各向异性介质控制束偏移及海上数据应用实例

张瑞, 黄建平, 李振春, 王炜, 袁双齐, 庄苏斌. 各向异性介质控制束偏移及海上数据应用实例[J]. 海洋地质与第四纪地质, 2020, 40(1): 184-197. doi: 10.16562/j.cnki.0256-1492.2018120101
引用本文: 张瑞, 黄建平, 李振春, 王炜, 袁双齐, 庄苏斌. 各向异性介质控制束偏移及海上数据应用实例[J]. 海洋地质与第四纪地质, 2020, 40(1): 184-197. doi: 10.16562/j.cnki.0256-1492.2018120101
ZHANG Rui, HUANG Jianping, LI Zhenchun, WANG Wei, YUAN Shuangqi, ZHUANG Subin. A controlled beam migration for anisotropic media and its application to marine data[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 184-197. doi: 10.16562/j.cnki.0256-1492.2018120101
Citation: ZHANG Rui, HUANG Jianping, LI Zhenchun, WANG Wei, YUAN Shuangqi, ZHUANG Subin. A controlled beam migration for anisotropic media and its application to marine data[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 184-197. doi: 10.16562/j.cnki.0256-1492.2018120101

各向异性介质控制束偏移及海上数据应用实例

  • 基金项目: 国家重点研发计划“超深层弱信号增强、速度建模与保幅偏移技术研究”(2016YFC060110501);国家自然科学基金面上项目“面向深部储层的时空域自适应高斯束成像理论方法及优化”(41874149);国家科技重大专项“薄互层全波形反演和最小二乘偏移联合成像”(2016ZX05002-005-07HZ),“基于多次散射理论的散射波地震成像技术”(2016ZX05014-001-008HZ)
详细信息
    作者简介: 张瑞(1994—),男,硕士研究生,主要从事高斯束反演及偏移成像研究,E-mail: zhangruixiaoz@163.com
    通讯作者: 黄建平(1982—),男,教授,博士生导师,长期从事地震波正演模拟、高斯束偏移及最小二乘偏移方法研究,E-mail: jphuang@upc.edu.cn
  • 中图分类号: P738

A controlled beam migration for anisotropic media and its application to marine data

More Information
  • 随着勘探区域逐渐从陆地过渡到海洋,勘探目标逐渐趋于复杂化,高精度成像方法已经成为海洋油气勘探的瓶颈技术。高斯束偏移是一种灵活且高效的深度域偏移方法,对实际资料成像具有较好的适应性。该文发展了一种适应于海洋观测系统的高精度高斯束偏移方法,首先将海上接收的共偏移距地震记录进行加窗局部倾斜叠加,通过数学变换将共炮域公式推广到共偏移距域,再从炮点和检波点分别进行射线追踪,最后采用数据驱动的方式进行成像。一方面,考虑到地下介质的各向异性,引入了各向异性射线追踪方程;另一方面,根据有效信号和干扰信号在τ-p域中的相干性差异,在高斯束偏移过程中对地震信号进行控制,降低偏移剖面中的随机噪声,提高同相轴的连续性,最终实现了一种VTI介质共偏移距域数据驱动控制束偏移理论方法。在实现算法的基础上,通过各向异性洼陷模型、修改的SEG/Hess VTI模型及海上实际资料成像试处理,结果表明:各向异性参数对共偏移距道集中的大偏移距信息成像质量改善明显;当地层各向异性不能忽略时,新方法能够更加准确地恢复地下的复杂构造;新方法能够在一定程度上提高低信噪比数据的偏移成像效果。

  • 加载中
  • 图 1  共偏移距域数据驱动控制束偏移原理图

    Figure 1. 

    图 2  单偏移距数据驱动控制束偏移程序流程图

    Figure 2. 

    图 3  各向异性洼陷模型

    Figure 3. 

    图 4  各向异性洼陷模型偏移结果

    Figure 4. 

    图 5  修改的SEG/Hess VTI模型各向异性参数

    Figure 5. 

    图 6  修改的SEG/Hess VIT模型共偏移距域高斯束偏移结果及局部放大显示对比

    Figure 6. 

    图 7  交错网格各向异性高阶有限差分正演模拟的共偏移距(200 m)道集

    Figure 7. 

    图 8  图7中局部共偏移距道集相干性分析

    Figure 8. 

    图 9  单偏移距(200 m)各向异性高斯束及控制束偏移结果

    Figure 9. 

    图 10  中国东部某海上探区实际数据

    Figure 10. 

    图 11  海上数据共偏移距域高斯束偏移结果及局部放大对比

    Figure 11. 

    图 12  海上数据共偏移距域控制束偏移结果及局部放大对比

    Figure 12. 

  • [1]

    吴国忱. 各向异性介质地震波传播与成像[M]. 东营: 中国石油大学出版社, 2006.

    WU Guochen. Seismic Wave Propagation and Imaging in Anisotropic Media[M]. Dongying: China University of Petroleum Press, 2006.

    [2]

    Babich V M, Popov M M. Gaussian summation method (review) [J]. Radiophysics and Quantum Electronics, 1989, 32(12): 1063-1081. doi: 10.1007/BF01038632

    [3]

    Popov M M. A new method of computation of wave fields using Gaussian beams [J]. Wave Motion, 1982, 4(1): 85-97. doi: 10.1016/0165-2125(82)90016-6

    [4]

    Popov M M. Ray theory and Gaussian beam method for geophysicists[Z]. EDUFBA, 2002.

    [5]

    Bleistein N. Hagedoorn told us how to do Kirchhoff migration and inversion [J]. The Leading Edge, 1999, 18(8): 918-927. doi: 10.1190/1.1438407

    [6]

    Hill N R. Prestack Gaussian-beam depth migration [J]. Geophysics, 2001, 66(4): 1240-1250. doi: 10.1190/1.1487071

    [7]

    Gray S H, Notfors C, Bleistein N. Imaging using multi-arrivals: Gaussian beams or multi-arrival Kirchhoff?[C]//2002 SEG Annual Meeting. Salt Lake City, Utah: SEG, 2002: 1117-1120.

    [8]

    Liu J, Palacharla G. Multiarrival Kirchhoff beam migration [J]. Geophysics, 2011, 76(5): WB109-WB118. doi: 10.1190/geo2010-0403.1

    [9]

    Kachalov A P, Popov M M. Application of the method of summation of Gaussian beams for calculation of high-frequency wave fields [J]. Soviet Physics Doklady, 1981, 26: 604-606.

    [10]

    Červený V, Popov M M, Pšenčík I. Computation of wave fields in inhomogeneous media-Gaussian beam approach [J]. Geophysical Journal International, 1982, 70(1): 109-128. doi: 10.1111/j.1365-246X.1982.tb06394.x

    [11]

    Červený V. Synthetic body wave seismograms for laterally varying layered structures by the Gaussian beam method [J]. Geophysical Journal International, 1983, 73(2): 389-426. doi: 10.1111/j.1365-246X.1983.tb03322.x

    [12]

    Červený V, Pšenčík I. Gaussian beams in two-dimensional elastic inhomogeneous media [J]. Geophysical Journal International, 1983, 72(2): 417-433. doi: 10.1111/j.1365-246X.1983.tb03793.x

    [13]

    Červený V, Pšenčík I. Gaussian beams in elastic 2-D laterally varying layered structures [J]. Geophysical Journal International, 1984, 78(1): 65-91. doi: 10.1111/j.1365-246X.1984.tb06472.x

    [14]

    Hill N R. Gaussian beam migration [J]. Geophysics, 1990, 55(11): 1416-1428. doi: 10.1190/1.1442788

    [15]

    Alkhalifah T. Gaussian beam depth migration for anisotropic media [J]. Geophysics, 1995, 60(5): 1474-1484. doi: 10.1190/1.1443881

    [16]

    Zhu T F, Gray S H, Wang D L. Prestack Gaussian-beam depth migration in anisotropic media [J]. Geophysics, 2007, 72(3): S133-S138. doi: 10.1190/1.2711423

    [17]

    段鹏飞, 程玖兵, 陈爱萍, 等. TI介质局部角度域高斯束叠前深度偏移成像[J]. 地球物理学报, 2013, 56(12):4206-4214 doi: 10.6038/cjg20131223

    DUAN Pengfei, CHENG Jiubing, CHEN Aiping, et al. Local angle-domain Gaussian beam prestack depth migration in a TI medium [J]. Chinese Journal of Geophysics, 2013, 56(12): 4206-4214. doi: 10.6038/cjg20131223

    [18]

    Protasov M I. 2-D Gaussian beam imaging of multicomponent seismic data in anisotropic media [J]. Geophysical Journal International, 2015, 203(3): 2021-2031. doi: 10.1093/gji/ggv408

    [19]

    张凯, 段新意, 李振春, 等. 角度域各向异性高斯束逆时偏移[J]. 石油地球物理勘探, 2015, 50(5):912-918

    ZHANG Kai, DUAN Xinyi, LI Zhenchun, et al. Angle domain reverse time migration with Gaussian beams in anisotropic media [J]. Oil Geophysical Prospecting, 2015, 50(5): 912-918.

    [20]

    李振春, 刘强, 韩文功, 等. VTI介质角度域转换波高斯束偏移成像方法研究[J]. 地球物理学报, 2018, 61(4):1471-1481

    LI Zhenchun, LIU Qiang, HAN Wengong, et al. Angle domain converted wave Gaussian beam migration in VTI media [J]. Chinese Journal of Geophysics, 2018, 61(4): 1471-1481.

    [21]

    Popov M M, Semtchenok N M, Popov P M, et al. Depth migration by the Gaussian beam summation method [J]. Geophysics, 2010, 75(2): S81-S93. doi: 10.1190/1.3361651

    [22]

    黄建平, 张晴, 张凯, 等. 格林函数高斯束逆时偏移[J]. 石油地球物理勘探, 2014, 49(1):101-106

    HUANG Jianping, ZHANG Qing, ZHANG Kai, et al. Reverse time migration with Gaussian beams based on the Green function [J]. Oil Geophysical Prospecting, 2014, 49(1): 101-106.

    [23]

    Huang J P, Yuan M L, Zhang Q, et al. Reverse time migration with elastodynamic Gaussian beams [J]. Journal of Earth Science, 2017, 28(4): 695-702. doi: 10.1007/s12583-015-0609-9

    [24]

    Gray S H, Bleistein N. True-amplitude Gaussian-beam migration [J]. Geophysics, 2009, 74(2): S11-S23. doi: 10.1190/1.3052116

    [25]

    Protasov M I, Tcheverda V A. True amplitude elastic Gaussian beam imaging of multicomponent walkaway vertical seismic profiling data [J]. Geophysical Prospecting, 2012, 60(6): 1030-1042. doi: 10.1111/j.1365-2478.2012.01068.x

    [26]

    黄建平, 杨继东, 李振春, 等. 基于有效邻域波场近似的起伏地表保幅高斯束偏移[J]. 地球物理学报, 2016, 59(6):2245-2256 doi: 10.6038/cjg20160627

    HUANG Jianping, YANG Jidong, LI Zhenchun, et al. An amplitude-preserved Gaussian beam migration based on wave field approximation in effective vicinity under irregular topographical conditions [J]. Chinese Journal of Geophysics, 2016, 59(6): 2245-2256. doi: 10.6038/cjg20160627

    [27]

    Hu H, Liu Y K, Zheng Y C, et al. Least-squares Gaussian beam migration [J]. Geophysics, 2016, 81(3): S87-S100. doi: 10.1190/geo2015-0328.1

    [28]

    Yuan M L, Huang J P, Liao W Y, et al. Least-squares Gaussian beam migration [J]. Journal of Geophysics and Engineering, 2017, 14(1): 184-196. doi: 10.1088/1742-2140/14/1/184

    [29]

    Yang J D, Zhu H J, McMechan G, et al. Time-domain least-squares migration using the Gaussian beam summation method [J]. Geophysical Journal International, 2018, 214(1): 548-572. doi: 10.1093/gji/ggy142

    [30]

    黄建平, 袁茂林, 李振春, 等. 双复杂条件下非倾斜叠加精确束偏移方法及应用Ⅰ——声波方程[J]. 地球物理学报, 2015, 58(1):267-276

    HUANG Jianping, YUAN Maolin, LI Zhenchun, et al. The accurate beam migration method without slant stack under dual-complexity conditions and its application (I): Acoustic equation [J]. Chinese Journal of Geophysics, 2015, 58(1): 267-276.

    [31]

    张瑞, 黄建平, 崔超, 等. 莺歌海盆地二维剖面高斯束高精度叠前深度偏移[J]. 海洋地质与第四纪地质, 2017, 37(1):168-175

    ZHANG Rui, HUANG Jianping, CUI Chao, et al. High precision Gaussian beam pre-stack depth migration for Yinggehai basin 2D seismic profiles [J]. Marine Geology and Quaternary Geology, 2017, 37(1): 168-175.

    [32]

    Yang J D, Zhu H J. A practical data-driven optimization strategy for Gaussian beam migration [J]. Geophysics, 2018, 83(1): S81-S92. doi: 10.1190/geo2017-0314.1

    [33]

    Vinje V, Roberts G A, Taylor R. Controlled beam migration: a versatile structural imaging tool [J]. First Break, 2008, 26(9): 109-113.

    [34]

    Zhou B, Zhou J, Wang Z L, et al. Anisotropic depth imaging with high fidelity controlled beam migration: A case study in Bohai, offshore China[C]//2011 SEG Annual Meeting. San Antonio, Texas: SEG, 2011: 217-221.

    [35]

    Casasanta L, Gray S, Grion S. Converted-wave controlled beam migration with sparse sources or receivers[C]//75th EAGE Conference & Exhibition. London, UK: EAGE, 2013.

    [36]

    黄建平, 吴建文, 杨继东, 等. 一种τ-p域二维控制束成像方法[J]. 石油地球物理勘探, 2016, 51(2):342-349

    HUANG Jianping, WU Jianwen, YANG Jidong, et al. A 2D control beam migration in the τ-p domain [J]. Oil Geophysical Prospecting, 2016, 51(2): 342-349.

    [37]

    Červený V. Seismic rays and ray intensities in inhomogeneous anisotropic media [J]. Geophysical Journal International, 1972, 29(1): 1-13. doi: 10.1111/j.1365-246X.1972.tb06147.x

    [38]

    Hanyga A. Gaussian beams in anisotropic elastic media [J]. Geophysical Journal International, 1986, 85(3): 473-504. doi: 10.1111/j.1365-246X.1986.tb04528.x

    [39]

    Zhang Y, Xu S, Bleistein N, et al. True-amplitude, angle-domain, common-image gathers from one-way wave-equation migrations [J]. Geophysics, 2007, 72(1): S49-S58. doi: 10.1190/1.2399371

    [40]

    高成, 孙建国, 齐鹏, 等. 2D共炮时间域高斯波束偏移[J]. 地球物理学报, 2015, 58(4):1333-1340

    GAO Cheng, SUN Jianguo, QI Peng, et al. 2-D Gaussian-beam migration of common-shot records in time domain [J]. Chinese Journal of Geophysics, 2015, 58(4): 1333-1340.

    [41]

    Hale D. Migration by the Kirchhoff, slant stack, and Gaussian beam methods[Z]. Center for Wave Phenomena, Colorado School of Mines, 1992.

    [42]

    孙夕平, 杜世通. 相干体技术算法研究及其在地震资料解释中的应用[J]. 石油大学学报: 自然科学版, 2003, 27(2):32-35, 40

    SUN Xiping, DU Shitong. Development and application of algorithm of coherency cub technique to seismic interpretation [J]. Journal of China University of Petroleum, China: Edition of Natural Science, 2003, 27(2): 32-35, 40.

    [43]

    Bahorich M, Farmer S. 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube [J]. The Leading Edge, 1995, 14(10): 1053-1058. doi: 10.1190/1.1437077

    [44]

    Marfurt K J, Kirlin R L, Farmer S L, et al. 3-D seismic attributes using a semblance-based coherency algorithm [J]. Geophysics, 1998, 63(4): 1150-1165. doi: 10.1190/1.1444415

    [45]

    Marfurt K J, Sudhaker V, Gersztenkorn A, et al. Coherency calculations in the presence of structural dip [J]. Geophysics, 1999, 64(1): 104-111. doi: 10.1190/1.1444508

    [46]

    Neidell N S, Taner M T. Semblance and other coherency measures for multichannel data [J]. Geophysics, 1971, 36(3): 482-497. doi: 10.1190/1.1440186

  • 加载中

(12)

计量
  • 文章访问数:  2322
  • PDF下载数:  51
  • 施引文献:  0
出版历程
收稿日期:  2018-12-01
修回日期:  2019-06-08
刊出日期:  2020-02-25

目录