MICROFACIES DISTRIBUTION AND SEDIMENTARY MODEL OF PINGHU FORMATION IN P WELL AREA, EAST CHINA SEA BASIN
-
摘要:
以东海陆架盆地某凹陷西部斜坡带P井区7口井的岩心详细观察与描述资料为基础,综合利用测井、分析化验数据及地震等资料,研究平湖组沉积微相及沉积模式.结果表明:P井区平湖组发育一套海陆过渡沉积体系,主要为潮汐影响的三角洲-潮坪相沉积,沉积亚相主要包括三角洲前缘、前三角洲和潮间带.进一步识别出了水下分流河道、河口沙坝、分流间湾、潮汐水道等7种沉积微相.同生断层对沉积微相平面分布影响明显.断距较小时,随着物源与断层走向夹角的增大,水下分流河道会出现改道等现象;断距较大时,水下分流河道沉积物仅在同生断层上盘低部位沉积,向盆地中心推进有限.在沉积体系分析的基础上,建立了研究区潮汐影响三角洲前缘的沉积模式.
Abstract:Based on the detailed observation and description of cores from 7 wells in P well area in the East China Sea shelf basin, the sedimentary microfacies types and sedimentary models of Pinghu Formation are studied comprehensively with logging, laboratory and seismic data. The results show that the Pinghu Formation in the study area develops a set of transitional sedimentary system, dominated by tidal delta-tidal flat deposits. The sedimentary subfacies mainly include delta front, prodelta and intertidal zone. Seven sedimentary microfacies, such as underwater distributary channel, mouth bar, interdistributary and tidal channel, are further identified. The distribution of sedimentary microfacies is obviously affected by the syngenetic fault. Where the fault throw is small, the underwater distributary channel sediments will be diverted with the increase of the angle between the provenance and the strike of fault. While at the places with large fault throw, the sediments will be deposited only in the lower part of the hanging wall of the contemporaneous fault, with limited advance to the center of the basin. Based on the analysis of sedimentary system, the sedimentary model of tidal delta front in the study area is established.
-
Key words:
- Pinghu Formation /
- sedimentary microfacies /
- sedimentary model /
- East China Sea Basin
-
-
图 2 P井区地层柱状图(据文献8)
Figure 2.
表 1 P井区平湖组沉积微相划分及沉积特征
Table 1. IMvision and characteristics of sedimentary faces of P well area
沉积相 亚相 沉积微相 岩石组合 沉积构造 测井相 潮汐影响三角洲 三角洲前缘 水下分流河道 中粗砂岩、含砾中粗砂岩 块状层理、交错层理、平行层理、冲刷构造、潮汐层理 箱型、钟形 河口沙坝 中细砂岩 块状层理、交错层理、平行层理、砂纹层理、韵律层理、潮汐层理 齿化漏斗形 分流间湾 泥岩-粉砂质泥岩 块状层理、生物扰动构造、变形构造 齿化直线型 席状砂 粉细砂岩-粉砂质泥岩 水平层理、砂纹层理、平行层理、透镜状层理 指型 前三角洲 前三角洲泥 泥岩、粉砂质泥岩 水平层理、生物扰动构造 微齿化直线型 潮坪 潮间带 泥坪 泥岩 波状层理、水平层理 微齿化直线型 潮汐水道 中细砂岩、含砾中砂岩 双向交错层理、平行层理 齿化箱型 -
[1] 侯国伟, 李帅, 秦兰芝, 等.西湖凹陷西部斜坡带平湖组源-汇体系特征[J].中国海上油气, 2019, 31(3):29-39. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201903004
[2] 张武, 侯国伟, 肖晓光, 等.西湖凹陷低渗储层成因及优质储层主控因素[J].中国海上油气, 2019, 31(3):40-49. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201903005
[3] 袁竞, 陆洋, 李喆.西湖凹陷深部储层物性特征及其影响因素[J].海洋石油, 2019, 39(2):12-17. doi: 10.3969/j.issn.1008-2336.2019.02.012
[4] 张沛, 黄畅.西湖凹陷K构造平湖组储层特征及影响因素[J].海洋石油, 2018, 38(2):1-6, 12. doi: 10.3969/j.issn.1008-2336.2018.02.001
[5] 蒋一鸣, 周倩羽, 李帅, 等.西湖凹陷西部斜坡带平湖组含煤岩系沉积环境再思考[J].中国煤炭地质, 2016, 28(8):18-25. doi: 10.3969/j.issn.1674-1803.2016.08.04
[6] 吴嘉鹏, 万丽芬, 张兰, 等.西湖凹陷平湖组岩相类型及沉积相分析[J].岩性油气藏, 2017, 29(1):27-34. doi: 10.3969/j.issn.1673-8926.2017.01.004
[7] 赵洪, 蒋一鸣, 常吟善, 等.西湖凹陷平湖组基于沉积相标志的沉积特征研究[J].上海国土资源, 2018, 39(1):88-92. doi: 10.3969/j.issn.2095-1329.2018.01.019
[8] 付振群.东海陆架盆地西湖凹陷平湖组层序地层及沉积特征研究[D].成都: 成都理工大学, 2014.
http://cdmd.cnki.com.cn/Article/CDMD-10616-1016227085.htm [9] 周瑞琦.西湖凹陷平湖组-花港组低孔渗储层层序地层与沉积相研究[D].成都: 成都理工大学, 2015.
http://cdmd.cnki.com.cn/Article/CDMD-10616-1017218792.htm [10] 吴嘉鹏.西湖凹陷平湖组潮汐砂脊的发现及意义[J].沉积学报, 2016, 34(5):924-929. http://d.old.wanfangdata.com.cn/Periodical/cjxb201605011
[11] 苏奥, 陈红汉.东海盆地西湖凹陷油岩地球化学特征及原油成因来源[J].地球科学-中国地质大学学报, 2015, 40(6):1072-1082. http://d.old.wanfangdata.com.cn/Periodical/dqkx201506011
[12] 李纯洁, 张清胜, 孟其林.东海宝石一井第三纪地层层序及沉积环境浅析[J].海洋石油, 2002(4):14-23. doi: 10.3969/j.issn.1008-2336.2002.04.003
[13] 赵艳秋.东海西湖凹陷油气成藏地质认识[J].海洋地质动态, 2003, 19(5):20-24. doi: 10.3969/j.issn.1009-2722.2003.05.006
[14] 朱扬明, 周洁, 顾圣啸, 等.西湖凹陷始新统平湖组煤系烃源岩分子地球化学特征[J].石油学报, 2012, 33(1):32-39. http://d.old.wanfangdata.com.cn/Periodical/syxb201201004
[15] 薛丹, 胡明毅, 邓猛.西湖凹陷Y气田平湖组上段沉积相特征及有利砂体预测[J].科学技术与工程, 2014, 14(24):40-47. doi: 10.3969/j.issn.1671-1815.2014.24.008
[16] 殷世艳, 叶加仁, 雷闯, 等.西湖凹陷平北地区平湖组原油地球化学特征[J].新疆石油地质, 2014, 35(5):542-546, 569. http://d.old.wanfangdata.com.cn/Periodical/xjsydz201405010
[17] 张敏强, 钟志洪, 夏斌, 等.东海西湖凹陷中南部晚中新世构造反转与油气运聚[J].中国海上油气, 2005, 17(2):73-79. doi: 10.3969/j.issn.1673-1506.2005.02.001
[18] 王果寿, 周卓明, 肖朝辉, 等.西湖凹陷春晓区带下第三系平湖组、花港组沉积特征[J].石油与天然气地质, 2002, 23(3):257-261, 265. doi: 10.3321/j.issn:0253-9985.2002.03.012
[19] Abbas A, Zhu H T, Zeng Z W, et al. Sedimentary facies analysis using sequence stratigraphy and seismic sedimentology in the Paleogene Pinghu Formation, Xihu Depression, East China Sea Shelf Basin[J]. Marine and Petroleum Geology, 2018, 93:287-297. doi: 10.1016/j.marpetgeo.2018.03.017
[20] 张建培, 徐发, 钟韬, 等.东海陆架盆地西湖凹陷平湖组-花港组层序地层模式及沉积演化[J].海洋地质与第四纪地质, 2012, 32(1):35-41. http://www.cnki.com.cn/Article/CJFDTotal-HYDZ201201009.htm
[21] 邓宏文, 郑文波.珠江口盆地惠州凹陷古近系珠海组近海潮汐沉积特征[J].现代地质, 2009, 23(5):767-775. doi: 10.3969/j.issn.1000-8527.2009.05.001
[22] 商建霞, 薛国庆, 袁凌荣, 等.文昌A油田主力油组潮坪相划分及优势储层预测[J].石油地质与工程, 2019, 33(5):31-35. doi: 10.3969/j.issn.1673-8217.2019.05.008
[23] 侯云东, 陈安清, 赵伟波, 等.鄂尔多斯盆地本溪组潮汐-三角洲复合砂体沉积环境[J].成都理工大学学报(自然科学版), 2018, 45(4):393-401. doi: 10.3969/j.issn.1671-9727.2018.04.01
[24] 何会.利用测井方法研究川西地区新场气田须二段沉积相[J].天然气勘探与开发, 2015, 38(2):38-42. doi: 10.3969/j.issn.1673-3177.2015.02.010
-