ZIRCON U-Pb CHRONOLOGY AND GEOCHEMISTRY OF THE PILLOW BASALTS FROM RAOHE COMPLEX: Geological Implications
-
摘要:
那丹哈达增生杂岩为中国东部古太平洋板块俯冲最为可靠的地质记录之一,对限定古大洋板块的西向俯冲具有重要的理论意义.饶河杂岩位于那丹哈达增生杂岩的核心位置,发育典型的增生杂岩组合,其中玄武岩类多呈构造透镜体状产出于超镁铁质-镁铁质杂岩带,变形轻微,没有遭受变质.对饶河杂岩中枕状玄武岩样品进行的同位素年代学和地球化学研究结果表明:饶河杂岩中枕状玄武岩锆石LA-ICP-MS U-Pb年龄为中侏罗世(168±2 Ma),枕状玄武岩大离子亲石元素Rb、Sr亏损,高场强元素Nb、Ta富集,Th元素丰度较高,形成于洋岛(OIB型)环境.饶河杂岩中枕状玄武岩的形成时代和成因环境,对于该区侏罗纪时期构造动力学背景研究具有意义.
Abstract:As one of the most reliable geological records of paleo-Pacific Plate subduction in eastern China, the Nadanhada accretionary complex is of great importance to define the westward subduction of paleo-oceanic plate. The Raohe Complex is located in the core of the complex, developed with typical accretionary complex association, among which the basaltoids, mostly in structural lenticles, are occurred in the ultramafic-mafic complex zone with slight deformation but no metamorphism. Study on the isotopic chronology and geochemistry of the pillow basalt samples from Raohe Complex shows that the LA-ICP-MS zircon U-Pb age is Middle Jurassic(168±2 Ma), with depletion of LILEs (Rb and Sr), enrichment of HFSEs(Nb and Ta) and high-abundant Th, which was formed in the ocean island environment (OIB). Its formation age and genetic environment is significant to study the tectonic dynamic background of the area during the Jurassic period.
-
Key words:
- Raohe Complex /
- pillow basalt /
- zircon U-Pb chronology /
- geochemistry /
- Heilongjiang Province
-
图 1 中国东北及其邻区大地构造及那丹哈达地体地质简图(据文献[2])
Figure 1.
图 6 枕状玄武岩Ti/100-Zr-3Y和2Nb-Zr/4-Y构造判别图解(据文献[41])
Figure 6.
图 7 枕状玄武岩Zr/Yb-Zr和Nb/Yb-Th/Yb构造判别图解(据文献[42])
Figure 7.
表 1 饶河杂岩中枕状玄武岩样品(15HLJ28)的锆石LA-ICP-MS U-Pb测年结果
Table 1. LA-ICP-MS zircon U-Pb dating results of the pillow basalt sample 15HLJ28 from Raohe Complex
元素含量/10-6 Th/U 同位素比值 年龄Ma Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ Conc 58.3 431 639 0.67 0.0488 0.0035 0.1740 0.0127 0.0261 0.0004 200 94 163 11 166 3 97% 352 3108 2382 1.31 0.0512 0.0020 0.1820 0.0068 0.0260 0.0003 250 86 170 6 165 2 97% 45.9 342 482 0.71 0.0480 0.0044 0.1753 0.0161 0.0265 0.0005 98 204 164 14 169 3 97% 74 584 723 0.81 0.0538 0.0035 0.1909 0.0119 0.0266 0.0006 365 146 177 10 169 4 95% 55.3 396 609 0.65 0.0517 0.0037 0.1880 0.0133 0.0268 0.0007 276 165 175 11 170 4 97% 98 782 1130 0.69 0.0496 0.0028 0.1775 0.0096 0.0268 0.0007 176 131 166 8 170 4 97% 57.5 457 581 0.79 0.0539 0.0042 0.1924 0.0142 0.0267 0.0008 369 171 179 12 170 5 94% 15.4 130 299 0.44 0.0530 0.0071 0.1805 0.0227 0.0268 0.0007 328 281 169 20 170 5 98% 88 673 796 0.85 0.0527 0.0035 0.1896 0.0120 0.0265 0.0005 317 150 176 10 169 3 95% 183 1550 1231 1.26 0.0482 0.0023 0.1795 0.0085 0.0274 0.0005 109 111 168 7 174 3 96% 347 2936 1915 1.53 0.0470 0.0019 0.1755 0.0071 0.0272 0.0003 56 87 164 6 173 2 94% 90 778 793 0.98 0.0497 0.0029 0.1794 0.0105 0.0261 0.0004 189 144 168 9 166 2 99% 300 2492 1736 1.44 0.0482 0.0023 0.1787 0.0087 0.0267 0.0003 109 107 167 8 170 2 98% 19.3 139 223 0.63 0.0497 0.0037 0.1822 0.0135 0.0264 0.0008 189 154 170 12 168 5 99% 12.7 92.3 165 0.56 0.0490 0.0043 0.1767 0.0152 0.0264 0.0008 150 193 165 13 168 5 98% 71 563 552 1.02 0.0475 0.0025 0.1756 0.0090 0.0269 0.0007 72 122 164 8 171 5 95% 16.6 127 203 0.63 0.0502 0.0039 0.1811 0.0141 0.0262 0.0008 211 183 169 12 167 5 98% 44.4 349 369 0.94 0.0527 0.0030 0.1897 0.0106 0.0264 0.0007 317 128 176 9 168 5 95% 156 1367 775 1.76 0.0508 0.0023 0.1825 0.0080 0.0261 0.0007 232 102 170 7 166 4 97% 81 674 554 1.22 0.0492 0.0023 0.1759 0.0084 0.0260 0.0007 167 111 165 7 165 4 99% 15.9 117 172 0.68 0.0455 0.0043 0.1618 0.0147 0.0264 0.0008 — — 152 13 168 5 90% 9.3 58.8 116 0.51 0.0615 0.0068 0.2041 0.0207 0.0255 0.0008 657 205 189 17 162 5 84% 22.2 178 250 0.71 0.0461 0.0038 0.1607 0.0130 0.0254 0.0007 6 185 151 11 162 5 93% 表 2 饶河杂岩中枕状玄武岩地球化学分析结果
Table 2. Geochemical data of the pillow basalt in Raohe Complex
样品 15HLJ28a 15HLJ28b 15HLJ28c 15HLJ28d SiO2 48.03 44.36 45.19 49.82 TiO2 2.49 3.34 3.09 2.7 Al2O3 11.52 12.1 12.62 13.9 TFe2O3 14.8 13.62 12.51 10.52 MnO 0.24 0.16 0.15 0.21 MgO 7.67 9.19 9.63 6.17 CaO 9.07 9.46 9.08 8.86 Na2O 2.98 2.99 3.08 4.31 K2O 0.6 0.29 0.26 0.32 P2O5 0.73 0.8 0.73 0.61 LOI 1.57 2.87 3.08 1.5 Total 99.7 99.18 99.42 98.92 Ba 261 93.9 63.2 236 Rb 16.4 6.2 6.7 7.3 Sr 337 289 236 553 Zr 317 353 309 246 Nb 69.8 73.4 67.5 59.6 Ni 150 198 146.5 69.3 Co 27.6 49.9 42.9 28.4 Cr 260 310 270 30 La 52.5 59 52.6 46.1 Ce 109.1 114.5 107.5 87.7 Pr 11.75 13.1 12.2 9.97 Nd 48.3 53.9 50 39.6 Sm 10.05 11.8 10.5 8.29 Eu 3.3 3.93 3.46 2.94 Gd 9.98 11.15 10.1 8.92 Tb 1.25 1.41 1.38 1.17 Dy 6.55 7.71 7.32 6.69 Ho 1.19 1.29 1.24 1.11 Er 2.71 2.87 2.93 2.73 Tm 0.35 0.36 0.36 0.38 Yb 1.81 1.83 1.91 1.96 Lu 0.25 0.24 0.26 0.26 Y 33.3 35.6 33.9 32.3 Ta 4.4 4.7 4.4 3.6 Hf 6.4 8 6.8 5.5 V 178 237 250 226 U 0.92 1.8 1.66 1.46 Th 6.21 5.75 5.56 5.23 Sc 13.6 22.1 22.0 17.2 ∑REE 256.94 330.66 339.72 305.59 LREE/HREE 9.76 9.54 9.27 8.38 (La/Yb)N 19.56 21.74 18.57 15.86 (Gd/Yb)N 4.45 4.92 4.27 3.67 Eu/Eu* 1.00 1.03 1.49 1.54 含量单位:主量元素为%, 稀土和微量元素为10-6(质量分数). -
[1] Zhou J B, Wilde S A, Zhang X Z, et al. The onset of Pacific margin accretion in NE China:Evidence from the Heilongjiang high-pressure metamorphic belt[J]. Tectonophysics, 2009, 478(3/4):230-246. http://cn.bing.com/academic/profile?id=7f6f56da4da3d76c2bf298634646cb01&encoded=0&v=paper_preview&mkt=zh-cn
[2] Zhou J B, Cao J L, Wilde S A, et al. Paleo-Pacific subduction-accretion:Evidence from geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China[J]. Tectonics, 2014, 33(12):2444-2466. doi: 10.1002/2014TC003637
[3] Zhang X Z, Guo Y, Zhou J B, et al. Late Paleozoic-Early Mesozoic tectonic evolution in the east margin of the Jiamusi Massif, eastern Northeastern China[J]. Russian Journal of Pacific Geology, 2015, 9(1):1-10. doi: 10.1134/S181971401501008X
[4] 李双林, 欧阳自远.兴蒙造山带及邻区的构造格局与构造演化[J].海洋地质与第四纪地质, 1998, 18(3):45-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800270725
[5] 唐克东, 王莹, 何国琦, 等.中国东北及邻区大陆边缘构造[J].地质学报, 1995, 69(1):16-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500063463
[6] 王秀璋.中国东北饶河地区中生代褶皱带内的海相中生代地层[J].地质科学, 1959(2):50-51. http://www.cnki.com.cn/Article/CJFD1979-DZKX195902005.htm
[7] 黄汲清, 任纪舜, 姜春发, 等.中国大地构造及其演化[M].北京:科学出版社, 1983:1-122.
[8] 李春昱.中国板块构造的轮廓[M].北京:地质出版社, 1984:1-80.
[9] Kojima S. Mesozoic terrane accretion in Northeast China, Sikhote-Alin and Japan regions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1989, 69(3/4):213-232. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0031-0182(89)90165-X/
[10] Mizutani S, Kojima S. Mesozoic radiolarian biostratigraphy of Japan and collage tectonics along the eastern continental margin of Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 96(1/2):3-22. http://cn.bing.com/academic/profile?id=204c613e9a9553076740012c498e475c&encoded=0&v=paper_preview&mkt=zh-cn
[11] Kojima S, Mizutani S. Triassic and Jurassic radiolarian from the Nadanhada range, Northeast China[J]. Trans Proc Palaeont Soc Japan N S, 1987, 148:256-275. http://cn.bing.com/academic/profile?id=7fc5dbd76090620477c9ee9d5cc79476&encoded=0&v=paper_preview&mkt=zh-cn
[12] 张庆龙, 水谷伸治郎, 小岛智, 等.黑龙江省那丹哈达地体构造初探[J].地质论评, 1989, 35(1):67-71. doi: 10.3321/j.issn:0371-5736.1989.01.008
[13] 张庆龙, 水谷伸治郎, 小岛智.放射虫化石及地体对比研究[J].古生物学报, 1997, 36(2):245-252. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700131570
[14] 张兴洲, 马志红.黑龙江东部中-新生代盆地演化[J].地质与资源, 2010, 19(3):191-196. doi: 10.3969/j.issn.1671-1947.2010.03.001 http://www.cnki.com.cn/Article/CJFDTotal-GJSD201003003.htm
[15] 田东江, 周建波, 郑常青, 等.完达山造山带蛇绿混杂岩中变质基性岩的地球化学特征及其地质意义[J].矿物岩石, 2006, 26(3):64-70. doi: 10.3969/j.issn.1001-6872.2006.03.011
[16] 田东江.完达山造山带的地质-地球化学组成及其演化[D].长春: 吉林大学, 2007: 1-62.
http://cdmd.cnki.com.cn/article/cdmd-10183-2007091878.htm [17] 水谷伸治郎, 邵济安, 张庆龙.那丹哈达地体与东亚大陆边缘中生代构造的关系[J].地质学报, 1989, 63(3):204-216. doi: 10.3321/j.issn:0001-5717.1989.03.005
[18] 邵济安, 王成源, 唐克东.乌苏里地区构造新探索[J].地质论评, 1992, 38(1):33-39. doi: 10.3321/j.issn:0371-5736.1992.01.004
[19] 邵济安, 唐克东, 詹立培, 等.一个古大陆边缘的再造及其大地构造意义--延边地质研究新进展[J].中国科学:B辑, 1995, 25(5):548-555. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500247242
[20] 张世红, 施央申, 孙岩, 等.黑龙江完达山造山带及其那丹哈达地体的关系[J].南京大学学报:地球科学, 1991, 3(3):287-294.
[21] 张海阳, 刘荣芝, 张书范, 等.黑龙江省完达山早中生代深海沉积地层[J].黑龙江地质, 1991, 2(2):30-40. http://www.cqvip.com/qk/97312X/199102/516381.html
[22] 黑龙江省地质矿产局.黑龙江省地质志[M].北京:地质出版社, 1993:347-418.
[23] 程瑞玉, 吴福元, 葛文春, 等.黑龙江省东部饶河杂岩的就位时代与东北东部中生代构造演化[J].岩石学报, 2006, 22(2):353-376. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200602009
[24] 程瑞玉.黑龙江省东部饶河地区花岗岩时代及其成因[D].长春: 吉林大学, 2006: 1-78.
http://cdmd.cnki.com.cn/Article/CDMD-10183-2006108921.htm [25] Bi J H, Ge W C, Yang H, et al. Geochronology, geochemistry and zircon Hf isotopes of the Dongfanghong gabbroic complex at the eastern margin of the Jiamusi Massif, NE China:Petrogensis and tectonic implication[J]. Lithos, 2015, 234-235:27-46. doi: 10.1016/j.lithos.2015.07.015
[26] Sun M D, Xu Y G, Wilde S A, et al. Provenance of Cretaceous trench slope sediments from the Mesozoic Wandashan Orogen, NE China:Implications for determining ancient drainage systems and tectonics of the Paleo-Pacific[J]. Tectonics, 2015, 34:1269-1289. doi: 10.1002/2015TC003870
[27] 何松, 孙晓猛, 张旭庆, 等.黑龙江饶河枕状玄武岩地质、地球化学特征及其构造属性[J].世界地质, 2016, 35(4):942-954. http://d.old.wanfangdata.com.cn/Periodical/sjdz201604005
[28] Wiedenbeck M, Allé P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards and Geoanalytical Research, 1995, 19(1):1-23. doi: 10.1111/j.1751-908X.1995.tb00147.x
[29] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1-2):537-571. doi: 10.1093/petrology/egp082
[30] Rudnick R L, Gao S, Ling W, et al. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton[J]. Lithos, 2004, 77(1):609-637. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4905e854901cc1ea32f0482f5ec52290
[31] Claesson S, Vetrin V, Bayanova T. U-Pb zircon ages froma Devonian carbonatite dyke, Kola Peninsula, Russia:A record of geological evolution from the Archaean to the Palaeozoic[J]. Lithos, 2000, 51(1):95-108. http://cn.bing.com/academic/profile?id=0ddb8ff4ca8501464c175db302632ae6&encoded=0&v=paper_preview&mkt=zh-cn
[32] Fernando C, John M H, Paul W, et al. Atlas of ziecon textures[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):469-500. doi: 10.2113/0530469
[33] Le Bas M J. IUGS reclassification of the high-Mg and picritic volcanic rocks[J]. Journal of Petrology, 2000, 41(10):1467-1470. doi: 10.1093/petrology/41.10.1467
[34] Winchester J A, Floyd P A. Geochemical magma type discrimination:Application to altered and metamorphosed basic igneous rocks[J]. Earth and Planetary Science Letters, 1976, 28(3):459-469. doi: 10.1016/0012-821X(76)90207-7
[35] 牛耀龄.板内洋岛玄武岩(OIB)成因的一些基本概念和存在的问题[J].科学通报, 2010, 55(2):103-114. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201002001
[36] 侯增谦, 莫宣学, 朱勤文, 等."三江"古特提斯地幔热柱--洋中脊玄武岩证据[J].地球学报, 1996, 17(4):362-374. http://www.cnki.com.cn/Article/CJFDTotal-DQXB604.002.htm
[37] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geological Society, London: Special Publication, 1989, 42(1): 313-345.
[38] Stern R J. Subduction zones[J]. Reviews of Geophysics, 2002, 40(4):10-12. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232216228/
[39] Philip E, Janney P E, Castillo P R. Basalts from the Central Pacific Basin:Evidence for the origin of Cretaceous igneous complexes in the Jurassic western Pacific[J]. Journal of Geophysical Research:Solid Earth, 1996, 101(B2):2875-2893. doi: 10.1029/95JB03119
[40] 李昌年.火成岩微量元素岩石学[M].武汉:中国地质大学出版社, 1992:1-75.
[41] Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth and Planetary Science Letters, 1973, 19(2):290-300. doi: 10.1016/0012-821X(73)90129-5
[42] Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks[J]. Contributions to Minerallogy Petrology, 1979, 69(1):33-47. doi: 10.1007/BF00375192
[43] 曾振, 张兴洲, 周建波, 等.跃进山杂岩中二叠纪变玄武岩的锆石U-Pb年代学、地球化学及其地质意义[J].大地构造与成矿学, 2018, 42(2):365-378. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201802013
[44] 张勤运.中国东北部那丹哈达岭地区三叠纪和侏罗纪的放射虫动物群[J].中国地质科学院沈阳地质矿产研究所所刊, 1990, 21:157-191. http://d.old.wanfangdata.com.cn/Thesis/Y073448
[45] Yang Q, Mizutani S, Nagai H. Biostratigraphic correlation between the Nadanhada Terrane of NE China and the Mino Terrane of Central Japan[J]. Journal Earth and Planetary Sciences, Nagoya University, 1993, 40:27-43. http://cn.bing.com/academic/profile?id=ea53bc6404c37ed76dd9a198b3cd862d&encoded=0&v=paper_preview&mkt=zh-cn
[46] 赵武峰, 陈发景.黑龙江完达山地区中三叠-早侏罗世放射虫组合[J].黑龙江地质, 1995, 6(2):13-16.