sea and Arabian Bay are studied by indoor tests. The results show that under the same particle gradation, the dry unit weight of the sands in Arabian Bay is higher than that in South China Sea, if they have same relative density. The relationship of stress-strain exhibits soften for Arabian Bay sand and stiffen for the South China Sea sand. When relative density Dr=0.30, the friction angle of calcareous sand in the South China Sea and Arabian Bay is about 33°. However, with the increment in Dr, the friction of South China sand increases faster than that of Arabian Bay sand. When Dr=0.80, the friction angle of calcareous sand in the South China Sea is up to 37.9°which is greater than 34.9° of Arabian Bay sand obviously. The results of scanning electron microscope (SEM) reveal that the inner pore of calcareous sand in the South China Sea is more developed, and the particles have higher angularity. These characteristics should be taken into account when building platform on calcareous sands in practice.
-
Key words:
- calcareous sand /
- physical and mechanical properties /
- the South China Sea /
- Arabian Bay
-
表 1 钙质砂最大最小干密度
Table 1. The maximum and minmum unit dry weight and void ratio of calcareous sand
试验项目 最小干密度/(g/cm3) 最大干密度/(g/cm3) 最大孔隙比 最小孔隙比 阿拉伯湾 1.522 1.806 0.820 0.534 南海 1.239 1.639 1.244 0.696 -
[1] 白晓宇.钙质岩土工程性状研究[D].青岛理工大学硕士学位论文, 2010.
BAI Xiaoyu. Study on engineering character of calcareous soil[D]. Master's Thesis of Qingdao University of Technology, 2010.
[2] 杨志强, 赵威, 宋朝景.钙质土层的工程地质调查[J].岩土力学1994, 15(4): 53-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400553341
YANG Zhiqiang, ZHAO Wei, SONG Chaojing. Geotechnical investigation in calcareous soils[J]. Rock and Soil Mechanics, 1994, 15(4): 53-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400553341
[3] 郭见扬.略论南沙群岛的工程地质问题[J].岩石力学与工程学报, 1995, 14(3): 282-288.
GUO Jianyang. The problem of engineering geology of Nansha Archipelago[J]. Chinese Journal of Rock Mechanics and Engineering, 1995, 14(3): 282-288.
[4] 刘崇权, 杨志强, 汪稔.钙质土力学性质研究现状与进展[J].岩土力学, 1995, 16(4): 74-84.
LIU Chongquan, YANG Zhiqiang, WANG Ren. The present condition and development in studies of mechanical properties of calcareous soils[J]. Rock and Soil Mechanics, 1995, 16(4): 74-84.
[5] 刘崇权, 汪稔.钙质砂物理力学性质初探[J].岩土力学, 1998, 19(1): 32-37.
LIU Chongquan, WANG Ren. Preliminary research on physical and mechanical properties of calcareous sand[J]. Rock and Soil Mechanics, 1998, 19(1): 32-37.
[6] 张家铭.钙质砂基本力学性质及颗粒破碎影响研究[D].中国科学院武汉岩土力学研究所博士学位论文, 2004.
ZHANG Jiaming. Study on the fundamental mechanical characteristics of calcareous sand and the influence of particle breakage[D]. Doctoral Dissertation of Institute of Rock & Soil Mechanics, Chinese Academy of Sciences, P. R. China, 2004.
[7] 王新志, 汪稔, 孟庆山, 等.钙质砂室内载荷试验研究[J].岩土力学, 2009, 30(1): 147-151, 156. doi: 10.3969/j.issn.1000-7598.2009.01.025
WANG Xinzhi, WANG Ren, MENG Qingshan, et al. Study of plate load test of calcareous sand[J]. Rock and Soil Mechanics, 2009, 30(1): 147-151, 156. doi: 10.3969/j.issn.1000-7598.2009.01.025
[8] 张家铭, 张凌, 刘慧, 等.钙质砂剪切特性试验研究[J].岩石力学与工程学报, 2008, 27(1): 3010-3015.
ZHANG Jiaming, ZHANG Ling, LIU Hui, et al. Experimental research on shear behavior of calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(1): 3010-3015.
[9] 单华刚, 汪稔, 周曾辉.南沙群岛永暑礁工程地质特性[J].海洋地质与第四纪地质, 2004, 20(3): 31-36. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200003005
SHANG Huagang, WANG Ren, ZHOU Zenghui. Yongshu reef engineering geology of Nansha Islands[J]. Marine Geology & Quaternary Geology, 2004, 20(3): 31-36. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200003005
[10] 胡波.三轴条件下钙质砂颗粒破碎力学性质与本构模型研究[D].中国科学院武汉岩土力学研究所博士学位论文, 2008.
HU Bo. Research on the particle breakage mechanical characterictics and constitutive model of calcareous sand under triaxial conditions[D]. Doctoral Dissertation of Institute of Rock & Soil Mechanics, Chinese Academy of Sciences, P. R. China, 2008.
[11] Dehnavi Y, Shahnazari H, Salehzadeh H, et al. Compressibility and undrained behavior of hormuz calcareous sand[J]. Electronic Journal of Geotechnical Engineering, 2010, 15: 1684-1702. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000000562627
[12] Hasssanlourad M, Salehzadeh H, Shahnazari H. Dilation and particle breakage effects on the shear strength of calcareous sands based on energy aspects[J]. International Journal of Civil Engineering, 2008, 6(2): 108-119.
[13] Pando M A, Sandoval E A, Catano J. Liquefaction susceptibility and dynamic properties of calcareous sands from Cabo Rojo, Puerto Rico[Z]. 2012.
[14] Morioka B T, Nicholson P G. Evaluation of the liquefaction potential of calcareous sand[C]//Proceedings of the Tenth International Offshore and Polar Engineering Conference. Seattle, WA, USA: International Society of Offshore and Polar Engineers, 2000: 494-500.
[15] Golightly C R, Hyde A F L. Some fundamental properties of carbonate sands[C]//Engg. for Calcareous Sediments, Balkema. Perth, Australia, 1988, 1: 69-78.
[16] Hull T S, Poulus, H G, Alehossein H. The static behavior of various calcareous sediments[C]//Engg. for Calcareous Sediments, Balkema, 1988, 1: 87-96.
[17] Salem M, Elmamlouk H, Agaiby S. Static and cyclic behabior of north coast calcreous sand in Egypt[J]. Soil Dynamics and Earthquake Engineering, 2013, 55: 83-91. doi: 10.1016/j.soildyn.2013.09.001
[18] Shannazari H, Tutunchian M A, Rezvani R, et al. Evolutionary-based approaches for determining the deviatoric stress of calcareous sands[J]. Comperters & Geosciences, 2013, 50: 84-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=da2423795351224beab7ec340e9433f3
[19] Bandini P, Olague-Caballero R I. Effect of Moisture on the peak shear stress and compressibility of a carbonate cemented sand of southern new Mexico[C]//GeoGongres 2008: Characterization, Monitoring, and Modeling of Geosystems. 404-411.
[20] 南京水利科学研究院. SL237-1999土工试验规程SL237-1999[S].北京: 中国水利水电出版社, 1999.
Nanjing Hydraulic Research Institute. SL237-1999 Specification of soil test SL237-1999[S]. Beijing: China Water & Power Press, 1999.
[21] Hardin B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192. doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177)