The 230Th-normalized 232Th method in reconstructing paleo-dust flux and its applications in the Western Pacific
-
摘要:
风尘通过影响大气辐射平衡和海洋生态系统的营养物质供应从而调控全球气候,是国际学术界广泛关注的热点问题之一。近年来,风尘的相关研究取得一系列重要进展,并提出将232Th作为一种准确重建约50万年以来风尘沉积通量的途径。本文首先介绍基于230Th的标准化方法,它可用于修正由于海洋底流频繁扰动引起的沉积物沉积速率变化,然后结合230Th标准化方法修正后的232Th通量,并利用10.5 μg/g换算得出的风尘沉积通量,通过和实测值对比,阐明了此方法的准确性。进一步通过对比晚全新世与末次冰盛期230Th标准化后的基于232Th获取的风尘沉积通量,也验证了此方法的可靠性。通过总结该方法在西太平洋的前期应用,认为此方法在西太平洋有着广阔的应用前景。
-
关键词:
- 230Th标准化方法 /
- 232Th /
- 古风尘重建 /
- 西太平洋
Abstract:Eolian dust constitutes a potent modulator in the global climate by altering the radiative balance of the atmosphere and iron supply to the global ocean. In particular, the thorium-based method has been evoked to calibrate the sedimentary mass accumulation rate (MAR) for the past ~500,000 years, which offers an important approach for reconstructing paleo-dust flux accurately. Here, 230Th normalization, an appealing approach to calibrate MAR, is comprehensively deconvolved. In conjunction with 232Th, novel 230Th-normalized data synthesis is compiled to elucidate the precision of this method with the aid of the measured value, which ultimately in line with the Th-derived result by using convert parameter uniformly (i.e. 10.5 μg/g). Further, comparison of the dust reconstruction based on this approach between Late Holocene and the Last Glacial Maximum (LGM) also indicates the validation of this method. Within this context, 230Th-normalized 232Th serves as a reliable proxy in determining dust input to the global ocean and thus can unveil unambiguous interpretation with respect to the reconstruction of paleo-dust flux to the western Pacific during the Late Quaternary. In contrast, the paucity of applications based on this method in the western Pacific is found, by summarizing previously published dissertations, with implication of foreshadowing a broad future in utilizing this tool at the western Pacific.
-
Key words:
- thorium-230 normalization /
- thorium-232 /
- paleo-dust reconstruction /
- western Pacific
-
-
[1] Jickells T D, An Z S, Andersen K K, et al. Global iron connections between desert dust, ocean biogeochemistry, and climate [J]. Science, 2005, 308(5718): 67-71. doi: 10.1126/science.1105959
[2] Martínez-Garcia A, Rosell-Melé A, Jaccard S L, et al. Southern Ocean dust–climate coupling over the past four million years [J]. Nature, 2011, 476(7360): 312-315. doi: 10.1038/nature10310
[3] Fischer H, Siggaard-Andersen M L, Ruth U, et al. Glacial/interglacial changes in mineral dust and sea-salt records in polar ice cores: sources, transport, and deposition [J]. Reviews of Geophysics, 2007, 45(1): RG1002.
[4] Neff J C, Ballantyne A P, Farmer G L, et al. Increasing eolian dust deposition in the western United States linked to human activity [J]. Nature Geoscience, 2008, 1(3): 189-195. doi: 10.1038/ngeo133
[5] Kohfeld K E, Harrison S P. Glacial-interglacial changes in dust deposition on the Chinese Loess Plateau [J]. Quaternary Science Reviews, 2003, 22(18-19): 1859-1878. doi: 10.1016/S0277-3791(03)00166-5
[6] Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide [J]. Nature, 2000, 407(6806): 859-869. doi: 10.1038/35038000
[7] Martínez-García A, Sigman D M, Ren H J, et al. Iron fertilization of the Subantarctic Ocean during the last Ice Age [J]. Science, 2014, 343(6177): 1347-1350. doi: 10.1126/science.1246848
[8] Martin J H. Glacial-interglacial CO2 change: the iron hypothesis [J]. Paleoceanography and Paleoclimatology, 1990, 5(1): 1-13.
[9] Murray R W, Leinen M, Knowlton C W. Links between iron input and opal deposition in the Pleistocene equatorial Pacific Ocean [J]. Nature Geoscience, 2012, 5(4): 270-274. doi: 10.1038/ngeo1422
[10] Loveley M R, Marcantonio F, Wisler M M, et al. Millennial-scale iron fertilization of the eastern equatorial Pacific over the past 100,000 years [J]. Nature Geoscience, 2017, 10(10): 760-764. doi: 10.1038/ngeo3024
[11] Coale K H, Fitzwater S E, Gordon R M, et al. Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean [J]. Nature, 1996, 379(6566): 621-624. doi: 10.1038/379621a0
[12] Kaupp L J, Measures C I, Selph K E, et al. The distribution of dissolved Fe and Al in the upper waters of the Eastern Equatorial Pacific [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2011, 58(3-4): 296-310. doi: 10.1016/j.dsr2.2010.08.009
[13] Winckler G, Anderson R F, Jaccard S L, et al. Ocean dynamics, not dust, have controlled equatorial Pacific productivity over the past 500,000 years [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(22): 6119-6124. doi: 10.1073/pnas.1600616113
[14] Kao S J, Wu C R, Hsin Y C, et al. Effects of sea level change on the upstream Kuroshio Current through the Okinawa Trough [J]. Geophysical Research Letters, 2006, 33(16): L16604. doi: 10.1029/2006GL026822
[15] Ijiri A, Wang L J, Oba T, et al. Paleoenvironmental changes in the northern area of the East China Sea during the past 42,000 years [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219(3-4): 239-261. doi: 10.1016/j.palaeo.2004.12.028
[16] Ujiié Y, Ujiié H, Taira A, et al. Spatial and temporal variability of surface water in the Kuroshio source region, Pacific Ocean, over the past 21,000 years: evidence from planktonic foraminifera [J]. Marine Micropaleontology, 2003, 49(4): 335-364. doi: 10.1016/S0377-8398(03)00062-8
[17] Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640,000 years and ice age terminations [J]. Nature, 2016, 534(7609): 640-646. doi: 10.1038/nature18591
[18] Li D W, Zheng L W, Jaccard S L, et al. Millennial-scale ocean dynamics controlled export productivity in the subtropical North Pacific [J]. Geology, 2017, 45(7): 651-654. doi: 10.1130/G38981.1
[19] Costa K M, Hayes C T, Anderson R F, et al. 230Th normalization: new insights on an essential tool for quantifying sedimentary fluxes in the modern and Quaternary ocean [J]. Paleoceanography and Paleoclimatology, 2020, 35(2): e2019PA003820.
[20] Francois R, Frank M, van der Loeff M M R, et al. 230Th normalization: an essential tool for interpreting sedimentary fluxes during the late Quaternary [J]. Paleoceanography and Paleoclimatology, 2004, 19(1): PA1018.
[21] Henderson G M. Seawater (234U/238U) during the last 800 thousand years [J]. Earth and Planetary Science Letters, 2002, 199(1-2): 97-110. doi: 10.1016/S0012-821X(02)00556-3
[22] Cheng H, Edwards R L, Hoff J, et al. The half-lives of uranium-234 and thorium-230 [J]. Chemical Geology, 2000, 169(1-2): 17-33. doi: 10.1016/S0009-2541(99)00157-6
[23] Suman D O, Bacon M P. Variations in Holocene sedimentation in the North American Basin determined from 230Th measurements [J]. Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36(6): 869-878. doi: 10.1016/0198-0149(89)90033-2
[24] Robinson L F, Belshaw N S, Henderson G M. U and Th concentrations and isotope ratios in modern carbonates and waters from the Bahamas [J]. Geochimica et Cosmochimica Acta, 2004, 68(8): 1777-1789. doi: 10.1016/j.gca.2003.10.005
[25] Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific Pub, 1985.
[26] Jahn B M, Gallet S, Han J M. Geochemistry of the Xining, Xifeng and Jixian sections, Loess Plateau of China: eolian dust provenance and paleosol evolution during the last 140 ka [J]. Chemical Geology, 2001, 178(1-4): 71-94. doi: 10.1016/S0009-2541(00)00430-7
[27] Ding Z L, Sun J M, Yang S L, et al. Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and paleoclimate change [J]. Geochimica et Cosmochimica Acta, 2001, 65(6): 901-913. doi: 10.1016/S0016-7037(00)00571-8
[28] Weber E T, Owen R M, Dickens G R, et al. Quantitative resolution of eolian continental crustal material and volcanic detritus in North Pacific surface sediment [J]. Paleoceanography and Paleoclimatology, 1996, 11(1): 115-127.
[29] Weber II E T, Owen R M, Dickens G R, et al. Causes and implications of the middle rare earth element depletion in the eolian component of North Pacific sediment [J]. Geochimica et Cosmochimica Acta, 1998, 62(10): 1735-1744. doi: 10.1016/S0016-7037(98)00102-1
[30] Gallet S, Jahn B M, Torii M. Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications [J]. Chemical Geology, 1996, 133(1-4): 67-88. doi: 10.1016/S0009-2541(96)00070-8
[31] Liu C Q, Masuda A, Okada A, et al. A geochemical study of loess and desert sand in northern China: implications for continental crust weathering and composition [J]. Chemical Geology, 1993, 106(3-4): 359-374. doi: 10.1016/0009-2541(93)90037-J
[32] Olivarez A M, Owen R M, Rea D K. Geochemistry of eolian dust in Pacific pelagic sediments: implications for paleoclimatic interpretations [J]. Geochimica et Cosmochimica Acta, 1991, 55(8): 2147-2158. doi: 10.1016/0016-7037(91)90093-K
[33] Marx S K, Kamber B S, McGowan H A. Provenance of long‐travelled dust determined with ultra‐trace‐element composition: a pilot study with samples from New Zealand glaciers [J]. Earth Surface Processes and Landforms, 2005, 30(6): 699-716. doi: 10.1002/esp.1169
[34] Taylor S R, McLennan S M, McCulloch M T. Geochemistry of loess, continental crustal composition and crustal model ages [J]. Geochimica et Cosmochimica Acta, 1983, 47(11): 1897-1905. doi: 10.1016/0016-7037(83)90206-5
[35] Reheis M C, Budahn J R, Lamothe P J. Elemental analyses of modern dust in southern Nevada and California[R]. Denver, CO: US Geological Survey, 1999.
[36] Johansen A M, Siefert R L, Hoffmann M R. Chemical composition of aerosols collected over the tropical North Atlantic Ocean [J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D12): 15277-15312. doi: 10.1029/2000JD900024
[37] Freydier R, Dupre B, Lacaux J P. Precipitation chemistry in intertropical Africa [J]. Atmospheric Environment, 1998, 32(4): 749-765. doi: 10.1016/S1352-2310(97)00342-7
[38] Gallet S, Jahn B M, Van Vliet Lanoë B, et al. Loess geochemistry and its implications for particle origin and composition of the upper continental crust [J]. Earth and Planetary Science Letters, 1998, 156(3-4): 157-172. doi: 10.1016/S0012-821X(97)00218-5
[39] Hawkesworth C J, Kemp A I S. Evolution of the continental crust [J]. Nature, 2006, 443(7113): 811-817. doi: 10.1038/nature05191
[40] Thöle L M, Amsler H E, Moretti S, et al. Glacial-interglacial dust and export production records from the Southern Indian Ocean [J]. Earth and Planetary Science Letters, 2019, 525: 115716. doi: 10.1016/j.jpgl.2019.115716
[41] Lamy F, Gersonde R, Winckler G, et al. Increased dust deposition in the Pacific Southern Ocean during glacial periods [J]. Science, 2014, 343(6169): 403-407. doi: 10.1126/science.1245424
[42] Noble T L, Piotrowski A M, Robinson L F, et al. Greater supply of Patagonian-sourced detritus and transport by the ACC to the Atlantic sector of the Southern Ocean during the last glacial period [J]. Earth and Planetary Science Letters, 2012, 317-318: 374-385. doi: 10.1016/j.jpgl.2011.10.007
[43] Middleton J L, Mukhopadhyay S, Langmuir C H, et al. Millennial-scale variations in dustiness recorded in Mid-Atlantic sediments from 0 to 70 ka [J]. Earth and Planetary Science Letters, 2018, 482: 12-22. doi: 10.1016/j.jpgl.2017.10.034
[44] Bradtmiller L I, Anderson R F, Fleisher M Q, et al. Opal burial in the equatorial Atlantic Ocean over the last 30 ka: implications for glacial-interglacial changes in the ocean silicon cycle [J]. Paleoceanography and Paleoclimatology, 2007, 22(4): PA4216.
[45] Anderson R F, Barker S, Fleisher M, et al. Biological response to millennial variability of dust and nutrient supply in the Subantarctic South Atlantic Ocean [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 372(2019): 20130054. doi: 10.1098/rsta.2013.0054
[46] Palchan D, Torfstein A. A drop in Sahara dust fluxes records the northern limits of the African Humid Period [J]. Nature Communications, 2019, 10(1): 3803. doi: 10.1038/s41467-019-11701-z
[47] Thomas A L, Henderson G M, McCave I N. Constant bottom water flow into the Indian Ocean for the past 140 ka indicated by sediment 231Pa/230Th ratios [J]. Paleoceanography and Paleoclimatology, 2007, 22(4): PA4210.
[48] Serno S, Winckler G, Anderson R F, et al. Comparing dust flux records from the Subarctic North Pacific and Greenland: implications for atmospheric transport to Greenland and for the application of dust as a chronostratigraphic tool [J]. Paleoceanography and Paleoclimatology, 2015, 30(6): 583-600.
[49] Jacobel A W, McManus J F, Anderson R F, et al. Climate-related response of dust flux to the central equatorial Pacific over the past 150 kyr [J]. Earth and Planetary Science Letters, 2017, 457: 160-172. doi: 10.1016/j.jpgl.2016.09.042
[50] Chase Z, McManus J, Mix A C, et al. Southern-ocean and glaciogenic nutrients control diatom export production on the Chile margin [J]. Quaternary Science Reviews, 2014, 99: 135-145. doi: 10.1016/j.quascirev.2014.06.015
[51] Adkins J, deMenocal P, Eshel G. The “African humid period” and the record of marine upwelling from excess 230Th in Ocean Drilling Program Hole 658C [J]. Paleoceanography and Paleoclimatology, 2006, 21(4): PA4203.
[52] Skonieczny C, McGee D, Winckler G, et al. Monsoon-driven Saharan dust variability over the past 240,000 years [J]. Science Advances, 2019, 5(1): eaav1887. doi: 10.1126/sciadv.aav1887
[53] Anderson R F, Cheng H, Edwards R L, et al. How well can we quantify dust deposition to the ocean? [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 374(2081): 20150285. doi: 10.1098/rsta.2015.0285
[54] Anderson R F, Fleisher M Q, Lao Y. Glacial–interglacial variability in the delivery of dust to the central equatorial Pacific Ocean [J]. Earth and Planetary Science Letters, 2006, 242(3-4): 406-414. doi: 10.1016/j.jpgl.2005.11.061
[55] Bausch A R. Interactive effects of ocean acidification with other environmental drivers on marine plankton[D]. Doctor Dissertation of Columbia University, 2018.
[56] Bradtmiller L I, Anderson R F, Fleisher M Q, et al. Comparing glacial and Holocene opal fluxes in the Pacific sector of the Southern Ocean [J]. Paleoceanography and Paleoclimatology, 2009, 24(2): PA2214.
[57] Bradtmiller L I, Anderson R F, Fleisher M Q, et al. Diatom productivity in the equatorial Pacific Ocean from the last glacial period to the present: a test of the silicic acid leakage hypothesis [J]. Paleoceanography and Paleoclimatology, 2006, 21(4): PA4201.
[58] Williams R H, McGee D, Kinsley C W, et al. Glacial to Holocene changes in trans-Atlantic Saharan dust transport and dust-climate feedbacks [J]. Science Advances, 2016, 2(11): e1600445. doi: 10.1126/sciadv.1600445
[59] Chase Z, Anderson R F, Fleisher M Q, et al. Accumulation of biogenic and lithogenic material in the Pacific sector of the Southern Ocean during the past 40,000 years [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(3-4): 799-832. doi: 10.1016/S0967-0645(02)00595-7
[60] Thiagarajan N, McManus J F. Productivity and sediment focusing in the Eastern Equatorial Pacific during the last 30,000 years [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2019, 147: 100-110. doi: 10.1016/j.dsr.2019.03.007
[61] Costa K M, McManus J F, Anderson R F, et al. No iron fertilization in the equatorial Pacific Ocean during the last ice age [J]. Nature, 2016, 529(7587): 519-522. doi: 10.1038/nature16453
[62] Dezileau L, Bareille G, Reyss J L, et al. Evidence for strong sediment redistribution by bottom currents along the southeast Indian ridge [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2000, 47(10): 1899-1936. doi: 10.1016/S0967-0637(00)00008-X
[63] Dezileau L, Ulloa O, Hebbeln D, et al. Iron control of past productivity in the coastal upwelling system off the Atacama Desert, Chile [J]. Paleoceanography and Paleoclimatology, 2004, 19(3): PA3012.
[64] Thomson J, Colley S, Anderson R, et al. Holocene sediment fluxes in the northeast Atlantic from 230Thexcess and radiocarbon measurements [J]. Paleoceanography and Paleoclimatology, 1993, 8(5): 631-650.
[65] Francois R, Bacon M P, Altabet M A, et al. Glacial/interglacial changes in sediment rain rate in the SW Indian sector of Subantarctic Waters as recorded by 230Th, 231Pa, U, and δ15N [J]. Paleoceanography and Paleoclimatology, 1993, 8(5): 611-629.
[66] Francois R, Bacon M P, Suman D O. Thorium 230 profiling in deep-sea sediments: high-resolution records of flux and dissolution of carbonate in the equatorial Atlantic during the last 24,000 years [J]. Paleoceanography and Paleoclimatology, 1990, 5(5): 761-787.
[67] Frank M, Eckhardt J D, Eisenhauer A, et al. Beryllium 10, thorium 230, and protactinium 231 in Galapagos microplate sediments: implications of hydrothermal activity and paleoproductivity changes during the last 100,000 years [J]. Paleoceanography and Paleoclimatology, 1994, 9(4): 559-578.
[68] Frank M, Gersonde R, van der Loeff M R, et al. Similar glacial and interglacial export bioproductivity in the Atlantic Sector of the Southern Ocean: multiproxy evidence and implications for glacial atmospheric CO2 [J]. Paleoceanography and Paleoclimatology, 2000, 15(6): 642-658.
[69] Fukuda M, Harada N, Sato M, et al. 230Th-normalized fluxes of biogenic components from the central and southernmost Chilean margin over the past 22,000 years [J]. Geochemical Journal, 2013, 47(2): 119-135. doi: 10.2343/geochemj.2.0230
[70] Geibert W, Stimac I, van der Loeff M M R, et al. Dating deep-sea sediments with 230Th excess using a constant rate of supply model [J]. Paleoceanography and Paleoclimatology, 2019, 34(12): 1895-1912. doi: 10.1029/2019PA003663
[71] Thomson J, Nixon S, Summerhayes C P, et al. Implications for sedimentation changes on the Iberian margin over the last two glacial/interglacial transitions from (230Thexcess)0 systematics [J]. Earth and Planetary Science Letters, 1999, 165(3-4): 255-270. doi: 10.1016/S0012-821X(98)00265-9
[72] Jacobel A W, Anderson R F, Winckler G, et al. No evidence for equatorial Pacific dust fertilization [J]. Nature Geoscience, 2019, 12(3): 154-155. doi: 10.1038/s41561-019-0304-z
[73] Jacobel A W, Anderson R F, Winckler G, et al. Fluxes of thorium 232, excess barium and iron from ODP site 202-1240[Z]. PANGAEA, 2019.
[74] Kienast S S, Friedrich T, Dubois N, et al. Near collapse of the meridional SST gradient in the eastern equatorial Pacific during Heinrich Stadial 1 [J]. Paleoceanography and Paleoclimatology, 2013, 28(4): 663-674.
[75] Kienast S S, Kienast M, Mix A C, et al. Thorium-230 normalized particle flux and sediment focusing in the Panama Basin region during the last 30,000 years [J]. Paleoceanography and Paleoclimatology, 2007, 22(2): PA2213.
[76] Kohfeld K E, Chase Z. Controls on deglacial changes in biogenic fluxes in the North Pacific Ocean [J]. Quaternary Science Reviews, 2011, 30(23-24): 3350-3363. doi: 10.1016/j.quascirev.2011.08.007
[77] Lam P J, Robinson L F, Blusztajn J, et al. Transient stratification as the cause of the North Pacific productivity spike during deglaciation [J]. Nature Geoscience, 2013, 6(8): 622-626. doi: 10.1038/ngeo1873
[78] Lao Y, Anderson R F, Broecker W S. Boundary scavenging and deep-sea sediment dating: constraints from excess 230Th and 231Pa [J]. Paleoceanography and Paleoclimatology, 1992, 7(6): 783-798.
[79] Lippold J, Mulitza S, Mollenhauer G, et al. Boundary scavenging at the East Atlantic margin does not negate use of 231Pa/230Th to trace Atlantic overturning [J]. Earth and Planetary Science Letters, 2012, 333-334: 317-331. doi: 10.1016/j.jpgl.2012.04.005
[80] Loveley M R, Marcantonio F, Lyle M, et al. Sediment redistribution and grainsize effects on 230Th-normalized mass accumulation rates and focusing factors in the Panama Basin [J]. Earth and Planetary Science Letters, 2017, 480: 107-120. doi: 10.1016/j.jpgl.2017.09.046
[81] Marcantonio F, Anderson R F, Higgins S, et al. Abrupt intensification of the SW Indian Ocean monsoon during the last deglaciation: constraints from Th, Pa, and He isotopes [J]. Earth and Planetary Science Letters, 2001, 184(2): 505-514. doi: 10.1016/S0012-821X(00)00342-3
[82] Marcantonio F, Lyle M, Ibrahim R. Particle sorting during sediment redistribution processes and the effect on 230Th-normalized mass accumulation rates [J]. Geophysical Research Letters, 2014, 41(15): 5547-5554. doi: 10.1002/2014GL060477
[83] Veeh H H, Heggie D T, Crispe A J. Biogeochemistry of southern Australian continental slope sediments [J]. Australian Journal of Earth Sciences, 1999, 46(4): 563-575. doi: 10.1046/j.1440-0952.1999.00729.x
[84] McGee D, deMenocal P B, Winckler G, et al. The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 yr [J]. Earth and Planetary Science Letters, 2013, 371-372: 163-176. doi: 10.1016/j.jpgl.2013.03.054
[85] McGee D, Marcantonio F, Lynch-Stieglitz J. Deglacial changes in dust flux in the eastern equatorial Pacific [J]. Earth and Planetary Science Letters, 2007, 257(1-2): 215-230. doi: 10.1016/j.jpgl.2007.02.033
[86] Meier B. Evolution of the southwest Pacific across the last glacial cycle: insights from a multi-proxy approach of biological export production[D]. Master Dissertation of Institute of Geological Sciences, University of Bern, 2015.
[87] Veeh H H, McCorkle D C, Heggie D T. Glacial/interglacial variations of sedimentation on the West Australian continental margin: constraints from excess 230Th [J]. Marine Geology, 2000, 166(1-4): 11-30. doi: 10.1016/S0025-3227(00)00011-6
[88] Missiaen L, Pichat S, Waelbroeck C, et al. Downcore variations of sedimentary detrital (238U/232Th) ratio: implications on the use of 230Thxs and 231Paxs to reconstruct sediment flux and ocean circulation [J]. Geochemistry, Geophysics, Geosystems, 2018, 19(8): 2560-2573. doi: 10.1029/2017GC007410
[89] Muller J, McManus J F, Oppo D W, et al. Strengthening of the Northeast Monsoon over the Flores Sea, Indonesia, at the time of Heinrich event 1 [J]. Geology, 2012, 40(7): 635-638. doi: 10.1130/G32878.1
[90] Murray R W, Knowlton C, Leinen M, et al. Export production and carbonate dissolution in the central equatorial Pacific Ocean over the past 1 Myr [J]. Paleoceanography and Paleoclimatology, 2000, 15(6): 570-592.
[91] Negre C, Zahn R, Thomas A L, et al. Reversed flow of Atlantic deep water during the Last Glacial Maximum [J]. Nature, 2010, 468(7320): 84-88. doi: 10.1038/nature09508
[92] Ng H C, Robinson L F, McManus J F, et al. Coherent deglacial changes in western Atlantic Ocean circulation [J]. Nature Communications, 2018, 9: 2947. doi: 10.1038/s41467-018-05312-3
[93] Waelbroeck C, Pichat S, Böhm E, et al. Relative timing of precipitation and ocean circulation changes in the western equatorial Atlantic over the last 45 kyr [J]. Climate of the Past, 2018, 14(9): 1315-1330. doi: 10.5194/cp-14-1315-2018
[94] Winckler G, Anderson R F, Fleisher M Q, et al. Covariant glacial-interglacial dust fluxes in the Equatorial Pacific and Antarctica [J]. Science, 2008, 320(5872): 93-96. doi: 10.1126/science.1150595
[95] Pichat S, Sims K W W, François R, et al. Lower export production during glacial periods in the equatorial Pacific derived from (231Pa/230Th)xs, 0 measurements in deep-sea sediments [J]. Paleoceanography and Paleoclimatology, 2004, 19(4): PA4023.
[96] Pourmand A, Marcantonio F, Bianchi T S, et al. A 28-ka history of sea surface temperature, primary productivity and planktonic community variability in the western Arabian Sea [J]. Paleoceanography and Paleoclimatology, 2007, 22(4): PA4208.
[97] Pourmand A, Marcantonio F, Schulz H. Variations in productivity and eolian fluxes in the northeastern Arabian Sea during the past 110 ka [J]. Earth and Planetary Science Letters, 2004, 221(1-4): 39-54. doi: 10.1016/S0012-821X(04)00109-8
[98] Sachs J P, Anderson R F. Fidelity of alkenone paleotemperatures in southern Cape Basin sediment drifts [J]. Paleoceanography and Paleoclimatology, 2003, 18(4): 6.
[99] Saukel C. Tropical Southeast Pacific continent-ocean-atmosphere linkages since the Pliocene inferred from Eolian dust[D]. Doctor Dissertation of University of Bremen, 2011.
[100] Wengler M, Lamy F, Struve T, et al. A geochemical approach to reconstruct modern dust fluxes and sources to the South Pacific [J]. Geochimica et Cosmochimica Acta, 2019, 264: 205-223. doi: 10.1016/j.gca.2019.08.024
[101] Shiau L J, Chen M T, Clemens S C, et al. Warm pool hydrological and terrestrial variability near southern Papua New Guinea over the past 50k [J]. Geophysical Research Letters, 2011, 38(8): L00F01.
[102] Shimmield G, Mowbray S R. U-series disequilibrium, particle scavenging, and sediment accumulation during the late Pleistocene on the Owen Ridge, site 722[C]//Proceedings of the Ocean Drilling Program. Austin, Texas: College Station, TX, 1991: 465.
[103] Singh A K, Marcantonio F, Lyle M. Sediment focusing in the Panama Basin, Eastern Equatorial Pacific Ocean [J]. Earth and Planetary Science Letters, 2011, 309(1-2): 33-44. doi: 10.1016/j.jpgl.2011.06.020
[104] Uematsu M, Duce R A, Prospero J M. Deposition of atmospheric mineral particles in the North Pacific Ocean [J]. Journal of Atmospheric Chemistry, 1985, 3(1): 123-138. doi: 10.1007/BF00049372
[105] Prospero J M, Uematsu M, Savoie D. Mineral Aerosol transport to the Pacific Ocean[M]//Riley J R, Chester R, Duce R A. Chemical Oceanography. San Diego, California: Academic, 1989: 187-218.
[106] Arimoto R, Duce R A, Ray B J, et al. Trace elements in the atmosphere of American Samoa: concentrations and deposition to the tropical South Pacific [J]. Journal of Geophysical Research: Atmospheres, 1987, 92(D7): 8465-8479. doi: 10.1029/JD092iD07p08465
[107] Duce R A, Liss P S, Merrill J T, et al. The atmospheric input of trace species to the world ocean [J]. Global Biogeochemical Cycles, 1991, 5(3): 193-259. doi: 10.1029/91GB01778
[108] Bory A J M, Biscaye P E, Svensson A, et al. Seasonal variability in the origin of recent atmospheric mineral dust at NorthGRIP, Greenland [J]. Earth and Planetary Science Letters, 2002, 196(3-4): 123-134. doi: 10.1016/S0012-821X(01)00609-4
[109] Fiol L A, Fornós J J, Gelabert B, et al. Dust rains in Mallorca (Western Mediterranean): their occurrence and role in some recent geological processes [J]. Catena, 2005, 63(1): 64-84. doi: 10.1016/j.catena.2005.06.012
[110] Arevalo Jr R, McDonough W F. Chemical variations and regional diversity observed in MORB [J]. Chemical Geology, 2010, 271(1-2): 70-85. doi: 10.1016/j.chemgeo.2009.12.013
[111] McGee D, Winckler G, Borunda A, et al. Tracking eolian dust with helium and thorium: impacts of grain size and provenance [J]. Geochimica et Cosmochimica Acta, 2016, 175: 47-67. doi: 10.1016/j.gca.2015.11.023
[112] Mahowald N M, Baker A R, Bergametti G, et al. Atmospheric global dust cycle and iron inputs to the ocean [J]. Global Biogeochemical Cycles, 2005, 19(4): GB4025.
[113] Bacon M P, Spencer D W, Brewer P G. 210Pb/226Ra and 210Po/210Pb disequilibria in seawater and suspended particulate matter [J]. Earth and Planetary Science Letters, 1976, 32(2): 277-296. doi: 10.1016/0012-821X(76)90068-6
[114] Anderson R F, Bacon M P, Brewer P G. Removal of 230Th and 231Pa from the open ocean [J]. Earth and Planetary Science Letters, 1983, 62(1): 7-23. doi: 10.1016/0012-821X(83)90067-5
[115] Anderson R F, Bacon M P, Brewer P G. Removal of 230Th and 231Pa at ocean margins [J]. Earth and Planetary Science Letters, 1983, 66: 73-90. doi: 10.1016/0012-821X(83)90127-9
[116] Hayes C T, Anderson R F, Jaccard S L, et al. A new perspective on boundary scavenging in the North Pacific Ocean [J]. Earth and Planetary Science Letters, 2013, 369-370: 86-97. doi: 10.1016/j.jpgl.2013.03.008
[117] Costa K M, Jacobel A W, McManus J F, et al. Productivity patterns in the equatorial Pacific over the last 30, 000 years [J]. Global Biogeochemical Cycles, 2017, 31(5): 850-865. doi: 10.1002/2016GB005579
[118] Singh A K, Marcantonio F, Lyle M. Water column 230Th systematics in the eastern equatorial Pacific Ocean and implications for sediment focusing [J]. Earth and Planetary Science Letters, 2013, 362: 294-304. doi: 10.1016/j.jpgl.2012.12.006
[119] Bacon M P, Anderson R F. Distribution of thorium isotopes between dissolved and particulate forms in the deep sea [J]. Journal of Geophysical Research: Oceans, 1982, 87(C3): 2045-2056. doi: 10.1029/JC087iC03p02045
[120] Sarmiento J L, Gruber N. Ocean Biogeochemical Dynamics[M]. Princeton, NJ: Princeton University Press, 2006.
[121] Luo Y, Francois R, Allen S E. Sediment 231Pa/230Th as a recorder of the rate of the Atlantic meridional overturning circulation: insights from a 2-D model [J]. Ocean Science, 2010, 6(1): 381-400. doi: 10.5194/os-6-381-2010
[122] Lippold J, Luo Y M, Francois R, et al. Strength and geometry of the glacial Atlantic Meridional Overturning Circulation [J]. Nature Geoscience, 2012, 5(11): 813-816. doi: 10.1038/ngeo1608
[123] Gardner W D, Tucholke B E, Richardson M J, et al. Benthic storms, nepheloid layers, and linkage with upper ocean dynamics in the western North Atlantic [J]. Marine Geology, 2017, 385: 304-327.
[124] Valk O, van der Loeff M M R, Geibert W, et al. Importance of hydrothermal vents in scavenging removal of 230Th in the Nansen Basin [J]. Geophysical Research Letters, 2018, 45(19): 10539-10548. doi: 10.1029/2018GL079829
[125] Gardner W D, Richardson M J, Mishonov A V. Global assessment of benthic nepheloid layers and linkage with upper ocean dynamics [J]. Earth and Planetary Science Letters, 2018, 482: 126-134. doi: 10.1016/j.jpgl.2017.11.008
[126] Kumar N, Gwiazda R, Anderson R F, et al. 231Pa/230Th ratios in sediments as a proxy for past changes in Southern Ocean productivity [J]. Nature, 1993, 362(6415): 45-48. doi: 10.1038/362045a0
[127] Chase Z, Anderson R F, Fleisher M Q, et al. The influence of particle composition and particle flux on scavenging of Th, Pa and Be in the ocean [J]. Earth and Planetary Science Letters, 2002, 204(1-2): 215-229. doi: 10.1016/S0012-821X(02)00984-6
[128] Roy-Barman M, Lemaître C, Ayrault S, et al. The influence of particle composition on Thorium scavenging in the Mediterranean Sea [J]. Earth and Planetary Science Letters, 2009, 286(3-4): 526-534. doi: 10.1016/j.jpgl.2009.07.018
[129] McGee D, Marcantonio F, McManus J F, et al. The response of excess 230Th and extraterrestrial 3He to sediment redistribution at the Blake Ridge, western North Atlantic [J]. Earth and Planetary Science Letters, 2010, 299(1-2): 138-149. doi: 10.1016/j.jpgl.2010.08.029
[130] Kretschmer S, Geibert W, van der Loeff M M R, et al. Grain size effects on 230Thxs inventories in opal-rich and carbonate-rich marine sediments [J]. Earth and Planetary Science Letters, 2010, 294(1-2): 131-142. doi: 10.1016/j.jpgl.2010.03.021
[131] Bista D, Kienast S S, Hill P S, et al. Sediment sorting and focusing in the eastern equatorial Pacific [J]. Marine Geology, 2016, 382: 151-161. doi: 10.1016/j.margeo.2016.09.016
[132] Serno S, Winckler G, Anderson R F, et al. Eolian dust input to the Subarctic North Pacific [J]. Earth and Planetary Science Letters, 2014, 387: 252-263. doi: 10.1016/j.jpgl.2013.11.008
[133] Durand A, Chase Z, Noble T L, et al. Export production in the New-Zealand region since the Last Glacial Maximum [J]. Earth and Planetary Science Letters, 2017, 469: 110-122. doi: 10.1016/j.jpgl.2017.03.035
-