构造活动对海底峡谷地貌形态的影响

赵家斌, 钟广法. 构造活动对海底峡谷地貌形态的影响[J]. 海洋地质前沿, 2018, 34(12): 1-13. doi: 10.16028/j.1009-2722.2018.12001
引用本文: 赵家斌, 钟广法. 构造活动对海底峡谷地貌形态的影响[J]. 海洋地质前沿, 2018, 34(12): 1-13. doi: 10.16028/j.1009-2722.2018.12001
ZHAO Jiabin, ZHONG Guangfa. A REVIEW ON GEOMORPHIC RESPONSE OF SUBMARINE CANYONS TO TECTONIC DEFORMATION[J]. Marine Geology Frontiers, 2018, 34(12): 1-13. doi: 10.16028/j.1009-2722.2018.12001
Citation: ZHAO Jiabin, ZHONG Guangfa. A REVIEW ON GEOMORPHIC RESPONSE OF SUBMARINE CANYONS TO TECTONIC DEFORMATION[J]. Marine Geology Frontiers, 2018, 34(12): 1-13. doi: 10.16028/j.1009-2722.2018.12001

构造活动对海底峡谷地貌形态的影响

  • 基金项目:
    国家自然科学基金(91528304,41676029)
详细信息
    作者简介: 赵家斌(1993-),男,硕士,主要从事地震数据解释方面的研究工作.E-mail:carlosdom@163.com
    通讯作者: 钟广法(1964-),男,博士,教授,博导,主要从事地震、测井解释和沉积学方面的研究工作.E-mail:gfz@tongji.edu.cn
  • 中图分类号: P736

A REVIEW ON GEOMORPHIC RESPONSE OF SUBMARINE CANYONS TO TECTONIC DEFORMATION

More Information
  • 海底峡谷是大陆边缘最重要的地貌形态之一,是沉积物和陆源有机质向深海搬运的主要通道,在深海重力流沉积、全球碳循环、生物多样性、油气-水合物资源勘探及海底工程设施安全运营等方面的研究中具有重要意义。大量研究发现,海底峡谷常发育于构造活动较强烈的地区,其形成和演化与构造变形之间存在密切的关联。在文献调研基础上,着重就构造活动对海底峡谷地貌的控制作用进行综述。总结了5种与构造变形有关的海底峡谷平面分布端元模式,分别为限制型、转向型、偏转型、阻挡型及横向切穿型海底峡谷。分析了局部坡度变化对峡谷内部地貌特征的影响:构造变形引起的局部地形坡度增大会导致海底峡谷内部侵蚀作用的加剧与裂点的形成;局部地形坡度减小容易引起天然堤和决口扇的形成;坡度的变化还会引起峡谷弯曲度的动态响应。

  • 加载中
  • 图 1  与构造变形有关的海底峡谷平面分布的端元类型

    Figure 1. 

    图 2  东地中海Levant地区的构造限制型海底峡谷(据文献[27])

    Figure 2. 

    图 3  均方根振幅切片揭示的构造转向型海底峡谷(据文献[35])

    Figure 3. 

    图 4  构造偏转型海底峡谷(据文献[35])

    Figure 4. 

    图 5  构造阻挡型海底峡谷(据文献[35])

    Figure 5. 

    图 6  横向切穿型海底峡谷(据文献[35])

    Figure 6. 

    图 7  陆坡微型盆地“充填—溢出”沉积模式

    Figure 7. 

    图 8  构造变形引起的海底峡谷纵向坡度变化对峡谷内部地貌形态的影响(据文献[25])

    Figure 8. 

  • [1]

    Shepard F P. Submarine Geology[M]. New York: Harper & Row, 1963.

    [2]

    Shepard F P. Submarine canyons[J]. Earth Science Reviews, 1972, 8(1): 1-12. doi: 10.1016/0012-8252(72)90032-3

    [3]

    Shepard F P. Submarine canyons: Multiple causes and long-time persistence[J]. Aapg Bulletin, 1981, 65(6): 1062-1077. http://www.researchgate.net/publication/230892026_Submarine_canyons_Multiple_causes_and_long-time_persistence

    [4]

    Nittrouer C A, Wright L D. Transport of particles across continental shelves[J]. Reviews of Geophysics, 1994, 32(1): 85-113. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/93RG02603

    [5]

    Harris P T, Whiteway T. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins[J]. Marine Geology, 2011, 285(1): 69-86. http://www.onacademic.com/detail/journal_1000034097397910_5a4b.html

    [6]

    Shepard F P, Dill R F. Submarine canyons and other sea valleys[M]. Chicago: Rand McNally & Co., 1966.

    [7]

    Martín J, Palanques A, Puig P. Composition and variability of downward particulate matter fluxes in the Palamós submarine canyon (NW Mediterranean)[J]. Journal of Marine Systems, 2006, 60(1): 75-97. http://www.sciencedirect.com/science/article/pii/S0924796305002034

    [8]

    Puig P, Palanques A, Martín J. Contemporary sediment-transport processes in submarine canyons.[J]. Annual Review of Marine Science, 2014, 6(1): 53-67. doi: 10.1146/annurev-marine-010213-135037

    [9]

    Sparkes R B, Lin I T, Hovius N, et al. Redistribution of multi-phase particulate organic carbon in a marine shelf and canyon system during an exceptional river flood: Effects of Typhoon Morakot on the Gaoping River-Canyon system[J]. Marine Geology, 2015, 363(1): 191-201. http://www.sciencedirect.com/science/article/pii/S0025322715000584

    [10]

    Liu J T, Hsu R T, Hung J J, et al. From the highest to the deepest: The Gaoping River-Gaoping Submarine Canyon dispersal system[J]. Earth-Science Reviews, 2016, 153(1): 274-300. http://www.sciencedirect.com/science/article/pii/S0012825215300581

    [11]

    Yoklavich M M, Greene H G, Cailliet G M, et al. Habitat associations of deep-water rockfishes in a submarine canyon: An example of a natural refuge[J]. Fishery Bulletin, 2000, 98(3): 625-641. http://ci.nii.ac.jp/naid/10026359199

    [12]

    Brodeur R D. Habitat-specific distribution of Pacific ocean perch (Sebastes alutus) in Pribilof Canyon, Bering Sea[J]. Continental Shelf Research, 2001, 21(3): 207-224. doi: 10.1016/S0278-4343(00)00083-2

    [13]

    Leo F C D, Smith C R, Rowden A A, et al. Submarine canyons: hotspots of benthic biomass and productivity in the deep sea[J]. Proceedings Biological Sciences, 2010, 277(1695): 2783-2792. doi: 10.1098/rspb.2010.0462

    [14]

    Shanmugam G. 50 years of the turbidite paradigm (1950s-1990s): deep-water processes and facies models—a critical perspective[J]. Marine & Petroleum Geology, 2000, 17(2): 285-342. http://www.sciencedirect.com/science/article/pii/S0264817299000112

    [15]

    Posamentier H W, Kolla V. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings[J]. Journal of Sedimentary Research, 2003, 73(3): 367-388. doi: 10.1306/111302730367

    [16]

    Kullenberg B. Remarks on the Grand banks turbidity current[J]. Deep Sea Research, 1954, 1(4): 203-210. doi: 10.1016/0146-6313(54)90002-7

    [17]

    Krause D C, White W C, Piper D J W, et al. Turbidity currents and cable breaks in the western New Britain Trench[J]. Geological Society of America Bulletin, 1970, 81(7): 2153-2160. doi: 10.1130/0016-7606(1970)81[2153:TCACBI]2.0.CO;2

    [18]

    Canals M, Lastras G, Urgeles R, et al. Slope failure dynamics and impacts from sea floor and shallow sub-sea floor geophysical data: case studies from the COSTA project[J]. Marine Geology, 2004, 213(1): 9-72. http://www.sciencedirect.com/science/article/pii/S0025322704002658

    [19]

    Lee H J, Locat J, Desgagnés P, et al. Submarine mass movements on continental margins[C]//Nittrouer C A, Austin J A, Field M E, et al. Continental Margin Sedimentation: From Sediment Transport to Sequence Stratigraphy. IAS Spec. Publ., 37. United Kingdom: Blackwell Publishing, 2007: 213-274.

    [20]

    Pirmez C, Beaubouef R T, Friedmann S J, et al. Equilibrium profile and baselevel in submarine channels: Examples from Late Pleistocene systems and implications for the architecture of deepwater reservoirs[M]//Deep-Water Reservoirs of the World: 20th Annual. 2000: 782-805.

    [21]

    Deptuck M E, Steffens G S, Barton M, et al. Architecture and evolution of upper fan channel-belts on the Niger Delta slope and in the Arabian Sea[J]. Marine & Petroleum Geology, 2003, 20(6): 649-676. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1dd9c649a5e41347ad04b12027b7b465

    [22]

    Deptuck M E, Sylvester Z, Pirmez C, et al. Migration-aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Benin-major Canyon, western Niger Delta slope[J]. Marine & Petroleum Geology, 2007, 24(6): 406-433. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c0e5170c2911a7264e51eba67ebf7797

    [23]

    Heini P, Davies R J. Knickpoint migration in submarine channels in response to fold growth, western Niger Delta[J]. Marine & Petroleum Geology, 2007, 24(6): 434-449. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3d8b4977f3838d4b87ca93385534da09

    [24]

    Broucke O, Temple F, Rouby D, et al. The role of deformation processes on the geometry of mud-dominated turbiditic systems, Oligocene and Lower-Middle Miocene of the Lower Congo basin (West African Margin)[J]. Marine & Petroleum Geology, 2004, 21(3): 327-348. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a2744713c6db9313fd18f6825f53e7ae

    [25]

    Ferry J N, Mulder T, Parize O, et al. Concept of equilibrium profile in deep-water turbidite system: effects of local physiographic changes on the nature of sedimentary process and the geometries of deposits[J]. Geological Society London Special Publications, 2005, 244(1): 181-193. doi: 10.1144/GSL.SP.2005.244.01.11

    [26]

    Gee M J R, Gawthorpe R L. Submarine channels controlled by salt tectonics: Examples from 3D seismic data offshore Angola[J]. Marine & Petroleum Geology, 2006, 23(4): 443-458. http://www.sciencedirect.com/science/article/pii/S0264817206000122

    [27]

    Clark I R, Cartwright J A. Interactions between submarine channel systems and deformation in deepwater fold belts: Examples from the Levant Basin, Eastern Mediterranean sea[J]. Marine & Petroleum Geology, 2009, 26(8): 1465-1482. http://www.sciencedirect.com/science/article/pii/S0264817209000993

    [28]

    Cross N E, Cunningham A, Cook R J, et al. Three-dimensional seismic geomorphology of a deep-water channel slope system: the Sequoia field, offshore west Nile Delta, Egypt[J]. AAPG Bulletin, 2009, 93(8): 1063-1086. doi: 10.1306/05040908101

    [29]

    Rowan M G, Weimer P. Salt-sediment interaction, northern Green Canyon and Ewing Bank (offshore Louisiana), northern Gulf of Mexico[J]. Aapg Bulletin American Association of Petroleum Geologists, 1998, 82(5): 1055-1082. doi: 10.5724/gcs.94.15.0383

    [30]

    Mallarino G, Beaubouef R T, Droxler A W, et al. Sea level influence on the nature and timing of a minibasin sedimentary fill (northwestern slope of the Gulf of Mexico)[J]. Aapg Bulletin, 2006, 90(7): 1089-1119. doi: 10.1306/02210605058

    [31]

    Winker C D, Booth J R. Sedimentary dynamics of the salt-dominated continental slope, Gulf of Mexico: integraton of observations from the seafloor, near-surface, and deep subsurface[C]//Sepm, Research Conference. 2000: 1059-1086.

    [32]

    Smith R. Silled sub-basins to connected tortuous corridors: sediment distribution systems on topographically complex sub-aqueous slopes[J]. Geological Society London Special Publications, 2004, 222(1): 23-43. doi: 10.1144/GSL.SP.2004.222.01.03

    [33]

    Demyttenaere R, Tromp J P, Ibrahim A, et al. Brunei deep water exploration: from sea floor images and shallow seismic analogues to depositional models in a slope turbidite setting[M]//Deep-Water Reservoirs of the World: 20th Annual. 2000: 304-317.

    [34]

    Huyghe P, Foata M, Deville E, et al. Channel profiles through the active thrust front of the southern Barbados prism[J]. Geology, 2006, 32(5): 429-432. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c7a23afa4f1fb58c7dcd1e7afc0891a1

    [35]

    Clark I R, Cartwright J A. Key controls on submarine channel development in structurally active settings[J]. Marine & Petroleum Geology, 2011, 28(7): 1333-1349. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c4cc127aca21f2a94fa53674d8abf044

    [36]

    Mayall M, Lonergan L, Bowman A, et al. The response of turbidite slope channels to growth-induced seabed topography[J]. Aapg Bulletin, 2010, 94(7): 1011-1030. doi: 10.1306/01051009117

    [37]

    Satterfield W M, Behrens E W. A Late Quaternary canyon/channel system, northwest Gulf of Mexico continental slope[J]. Marine Geology, 1990, 92(1): 51-67. http://www.sciencedirect.com/science/article/pii/002532279090026G

    [38]

    Badalini G, Kneller B, Winker C D. Architecture and processes in the late pleistocene brazos-trinity turbidite system, Gulf of Mexico continental slope[M]// Deep-Water Reservoirs of the World: 20th Annual. 2000.

    [39]

    Beaubouef R T, Friedmann S J. High resolution seismic/sequence stratigraphic framework for the evolution of pleistocene intra slope basins, Western Gulf of Mexico: Depositional Models and Reservoir Analogs[M]//Deep-Water Reservoirs of the World: 20th Annual. 2000: 40-60.

    [40]

    Sinclair H D, Tomasso M. Depositional evolution of confined turbidite basins[J]. Journal of Sedimentary Research, 2002, 72(4): 451-456. doi: 10.1306/111501720451

    [41]

    Liu C S, Lundberg N, Reed D L, et al. Morphological and seismic characteristics of the Kaoping Submarine Canyon[J]. Marine Geology, 1993, 111(1/2): 93-108. doi: 10.1007/s00367-010-0226-7

    [42]

    Morgan R. Structural controls on the positioning of submarine channels on the lower slopes of the Niger Delta[J]. Geological Society London Memoirs, 2004, 29(1): 45-52. doi: 10.1144/GSL.MEM.2004.029.01.05

    [43]

    Cronin B T. Structurally-controlled deep sea channel courses: examples from the Miocene of southeast Spain and the Alboran Sea, southwest Mediterranean[J]. Geological Society London Special Publications, 1995, 94(1): 115-135. doi: 10.1144/GSL.SP.1995.094.01.10

    [44]

    Alexander S M J. Observations on experimental, nonchannelized, high-Concentration turbidity currents and variations in deposits around obstacles[J]. Journal of Sedimentary Research, 1994, 64(4): 899-909. http://www.researchgate.net/publication/273102080_Observations_on_Experimental_Nonchannelized_High-Concentration_Turbidity_Currents_and_Variations_in_Deposits_Around_Obstacles

    [45]

    Anderson J E, Cartwright J, Drysdall S J, et al. Controls on turbidite sand deposition during gravity-driven extension of a passive margin: examples from Miocene sediments in Block 4, Angola[J]. Marine & Petroleum Geology, 2000, 17(10): 1165-1203.

    [46]

    Twichell D C, Roberts D G. Morphology, distribution, and development of submarine canyons on the United States Atlantic continental slope between Hudson arid Baltimore Canyons[J]. Geology, 1982, 10(8): 408-412. doi: 10.1130/0091-7613(1982)10<408:MDADOS>2.0.CO;2

    [47]

    Jolly B A, Lonergan L, Whittaker A C. Growth history of fault-related folds and interaction with seabed channels in the toe-thrust region of the deep-water Niger delta[J]. Marine & Petroleum Geology, 2016, 70(5): 58-76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=182919589cb8dfba067a06cb8268c791

    [48]

    Wood L J, Mize-Spansky K L. Quantitative seismic geomorphology of a Quaternary leveed-channel system, offshore eastern Trinidad and Tobago, northeastern South America[J]. Aapg Bulletin, 2009, 93(1): 101-125. doi: 10.1306/08140807094

    [49]

    Viana A, Figueired A G Jr, Faugères J C, et al. The Sao Tomé deep-sea turbidite system (Southern Brazil Basin): Cenozoic seismic stratigraphy and sedimentary processes[J]. Aapg Bulletin, 2003, 87(5): 873-894. doi: 10.1306/12100201048

    [50]

    Soreghan M J, Scholz C A, Wells J T. Coarse-grained, deep-water sedimentation along a border fault margin of Lake Malawi, Africa; seismic stratigraphic analysis[J]. Journal of Sedimentary Research, 1999, 69(4): 832-846. doi: 10.2110/jsr.69.832

    [51]

    Gupta, Underhill, Sharp, et al. Role of fault interactions in controlling synrift sediment dispersal patterns: Miocene, Abu Alaqa Group, Suez Rift, Sinai, Egypt[J]. Basin Research, 1999, 11(2): 167-189. doi: 10.1046/j.1365-2117.1999.00300.x

    [52]

    Ronghe S, Surarat K. Acoustic impedance interpretation for sand distribution adjacent to a rift boundary fault, Suphan Buri Basin, Thailand[J]. Aapg Bulletin, 2002, 86(10): 1753-1771. http://www.researchgate.net/publication/277785405_Acoustic_Impedance_Interpretation_for_Sand_Distribution_Adjacent_to_a_Rift_Boundary_Fault_Suphan_Buri_Basin_Thailand

    [53]

    Athmer W, Groenenberg R M, Luthi S M, et al. Relay ramps as pathways for turbidity currents: a study combining analogue sandbox experiments and numerical flow simulations[J]. Sedimentology, 2010, 57(3): 806-823. doi: 10.1111/j.1365-3091.2009.01120.x

    [54]

    Kane I A, Mcgee D T, Jobe Z R. Halokinetic effects on submarine channel equilibrium profiles and implications for facies architecture: conceptual model illustrated with a case study from Magnolia Field, Gulf of Mexico[J]. Geological Society London Special Publications, 2012, 363(1): 289-302. doi: 10.1144/SP363.13

    [55]

    Kane I A, Catterall V, Mccaffrey W D, et al. Submarine channel response to intrabasinal tectonics: The influence of lateral tilt[J]. Aapg Bulletin, 2010, 94(2): 189-219. doi: 10.1306/08180909059

    [56]

    Haughton P D W. Evolving turbidite systems on a deforming basin floor, Tabernas, SE Spain[J]. Sedimentology, 2010, 47(3): 497-518. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1046/j.1365-3091.2000.00293.x

    [57]

    Bursik M I, Woods A W. The effects of topography on sedimentation from particle-laden turbulent density currents[J]. Journal of Sedimentary Research, 2000, 70(1): 53-63. doi: 10.1306/2DC408FE-0E47-11D7-8643000102C1865D

    [58]

    Lamb M P, Toniolo H, Parker G. Trapping of sustained turbidity currents by intraslope minibasins[J]. Sedimentology, 2010, 53(1): 147-160. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1365-3091.2005.00754.x

    [59]

    Toniolo H, Lamb M, Parker G. Depositional turbidity currents in diapiric minibasins on the continental slope: formulation and theory[J]. Journal of Sedimentary Research, 2015, 76(5): 783-797. http://dx.doi.org/10.2110/jsr.2006.071

    [60]

    Kneller B. Beyond the turbidite paradigm: physical models for deposition of turbidites and their implications for reservoir prediction[J]. Geological Society London Special Publications, 1995, 94(1): 31-49. doi: 10.1144/GSL.SP.1995.094.01.04

    [61]

    Gardner T W. Experimental study of knickpoint and longitudinal profile evolution in cohesive, homogeneous material[J]. Geological Society of America Bulletin, 1983, 94(5): 664-672.

    [62]

    Kneller B. The influence of flow parameters on turbidite slope channel architecture[J]. Marine & Petroleum Geology, 2003, 20(6): 901-910. doi: 10.1016/j.marpetgeo.2003.03.001

    [63]

    Wheeler H E. Baselevel, Lithosphere Surface, and Time-Stratigraphy[J]. Geological Society of America Bulletin, 1964, 75(7): 599-609. doi: 10.1130/0016-7606(1964)75[599:BLSAT]2.0.CO;2

    [64]

    Samuel A, Kneller B, Raslan S, et al. Prolific deep-marine slope channels of the Nile Delta, Egypt[J]. Aapg Bulletin, 2003, 87(4): 541-560. doi: 10.1306/1105021094

    [65]

    Flood R D, Damuth J E. Quantitative characteristics of sinuous distributary channels on the Amazon Deep-Sea Fan[J]. Geological Society of America Bulletin, 1987, 98(6): 728-738.

    [66]

    Clark J D, Kenyon N H, Pickering K T. Quantitative analysis of the geometry of submarine channels: Implications for the classification of submarine fans[J]. Geology, 1992, 20(7): 633.

    [67]

    Pirmez C, Flood R D. Morphology and structure of Amazon Channel[C]// Proceedings of the Ocean Drilling Program Initial Reports. 1995, 155: 23-45.

    [68]

    Schumm S A, Khan H R. Experimental study of channel patterns [J]. Nature, 1971, 233(5319): 407-409. doi: 10.1038/233407a0

    [69]

    Wescott. Geomorphic thresholds and complex response of fluvial systems—Some implications for sequence stratigraphy[J]. Aapg Bulletin, 1993, 77(7): 1208-1218. http://www.researchgate.net/publication/239864111_Geomorphic_thresholds_and_complex_response_of_fluvial_systemsSome_implications_for_sequence_stratigraphy

  • 加载中

(8)

计量
  • 文章访问数:  993
  • PDF下载数:  11
  • 施引文献:  0
出版历程
收稿日期:  2018-09-19
刊出日期:  2018-12-28

目录