EMERGENCY RAPID ASSESSMENT OF LANDSLIDES INDUCED BY THE JIUZHAIGOU MS 7.0 EARTHQUAKE, SICHUAN, CHINA
-
摘要:
基于地震滑坡危险性评估的Newmark累积位移模型,利用震前获取的震区地形数据、区域地质资料,结合地震动近实时获取技术,开展了四川九寨沟Ms 7.0级地震诱发滑坡的应急快速评估。地震滑坡位移分析结果表明,同震滑坡活动的中—高强度区分布在断层两侧宽约4 km的带状区域内,整体沿北西方向延伸。其中,极震区的丰雪塘、日则和干海子等城镇驻地及附近道路的滑坡强度相对较高;震前、震后影像对比表明九寨沟地震诱发的滑坡类型以浅表型碎屑流及小规模崩塌为主,且同震碎屑流多是在震前已有碎屑流的基础上进一步活动扩展而来,震后汛期泥石流隐患也不容忽视;通过典型地区滑坡位移分析结果与震前、震后影像对比,表明滑坡位移分析结果能够较好的反映同震滑坡的宏观分布特征,但在场地尺度上吻合程度欠佳,后续将通过提升岩性和地形等数据质量进行改进。研究结果可为灾情研判提供宝贵信息,对提高灾害应急救援效率具有重要意义。
-
关键词:
- 九寨沟地震 /
- 地震滑坡危险性 /
- 应急快速评估 /
- Newmark累积位移模型
Abstract:Based on the Newmark cumulative displacement model, emergency rapid assessment of earthquake landslides induced by the Sichuan Jiuzhaigou Ms 7.0 earthquake was carried out based on regional topographic and geologic data, combined with near-real-time estimates of ground shaking. The analysis results of seismic landslide displacements show that the medium-high risk zones of coseismic landslide activities are mainly concentrated in the area about 4 km width along the seismogenic fault, with a roughly NW-SE rift direction, especially in the Fengxuetang, Rize, and Ganhaizi town of the meizoseismal area. Comparison between the satellite images acquired before and after this earthquake shows that the most common types of landslides induced by the Jiuzhaigou earthquake are shallow debris flows and small scale of rock falls, and the shallow debris flows are mostly formed by the further expansion of activities of the existing landslides. It shows that the obtained displacements can well reflect the macro distribution of coseismic landslide, but they can't be exerted effectively at local site scale, which can be enhanced through the improvement of large scale of geologic maps and high quality topography data. Results can provide valuable timely reference information on the possible societal effects of earthquake-induced landslides.
-
[1] Godt J W, Sener B, Verdin K L, et al. Rapid assessment of earthquake-induced landsliding[A]. Proceedings of the First World Landslide Forum[C]. Tokyo:United Nations University, 2008.
[2] 李芸芸, 孙柏涛, 陈相兆, 等.基于GIS平台的地震滑坡危险性快速评估方法的初步研究[J].地震工程与工程振动, 2016, 1(6):111~119. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dggc201606014&dbname=CJFD&dbcode=CJFQ
LI Yunyun, SUN Baitao, CHEN Xiangzhao, et al. The preliminary study on rapid assessment method of seismic landslide hazard based on GIS platform[J]. Earthquake Engineering and Engineering Dynamics, 2016, 1(6):111~119. (in Chinese with English abstract) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dggc201606014&dbname=CJFD&dbcode=CJFQ
[3] 杨志华, 张永双, 郭长宝, 等.基于Newmark模型的尼泊尔Ms8.1级地震滑坡危险性快速评估[J].地质力学学报, 2017, 23(1):115~124. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20170107&flag=1
YANG Zhihua, ZHANG Yongshuang, GUO Changbao, et al. Landslide hazard rapid assessment in the Ms 8.1 Nepal earthquake-impacted area, based on the Newmark model[J]. Journal of Geomechanics, 2017, 23(1):115~124. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20170107&flag=1
[4] Newmark N M. Effects of earthquakes on dams and embankment[J]. Géotechnique, 1965, 15(2):139~160. doi: 10.1680/geot.1965.15.2.139
[5] Jibson R W, Harp E L, Michael J A. A method for producing digital probabilistic seismic landslide hazard maps[J]. Engineering Geology, 2000, 58(3/4):271~289. https://pubs.er.usgs.gov/publication/70022381
[6] Jibson R W. Methods for assessing the stability of slopes during earthquakes-A retrospective[J]. Engineering Geology, 2011, 122(1~2):43~50. doi: 10.1016/j.enggeo.2010.09.017
[7] 王涛, 吴树仁, 石菊松, 等.地震滑坡危险性概念和基于力学模型的评估方法探讨[J].工程地质学报, 2015, 23(1):93~104. http://d.wanfangdata.com.cn/Periodical/gcdzxb201501014
WANG Tao, WU Shuren, SHI Jusong, et al. Concepts and mechanical assessment method for seismic landslide hazard:a review[J]. Journal of Engineering Geology, 2015, 23(1):93~104. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/gcdzxb201501014
[8] Del Gaudio V, Pierri P, Wasowski J. An approach to time-probabilistic evaluation of seismically induced landslide hazard[J]. Bulletin of the Seismological Society of America, 2003, 93(2):557~569. doi: 10.1785/0120020016
[9] 王涛, 吴树仁, 石菊松, 等.历史强震对渭河中游群发大型滑坡的诱发效应反演[J].地球学报, 2015, 36(3):353~361. doi: 10.3975/cagsb.2015.03.10
WANG Tao, WU Shuren, SHI Jusong, et al. Inversion of the inducing effects of historical strong earthquakes on large-scale landslides around the middle reaches of the Weihe River[J]. Acta Geoscientica Sinica, 2015, 36(3):353~361. (in Chinese with English abstract) doi: 10.3975/cagsb.2015.03.10
[10] 刘甲美, 高孟潭, 吴树仁.概率性地震滑坡危险性区划方法及其应用[J].岩石力学与工程学报, 2016, 35(S1):3100~3110. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yslx2016s1058&dbname=CJFD&dbcode=CJFQ
S1):3100~3110. LIU Jiamei, GAO Mengtan, WU Shuren. Probabilistic seismic landslide hazard zonation method and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1):3100~3110. (in Chinese with English abstract) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yslx2016s1058&dbname=CJFD&dbcode=CJFQ
[11] 宋志, 倪化勇, 周洪福, 等.基于多层次物理力学参数的小区域地震滑坡危险性评估-以长江上游石棉县城及周边为例[J].地质力学学报, 2016, 22(3):760~770. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20160329&flag=1
SONG Zhi, NI Huayong, ZHOU Hongfu, et al. Risk assessment of seismic landslide within small region based on multi-level physical and mechanical parameters:a case study of Shimian and adjacent areas in the upper reaches of Yangtze River[J]. Journal of Geomechanics, 2016, 22(3):760~770. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20160329&flag=1
[12] Vessia G, Pisano L, Tromba G, et al. Seismically induced slope instability maps validated at an urban scale by site numerical simulations[J]. Bulletin of Engineering Geology and the Environment, 2017, 76(2):457~476. doi: 10.1007/s10064-016-0940-0
[13] Shinoda M, Miyata Y. Regional landslide susceptibility following the Mid NⅡGATA prefecture earthquake in 2004 with NEWMARK's sliding block analysis[J]. Landslides, 2017, doi:10.1007/s10346-017-0833-8. (inPress)
[14] 王涛, 刘甲美, 辛鹏, 等. 区域同震滑坡危险性应急评估系统[CP]. 软著登字第1653463号, 2017.
WANG Tao, LIU Jiamei, XIN Peng, et al. emergency response systems for regional assessment of earthquake induced landslides[CP]. Software Copyright Registration Number:1653463, 2017. (in Chinese)
[15] 李渝生, 黄超, 易树健, 等.九寨沟7.0级地震的地震断裂及震源破裂的构造动力学机理研究[J].工程地质学报, 2017, 25(4):1141~1150. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gcdz201704029&dbname=CJFD&dbcode=CJFQ
LI Yusheng, HUANG Chao, YI Shujian, et al. Study on seismic fault and source rupture tectonic dynamic mechanism of Jiuzhaigou Ms 7.0 earthquake[J]. Journal of Engineering Geology, 2017, 25(4):1141~1150. (in Chinese with English abstract) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gcdz201704029&dbname=CJFD&dbcode=CJFQ
[16] 戴岚欣, 许强, 范宣梅, 等. 2017年8月8日四川九寨沟地震诱发地质灾害空间分布规律及易发性评价初步研究[J].工程地质学报, 25(4):1151~1164. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gcdz201704030&dbname=CJFD&dbcode=CJFQ
DAI Lanxin, XU Qiang, FAN Xuanmei, et al. A preliminary study on remote sensing interpretation of landslides triggered by Jiuzhaigou earthquake in Sichuan on August 8th, 2017 and their susceptibility assessment[J]. Journal of Engineering Geology, 2017, 25(4):1151~1164. (in Chinese with English abstract) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gcdz201704030&dbname=CJFD&dbcode=CJFQ
[17] 王涛, 吴树仁, 石菊松, 等.基于简化Newmark位移模型的区域地震滑坡危险性快速评估-以汶川Ms8.0级地震为例[J].工程地质学报, 2013, 21(1):16~24. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gcdz201301004&dbname=CJFD&dbcode=CJFQ
WANG Tao, WU Shuren, Shi Jusong, et al. Case study on rapid assessment of regional seismic landslide hazard based on simplified Newmark displacement model:Wenchuan Ms 8.0 earthquake[J]. Journal of Engineering Geology, 2013, 21(1):16~24. (in Chinese with English abstract) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gcdz201301004&dbname=CJFD&dbcode=CJFQ
[18] 陈晓利, 袁仁茂, 庾露. Newmark方法在芦山地震诱发滑坡分布预测研究中的应用[J].地震地质, 2013, 35(3):661~670. http://d.wanfangdata.com.cn/Periodical/dzdz201303019
CHEN Xiaoli, YUAN Renmao, YU Lu. Applying the Newmark's model to the assessment of earthquake-triggered landslides during the Lushan earthquake[J]. Seismology and Geology, 2013, 35(3):661~670. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/dzdz201303019
[19] Liu J M, Gao M T, Wu S R, et al. A hazard assessment method for potential earthquake-induced landslides-A case study in Huaxian County, Shaanxi Province[J]. Acta Geologica Sinica (English Edition), 2016, 90(2):590~603. doi: 10.1111/acgs.2016.90.issue-2
[20] Liu J M, Shi J S, Wang T, et al. Seismic landslide hazard assessment in the Tianshui area, China, based on scenario earthquakes[J]. Bulletin of Engineering Geology & the Environment, 2017, doi:10.1007/s10064-016-0998-8. (inPress)
[21] 俞言祥, 汪素云.青藏高原东北地区水平向基岩加速度峰值与反应谱衰减关系[J].地震学报, 2004, 26(6):591~600. http://d.wanfangdata.com.cn/Periodical/dizhen200406004
YU Yanxiang, WANG Suyun. Attenuation relations for horizontal peak ground acceleration and response spectrum in northeastern Tibetan Plateau region[J]. Acta Seismologica Sinica, 2004, 26(6):591~600. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/dizhen200406004
[22] 徐光兴, 姚令侃, 李朝红, 等.基于汶川地震强震动记录的边坡永久位移预测模型[J].岩土工程学报, 2012, 34(6):1131~1136. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ytgc201206027&dbname=CJFD&dbcode=CJFQ
XU Guangxing, YAO Lingkan, LI Chaohong, et al. Predictive models for permanent displacement of slopes based on recorded strong-motion data of Wenchuan earthquake[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6):1131~1136. (in Chinese with English abstract) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ytgc201206027&dbname=CJFD&dbcode=CJFQ
[23] 王秀英. 地震滑坡灾害快速评估技术及对应急影响研究[D]. 北京: 中国地震局地质研究所, 2009.
WANG Xiuying. A study on fast evaluation of earthquake-induced landslides and their effect on earthquake emergency rescue[D]. Beijing:Institute of Geology, China Earthquake Administration, 2009. (in Chinese)
[24] Legg M, Slosson J, Eguchi R. Seismic hazard for lifelines vulnerability analyses[A]. Proceedings of the 3rd International Conference on Microzonation[C]. Seattle, Washington, 1982.