ANALYSIS ON THE GEOCHEMICAL CHARACTERISTICS AND SEDIMENTARY ENVIRONMENT OF THE LOWER CRETACEOUS LIMESTONE IN JIMO AREA, SHANDONG PROVINCE
-
摘要:
为研究山东即墨周戈庄剖面下白垩统灰岩地球化学特征及沉积环境,对周戈庄剖面灰岩进行了系统的沉积学和元素地球化学测试.研究结果显示,周戈庄剖面灰岩样品中SiO2和CaO含量较高,其平均含量分别为17.18%和39.10%,且SiO2、Al2O3与CaO的值呈现负相关,表明灰岩沉积时期受陆源影响较大.微量元素中,Zr含量较低,Ti含量远大于碳酸盐岩中平均含量,表明其沉积作用主要受陆源影响.稀土总量丰富,重稀土富集,Gd和Eu显示轻微正异常,Ce轻微负异常,且Ce/Ce*与Eu/Eu*、ΣREE呈明显的相关性.MgO/Al2O3为0.33~0.74,Sr/Ba值为0.10~0.94,反映了陆相沉积环境.V/Cr值为1.64~1.92,Ni/Co值为1.83~2.45,U/Th值为0.48~0.84,反映了氧化沉积特征.MgO/CaO的值为0.03~0.14,Sr/Cu值为16.46~20.45,指示了干旱炎热的气候条件,表明周戈庄剖面灰岩沉积环境为炎热干旱的氧化陆相沉积环境.对周戈庄地区沉积环境的研究可以用来重建古气候、恢复古环境.
Abstract:In order to study the geochemical characteristics and sedimentary environment of the Lower Cretaceous limestone at Zhougezhuang section in Jimo, Shandong, the authors carry out systematic sedimentological and elemental geochemical tests on the limestone. The results show that the contents of SiO2 and CaO in the limestone samples are high, with average contents of 16.83% and 39.34%, respectively, and the values of SiO2 and Al2O3 are negatively correlated with that of CaO, suggesting that the sedimentation of limestone be notably influenced by terrigenous sources. Among the trace elements, the Zr content is low, while the Ti content is much greater than the average in carbonate rock, indicating that the sedimentation is mainly terrigenous matters. The total amount of rare earth elements is rich, with enriched HREE, slightly positive anomalies of Gd and Eu, and less negative anomaly of Ce. The ratio of Ce/Ce* is significantly correlated with Eu/Eu* and ΣREE. The MgO/Al2O3 values range from 0.33 to 0.74, with Sr/Ba of 0.10-0.94, which reflects the continental depositional environment. The V/Cr value of 1.64-1.92, Ni/Co value of 1.83-2.45 and U/Th value of 0.48-0.84 represent the characteristics of oxidation deposition. The MgO/CaO value of 0.03-0.14 and Sr/Cu value of 16.46-20.45 indicate an arid and hot climatic condition. Therefore, the limestone of Zhougezhuang section shows a hot and dry oxidized continental facies sedimentary environment, which can be used to reconstruct and restore the paleoclimate.
-
Key words:
- limestone /
- Lower Cretaceous /
- geochemistry /
- sedimentary environment /
- Shandong Province
-
-
图 1 山东东部区域地质图(据文献[4])
Figure 1.
表 1 周戈庄剖面灰岩样品主量元素含量
Table 1. Major element contents of limestone samples from Zhougezhuang section
样品号 17JM-1 17JM-2 17JM-3 17JM-4 17JM-5 17JM-6 平均值 SiO2 5.5 13.61 0.77 22.27 17.42 3.49 17.18 TiO2 0.26 0.22 0.17 0.23 0.18 0.19 0.21 Al2O3 5.76 5.11 3.92 5.12 4.17 4.38 4.74 Fe2O3 2.26 1.87 2.11 2.14 1.95 1.99 2.05 FeO 1.54 0.41 0.31 1.09 0.41 0.37 0.69 MnO 0.38 0.36 0.42 0.39 0.4 0.39 0.39 CaO 31.68 41.51 44.08 35.05 40.1 42.16 39.10 MgO 4.29 1.71 1.47 3.16 1.46 1.55 2.27 K2O 0.82 1.33 0.94 0.86 0.93 1.07 0.99 Na2O 0.45 0.31 0.31 0.45 0.46 0.35 0.39 P2O5 0.12 0.09 0.1 0.11 0.1 0.10 0.10 MgO/Al2O3 0.74 0.33 0.38 0.62 0.35 0.35 0.46 MgO/CaO 0.14 0.04 0.03 0.09 0.04 0.04 0.06 SiO2/Al2O3 4.43 2.66 2.75 4.35 4.18 3.08 3.57 含量单位:%. 表 2 周戈庄剖面灰岩样品微量元素含量
Table 2. Trace element contents of limestone samples from Zhougezhnang section
样品号 17JM-1 17JM-2 17JM-3 17JM-4 17JM-5 17JM-6 平均值 Rb 43.76 103.03 62.86 47.73 53.69 73.80 64.15 Ba 2337.98 216.5 1578.67 1502.62 249.59 770.19 1109.26 Th 5.17 5.8 4.18 5.40 5.74 5.14 5.24 U 3.96 4.74 3.5 3.47 2.73 3.71 3.68 K 6804.26 11036.17 7800 7169.36 7717.02 8856.60 8230.57 Ta 0.39 0.49 0.24 0.39 0.38 0.36 0.37 Nb 6.92 6.56 5.33 6.30 5.37 5.75 6.04 La 26.3 34.5 47.8 30.90 37.8 40.70 36.33 Ce 44.9 46.3 54.8 49.38 56.1 52.31 50.63 Sr 236.77 204.44 205.03 215.69 184.07 199.24 207.54 Nd 19.31 18.81 24.04 20.93 23.35 22.11 21.42 P 523.94 392.96 436.62 489.01 436.62 422.07 450.20 Zr 64.3 61.2 45.9 58.98 51 52.36 55.62 Hf 1.2 1.1 1.1 1.16 1.1 1.10 1.13 Sm 3.41 3.26 3.86 3.73 4.21 3.75 3.70 Ti 2273.18 1678.77 1586.01 1922.18 1395.68 1566.18 1737.00 Y 12.3 11.4 14.1 12.62 13.1 12.93 12.74 Yb 1.3 1.1 1.4 1.34 1.4 1.30 1.31 Lu 0.2 0.2 0.2 0.20 0.2 0.20 0.20 Li 79.93 44.08 33.47 58.97 27.53 35.42 46.57 Be 0.67 0.94 1.02 0.74 0.85 0.95 0.86 Sc 4.46 4.52 3.55 3.86 2.97 3.72 3.85 Co 7.28 6.50 5.12 6.31 4.86 5.51 5.93 Ni 13.30 12.95 12.53 12.32 10.85 12.22 12.36 Cu 12.60 12.42 10.17 11.16 9.00 10.61 10.99 Zn 52.07 36.14 24.60 42.28 27.58 29.24 35.32 Ga 7.50 7.26 5.66 6.64 5.37 6.12 6.42 Mo 10.26 6.63 1.93 6.92 1.91 3.49 5.19 Cs 8.64 20.91 16.31 10.55 13.41 17.07 14.48 Tl 0.42 0.63 0.60 0.53 0.68 0.63 0.58 Pb 33.45 17.00 12.11 24.29 10.56 13.33 18.46 Bi 0.11 0.10 0.10 0.12 0.13 0.11 0.11 V 54.18 48.99 45.47 49.56 42.64 45.89 47.79 Cr 28.85 29.83 23.99 26.20 22.22 25.46 26.09 Sn 0.75 0.50 0.50 0.68 0.56 0.52 0.58 B 18.30 29.30 13.80 18.34 18.40 20.19 19.72 Cd 0.13 0.14 0.16 0.12 0.10 0.14 0.13 In 0.02 0.03 0.02 0.02 0.02 0.02 0.02 Sb 0.23 0.25 0.28 0.28 0.34 0.29 0.28 W 12.04 11.18 9.43 11.13 9.77 10.10 10.61 Mn 3139.96 3187.78 3702.31 3306.16 3555.44 3491.64 3397.22 As 29.00 17.90 24.00 27.48 25.20 22.29 24.31 V/Cr 1.88 1.64 1.90 1.89 1.92 1.80 1.84 U/Th 0.77 0.82 0.84 0.64 0.48 0.72 0.71 Ni/Co 1.83 1.99 2.45 1.95 2.23 2.22 2.11 Sr/Ba 0.10 0.94 0.13 0.14 0.74 0.26 0.39 Sr/Cu 18.79 16.46 20.16 19.33 20.45 18.78 18.99 含量单位:10-6. 表 3 周戈庄剖面灰岩样品稀土元素含量
Table 3. REE contents of limestone samples from Zhougezhuang section
样品号 17JM-1 17JM-2 17JM-3 17JM-4 17JM-5 17JM-6 平均值 La 26.3 34.5 47.8 30.90 37.8 40.70 36.33 Ce 44.9 46.3 54.8 49.38 56.1 52.31 50.63 Pr 5.3 5.5 7.2 5.78 6.5 6.45 6.12 Nd 19.3 18.8 24 20.94 23.4 22.11 21.42 Sm 3.4 3.3 3.9 3.72 4.2 3.78 3.72 Eu 1 0.7 0.7 1.00 1 0.78 0.86 Gd 3 2.8 3.6 3.28 3.7 3.36 3.29 Tb 0.4 0.4 0.5 0.44 0.5 0.47 0.45 Dy 2.2 2 2.4 2.32 2.5 2.29 2.29 Ho 0.4 0.4 0.5 0.44 0.5 0.47 0.45 Er 1.2 1.1 1.3 1.28 1.4 1.26 1.26 Tm 0.2 0.2 0.2 0.20 0.2 0.20 0.20 Yb 1.3 1.1 1.4 1.34 1.4 1.30 1.31 Lu 0.2 0.2 0.2 0.20 0.2 0.20 0.20 Y 12.3 11.4 14.1 12.62 13.1 12.93 12.74 ΣREE 109.10 117.30 148.50 121.22 139.40 135.67 128.53 LREE 100.20 109.10 138.40 111.72 129.00 126.13 119.09 HREE 8.90 8.20 10.10 9.50 10.40 9.55 9.44 LREE/HREE 11.26 13.30 13.70 11.76 12.40 13.21 12.61 LasN/YbsN 1.49 2.31 2.52 1.70 1.99 2.31 2.05 Eu/Eu* 1.46 1.07 0.87 1.34 1.18 1.02 1.16 Ce/Ce* 0.87 0.77 0.68 0.85 0.82 0.74 0.79 Gd/Gd* 1.18 1.02 1.02 1.14 1.08 1.03 1.08 含量单位:10-6. -
[1] 朱筱敏.沉积岩石学[M]. 4版.北京:石油工业出版社, 2008:163-213.
[2] 冯增昭.沉积岩石学[M].北京:石油工业出版社, 1993:137-263.
[3] 刘亮, 韩洪明, 杨鹏涛, 等.四川龙门山地区阳新组灰岩地质特征及用途[J].地质与资源, 2019, 28(5):448-453. doi: 10.3969/j.issn.1671-1947.2019.05.006
[4] 周瑶琪, 张振凯, 梁文栋, 等.山东东部晚中生代构造-岩浆活动及原型盆地恢复[J].地学前缘, 2015, 22(1):137-156. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201501014.htm
[5] 冯乔, 张耀, 徐子苏, 等.胶莱盆地早白垩世瓦屋夼组、水南组元素地球化学特征与古环境分析[J].山东科技大学学报(自然科学版), 2018, 37(1):20-34. http://d.old.wanfangdata.com.cn/Periodical/sdkjdxxb201801003
[6] Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A.[J]. Chemical Geology, 1992, 99(1/2/3):65-82. https://www.sciencedirect.com/science/article/pii/000925419290031Y
[7] Jan Veizer R D. Strontium as a tool in facies analysis[J]. Journal of Sedimentary Research, 1974, 44(1):93-115. http://cn.bing.com/academic/profile?id=1db44eddf37b25b32a10c5403d8c2b62&encoded=0&v=paper_preview&mkt=zh-cn
[8] 熊小辉, 肖加飞.沉积环境的地球化学示踪[J].地球与环境, 2011, 39(3):405-414. http://d.old.wanfangdata.com.cn/Periodical/dzdqhx201103020
[9] Wilde P, Quinby-Hunt M S, Erdtmann B D. The whole-rock cerium anomaly:A potential indicator of eustatic sea-level changes in shales of the anoxic facies[J]. Sedimentary Geology, 1996, 101(1/2):43-53. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0037-0738(95)00020-8/
[10] 潘明, 吕勇, 山克强, 等.云南保山栗柴坝组碳酸盐岩地球化学特征及环境意义[J].地质论评, 2015, 61(2):333-343. http://d.old.wanfangdata.com.cn/Periodical/dzlp201502008
[11] 吴灿灿, 陈松, 李俊, 等.皖北宿州地区寒武系豹皮灰岩地球化学特征及其地质意义[J].地质与勘探, 2018, 54(1):90-101. doi: 10.3969/j.issn.0495-5331.2018.01.010
[12] Challands T J, Armstrong H A, Maloney D P, et al. Organic-carbon deposition and coastal upwelling at mid-latitude during the Upper Ordovician (Late Katian):A case study from the Welsh Basin, UK[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 273(3/4):395-410. http://cn.bing.com/academic/profile?id=0d4158b3f9b18cc7efce98b85afd52a8&encoded=0&v=paper_preview&mkt=zh-cn
[13] 曾雄伟, 程龙, 王建坡, 等.黔西南贞丰中上三叠统竹杆坡组地球化学特征及其环境意义[J].地质科技情报, 2014, 33(6):33-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201406005
[14] 陈松, 桂和荣, 孙林华, 等.安徽宿州寒武纪猴家山组灰岩微量元素地球化学特征[J].矿物岩石, 2013, 33(1):69-76. http://d.old.wanfangdata.com.cn/Periodical/kwys201301010
[15] 陈松, 傅雪海, 桂和荣, 等.皖北新元古界望山组灰岩微量元素地球化学特征[J].古地理学报, 2012, 14(6):813-820. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201206012
[16] 刘刚, 周东升.微量元素分析在判别沉积环境中的应用——以江汉盆地潜江组为例[J].石油实验地质, 2007, 29(3):307-310, 314. doi: 10.3969/j.issn.1001-6112.2007.03.016
[17] 王益友, 郭文莹, 张国栋.几种地球化学标志在金湖凹陷阜宁群沉积环境中的应用[J].同济大学学报, 1979, 4(2):51-60. http://www.cnki.com.cn/Article/CJFDTotal-TJDZ197902005.htm
[18] 牟保磊.元素地球化学[M].北京:北京大学出版社, 1999:125-215.
[19] 孙庆峰.新疆柯坪中奥陶统结核状灰岩的沉积环境及成因[J].岩石矿物学杂志, 2006, 25(2):137-147. doi: 10.3969/j.issn.1000-6524.2006.02.007
[20] 倪善芹, 侯泉林, 王安建, 等.碳酸盐岩中锶元素地球化学特征及其指示意义——以北京下古生界碳酸盐岩为例[J].地质学报, 2010, 84(10):1510-1516. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201010012
[21] Gibbs A K. The continental crust:Its composition and evolution[J]. The Journal of Geology, 1986, 94(4):632-633. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_7b034b121c08912757b660fdefe8747e
[22] 范玉海, 屈红军, 王辉, 等.微量元素分析在判别沉积介质环境中的应用——以鄂尔多斯盆地西部中区晚三叠世为例[J].中国地质, 2012, 39(2):382-389. doi: 10.3969/j.issn.1000-3657.2012.02.010
[23] Gromet L P, Haskin L A, Korotev R L, et al. The "North American shale composite":Its compilation, major and trace element characteristics[J]. Geochimica et Cosmochimica Acta, 1984, 48(12):2469-2482. doi: 10.1016/0016-7037(84)90298-9
[24] 田正隆, 戴英, 龙爱民, 等.南沙群岛海域沉积物稀土元素地球化学研究[J].热带海洋学报, 2005, 24(1):8-14. doi: 10.3969/j.issn.1009-5470.2005.01.002
[25] Elderfield H, Greaves M J. The rare earth elements in seawater[J]. Nature, 1982, 296(5854):214-219. doi: 10.1038/296214a0
[26] 王双, 杨瑞东.贵阳花溪燕楼剖面下三叠统大冶组地球化学特征与沉积环境分析[J].古地理学报, 2018, 20(2):285-298. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201802009
[27] Sholkovitz E R, Landing W M, Lewis B L. Ocean particle chemistry:The fractionation of rare earth elements between suspended particles and seawater[J]. Geochimica et Cosmochimica Acta, 1994, 58(6):1567-1579. doi: 10.1016/0016-7037(94)90559-2
[28] 刘士林, 刘蕴华, 林舸, 等.渤海湾盆地南堡凹陷新近系泥岩稀土元素地球化学特征及其地质意义[J].现代地质, 2006, 20(3):449-456. doi: 10.3969/j.issn.1000-8527.2006.03.013
-