班公湖-怒江洋的扩张脊俯冲: 宗白增生杂岩中侏罗世辉长岩脉地球化学和Sr-Nd同位素特征

刘飞, 李观龙, 薄容众, 杨经绥. 班公湖-怒江洋的扩张脊俯冲: 宗白增生杂岩中侏罗世辉长岩脉地球化学和Sr-Nd同位素特征[J]. 地质通报, 2021, 40(8): 1247-1264.
引用本文: 刘飞, 李观龙, 薄容众, 杨经绥. 班公湖-怒江洋的扩张脊俯冲: 宗白增生杂岩中侏罗世辉长岩脉地球化学和Sr-Nd同位素特征[J]. 地质通报, 2021, 40(8): 1247-1264.
LIU Fei, LI Guanlong, BO Rongzhong, YANG Jingsui. Spreading ridge subduction of Bangong-Nujiang Ocean Evidence from geochemistry and Sr-Nd isotope of Middle Jurassic gabbro dikes in the Zongbai accretionary complex[J]. Geological Bulletin of China, 2021, 40(8): 1247-1264.
Citation: LIU Fei, LI Guanlong, BO Rongzhong, YANG Jingsui. Spreading ridge subduction of Bangong-Nujiang Ocean Evidence from geochemistry and Sr-Nd isotope of Middle Jurassic gabbro dikes in the Zongbai accretionary complex[J]. Geological Bulletin of China, 2021, 40(8): 1247-1264.

班公湖-怒江洋的扩张脊俯冲: 宗白增生杂岩中侏罗世辉长岩脉地球化学和Sr-Nd同位素特征

  • 基金项目:
    南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项《大洋钻探科学研究—南海重大基础地质问题与首钻选址》(编号:GML2019ZD0201)、中国地质调查局项目《拉萨-腾冲构造岩浆岩带区域地质调查》(编号:DD20190060)、国家自然科学基金项目《大洋地幔橄榄岩-铬铁矿中的金刚石和深地幔再循环的全球蛇绿岩记录》(批准号:41720104009)、《蛇绿岩型铬铁矿的形成过程和深部地质作用(批准号:92062215)、山东地矿局七队科技创新项目《蒙阴金伯利岩型金刚石和缅甸Kalaymyo蛇绿岩型金刚石碳、氮同位素对比研究》(编号:QDKY202007)和深地动力学国家重点实验室自主课题《山东蒙阴常马庄-西峪-坡里三个金伯利岩带金刚石的成因对比研究》(编号:J1901-32)
详细信息
    作者简介: 刘飞(1982-), 男, 博士, 从事蛇绿岩及相关宝石地质学研究。E-mail: lfhy112@126.com
  • 中图分类号: P534.52;P588.12+4;P597+.3

Spreading ridge subduction of Bangong-Nujiang Ocean Evidence from geochemistry and Sr-Nd isotope of Middle Jurassic gabbro dikes in the Zongbai accretionary complex

  • 丁青蛇绿岩位于班公湖-怒江缝合带东段,被宗白增生杂岩分为东、西2个蛇绿岩体,面积分别约为400 km2和150 km2。宗白增生杂岩由异地体亚宗混杂岩和上部原地体陆缘碎屑沉积岩组成。亚宗混杂岩由低变质岩带、砾岩带、玄武质凝灰岩夹薄层泥硅质岩带和作为主要基质的泥页岩夹薄层杂砂岩组成,其中泥页岩基质被中侏罗世辉长岩脉侵入。辉长岩脉发育双侧冷凝边,走向90°~110°不等,主量、稀土和微量元素成分均介于富集型洋中脊玄武岩和洋岛玄武岩之间,结合εNdt)=1.88~2.41和(87Sr/86Sr)t=0.70912 ~ 0.70919,指示宗白辉长岩岩浆为大洋岩石圈地幔底部地震波低速带(LVZ)顶部富集挥发分和不相容元素的洋岛玄武岩型熔体,与源自LVZ下部亏损软流圈地幔的正常洋中脊玄武岩型熔体混合的产物,形成于弧前扩张脊与俯冲带相互作用的板片窗环境。

  • 加载中
  • 图 1  班公湖-怒江缝合带(BNSZ)、狮泉河-纳木错混杂岩带(SNMZ)、印度河-雅鲁藏布江缝合带(IYSZ)蛇绿岩分布简图(据参考文献[17]修改)

    Figure 1. 

    图 2  丁青蛇绿岩及周边区域地质简图(a,据参考文献[23-24]修改) 和宗白增生杂岩地质简图(b)

    Figure 2. 

    图 图版Ⅰ   

    Figure 图版Ⅰ. 

    图 图版Ⅱ   

    Figure 图版Ⅱ. 

    图 图版Ⅲ   

    Figure 图版Ⅲ. 

    图 3  宗白增生杂岩中辉长岩脉Nb/Y-Zr/TiO2分类图解(a)[48]和SiO2-(Na2O+K2O)分类图解(b)[48]

    Figure 3. 

    图 4  宗白增生杂岩中辉长岩脉球粒陨石标准化稀土元素配分模式图(a)和微量元素原始地幔标准化蛛网图(b)(球粒陨石、原始地幔数据、OIB、E-MORB和N-MORB数据据参考文献[50])

    Figure 4. 

    图 5  宗白辉长岩构造判别图解

    Figure 5. 

    图 6  宗白辉长岩Yb-Dy/Yb(a)[61]、Sm-Sm/Yb(b)[62]、(87Sr/86Sr)t - εNd(t)(c)[63]和Zr/Nb-Zr/Y(d)[60]图解(西南印度洋脊数据据参考文献[60],阿曼碱地岩数据据参考文献[64])

    Figure 6. 

    图 7  班怒洋东段侏罗纪构造演化图

    Figure 7. 

    表 1  宗白增生杂岩中辉长岩脉主量、微量和稀土元素含量

    Table 1.  Major, trace elements and REE compositions of the gabbros from the Zongbai accretionary complex

    样品号 19YD17-1 19YD17-2 19YD17-3 19YD17-4 19YD28-3 19YD28-5 19YD28-7 19YD28-8 19YD28-10 19YD28-12
    SiO2 46.02 45.52 46.39 44.75 42.23 42.07 47.34 47.67 47.79 47.60
    TiO2 3.81 3.82 3.80 3.70 1.68 1.61 1.48 1.53 1.46 1.49
    Al2O3 13.44 14.08 13.31 12.88 14.76 14.49 14.98 14.88 14.82 14.91
    Fe2O3 6.69 7.19 7.08 7.12 2.53 3.02 3.54 3.67 3.45 3.05
    FeO 8.09 7.92 7.76 7.65 8.24 7.05 7.76 7.90 8.04 8.39
    MnO 0.20 0.21 0.20 0.20 0.23 0.33 0.19 0.20 0.20 0.19
    MgO 6.31 6.18 5.87 5.96 4.89 4.96 8.72 9.12 8.87 8.92
    CaO 5.81 5.79 5.92 7.29 8.89 9.54 5.11 4.51 4.89 4.50
    Na2O 4.45 4.09 4.55 4.20 4.78 5.03 4.85 4.85 4.84 4.92
    K2O 0.47 0.52 0.37 0.48 0.40 0.30 0.14 0.12 0.11 0.11
    P2O5 0.30 0.31 0.31 0.30 0.19 0.19 0.16 0.16 0.17 0.17
    烧失量 3.26 3.23 3.37 4.19 10.15 10.52 4.72 4.38 4.33 4.68
    总计 99.75 99.73 99.77 99.59 99.89 99.88 99.86 99.87 99.86 99.87
    TFeO 15.69 15.99 15.70 15.63 11.68 10.85 12.17 12.45 12.38 12.37
    Sc 38.34 38.70 33.90 33.08 21.60 19.70 22.79 22.83 22.68 21.26
    Cr 29.57 30.21 30.05 31.50 159.03 168.32 232.64 249.74 257.40 236.60
    V 550.52 547.91 511.65 524.85 239.53 241.01 221.85 225.45 244.31 227.94
    Ni 47.38 46.26 45.09 45.88 73.00 79.27 122.36 123.36 129.43 126.92
    Co 53.92 56.29 54.28 54.39 49.42 40.75 50.43 51.65 54.25 55.27
    Cu 115.40 114.60 105.08 103.53 95.28 104.69 132.56 127.14 146.56 135.21
    Zn 158.73 162.32 157.47 150.69 127.14 137.84 138.04 134.71 140.71 147.83
    Ga 19.05 19.74 18.57 19.47 19.50 21.28 19.25 20.01 20.41 21.62
    Mo 0.75 0.74 0.70 0.69 0.59 0.48 0.20 0.18 0.19 0.16
    Li 45.03 45.34 41.16 46.62 56.06 52.68 73.20 75.04 80.46 77.06
    Be 0.94 1.00 0.92 0.89 1.77 1.57 0.86 0.81 1.06 0.79
    Bi 0.04 0.04 0.03 0.04 0.02 0.01 0.03 0.04 0.01 0.03
    Pb 3.15 3.24 3.22 3.22 5.69 5.63 14.28 11.22 6.97 11.98
    Rb 11.68 12.52 8.72 11.83 14.08 11.42 4.74 3.71 3.38 3.59
    Sr 302.67 304.50 350.27 339.42 129.31 278.66 173.82 151.20 169.70 163.08
    Cs 0.61 0.72 0.47 0.52 0.90 0.66 0.59 0.55 0.47 0.51
    Y 24.36 25.47 24.00 24.52 21.90 22.38 17.72 18.16 19.25 18.96
    Zr 151.79 159.94 149.59 191.01 115.41 113.59 95.11 92.04 100.81 100.24
    Nb 26.67 27.90 26.15 26.09 15.27 15.41 11.47 11.46 11.96 11.89
    Cd 0.22 0.17 0.27 0.18 0.09 0.05 0.31 0.19 0.24 0.18
    In 0.10 0.09 0.09 0.09 0.09 0.08 0.07 0.07 0.07 0.07
    Tl 0.06 0.06 0.05 0.07 0.08 0.07 0.03 0.03 0.03 0.03
    W 1.38 1.11 0.68 0.67 1.52 1.60 0.64 0.43 0.46 0.37
    Ba 686.60 671.45 525.45 2140.75 95.91 106.59 128.75 121.27 134.66 107.43
    La 18.71 19.99 19.02 21.08 13.00 14.29 9.37 9.26 9.77 10.30
    Ce 43.58 44.69 41.55 45.73 26.95 28.53 21.55 20.90 21.08 21.85
    Pr 5.49 5.59 5.21 6.02 3.23 3.67 2.70 2.66 2.87 2.75
    Nd 23.27 24.42 23.00 24.91 13.65 15.67 11.87 11.80 12.70 12.38
    Sm 5.42 5.54 5.38 5.87 3.46 3.96 3.16 3.16 3.40 3.27
    Eu 2.03 2.07 1.89 2.57 1.03 1.36 1.15 1.13 1.19 1.14
    Gd 5.26 5.39 4.90 5.45 3.56 4.05 3.24 3.28 3.54 3.32
    Tb 0.89 0.91 0.86 0.92 0.68 0.73 0.60 0.61 0.64 0.63
    Dy 5.26 5.45 5.06 5.42 4.30 4.52 3.64 3.60 4.04 3.87
    Ho 0.94 0.95 0.88 0.99 0.81 0.83 0.68 0.68 0.71 0.70
    Er 2.46 2.48 2.36 2.57 2.16 2.29 1.79 1.79 2.40 1.82
    Tm 0.36 0.37 0.34 0.37 0.33 0.32 0.28 0.27 0.29 0.28
    Yb 2.12 2.21 2.04 2.26 1.91 1.90 1.58 1.58 1.70 1.63
    Lu 0.31 0.32 0.29 0.35 0.27 0.27 0.23 0.23 0.25 0.24
    Hf 3.87 3.99 3.70 5.08 2.87 2.93 2.53 2.42 2.64 2.53
    Ta 1.72 1.71 1.55 1.68 0.92 0.99 0.80 0.76 0.78 0.77
    Th 1.64 1.78 1.74 2.06 1.76 1.80 1.39 1.32 1.45 1.46
    U 0.49 0.49 0.48 0.57 0.43 0.43 0.32 0.32 0.34 0.33
    注:主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV

    表 2  宗白增生杂岩中辉长岩脉Sr、Nd同位素成分

    Table 2.  Sr and Nd isotopic compositions of the gabbros from the Zongbai accretionary complex

    样品名称 19YD28-7 19YD28-8 19YD28-10 19YD28-12 样品名称 19YD28-7 19YD28-8 19YD28-10 19YD28-12
    Rb 4.33 3.24 2.9 3.54 143Nd/144Nd 0.512722 0.512718 0.512711 0.512708
    Sr 151.51 119.31 137.17 135.68 0.000009 0.000011 0.00001 0.000009
    Sm 2.73 2.65 2.91 2.98 Sm/Nd 0.263984 0.278518 0.278133 0.281301
    Nd 10.34 9.53 10.45 10.59 (143Nd/144Nd)t 0.512552 0.512539 0.512532 0.512541
    87Rb/86Sr 0.083 0.078 0.061 0.075 εNd(0) 1.64 1.56 1.42 1.37
    87Sr/86Sr 0.709352 0.709299 0.709332 0.709341 εNd(t) 2.41 2.15 2.02 1.88
    0.000005 0.000006 0.000006 0.000006 0.088 0.107 0.098 0.088
    (87Sr/86Sr)t 0.70916 0.709117 0.70919 0.709166 TDM 1208 1454 1470 1544
    147Sm/144Nd 0.1595 0.168282 0.168049 0.169964 TDMC 755 776 787 788
    注:TDM为亏损地幔模式年龄;TDMC为相对于CHUR(球粒陨石均一储源)的亏损地幔模式年龄;校正年龄t=164 Ma,国际标样BHVO-1的87Sr/86Sr推荐值为0.70347(2σ=0.0002),143Nd/144Nd推荐值为0.51298(2σ=0.00003),87Sr/86Sr实测值为0.703485(2σ=0.000006), 143Nd/144Nd实测值为0.512984(2σ=0.000006);国际标样BCR-2的87Sr/86Sr推荐值为0.70501(2σ=0.0002),143Nd/144Nd推荐值为0.51263(2σ=0.00002),87Sr/86Sr实测值为0.705074(2σ=0.000009),143Nd/144Nd实测值为0.512626(2σ=0.000006)
    下载: 导出CSV
  • [1]

    Mckenzie D P, Morgan W J. Evolution of TripleJunctions[J]. Nature, 1969, 224(5215): 125-133. doi: 10.1038/224125a0

    [2]

    Palmer H. East Pacific Rise and Westward Drift of North America[J]. Nature, 1968, 220(5165): 341-345. doi: 10.1038/220341a0

    [3]

    Thorkelson D J. Ridge Subduction and SlabWindows[C]//Alderton D, Elias S A. Encyclopedia of Geology(Second Edition). Oxford: Academic Press, 2021: 957-967.

    [4]

    孙卫东, 凌明星, 杨晓勇, 等. 洋脊俯冲与斑岩铜金矿成矿[J]. 中国科学: 地球科学, 2010, 40(2): 127-137. doi: 10.3969/j.issn.1000-3045.2010.02.002

    [5]

    Cole R B, Stewart B W. Continental margin volcanism at sites of spreading ridge subduction: Examples from southern Alaska and western California[J]. Tectonophysics, 2009, 464(1/4): 118-136. http://www.sciencedirect.com/science/article/pii/S0040195107004519

    [6]

    Li S, Wang Q, Zhu D, et al. Reconciling Orogenic Drivers for the Evolution of the Bangong-Nujiang Tethys During Middle-Late Jurassic[J]. Tectonics, 2020, 39(2): e2019T-e5951T. http://www.researchgate.net/publication/338768096_Reconciling_Orogenic_Drivers_for_the_Evolution_of_the_Bangong-Nujiang_Tethys_During_Middle-Late_Jurassic

    [7]

    Liu X, Xiao W, Xu J, et al. Geochemical signature and rock associations of ocean ridge-subduction: Evidence from the Karamaili Paleo-Asian ophiolite in east Junggar, NW China[J]. Gondwana Research, 2017, 48: 34-49. doi: 10.1016/j.gr.2017.03.010

    [8]

    Madsen J K, Thorkelson D J, Friedman R M, et al. Cenozoic to Recent plate configurations in the Pacific Basin; ridge subduction and slab window magmatism in western North America[J]. Geological Society of America, 2006, 2: 11-34. http://adsabs.harvard.edu/abs/2006Geosp...2...11M

    [9]

    Thorkelson D J. Subduction of diverging plates and the principles of slab window formation[J]. Tectonophysics, 1996, 255(1/2): 47-63. http://www.sciencedirect.com/science/article/pii/0040195195001069

    [10]

    沈晓明, 张海祥, 马林. 洋脊俯冲及其在新疆阿尔泰地区存在的可能证据[J]. 大地构造与成矿学, 2010, 34(2): 181-195. doi: 10.3969/j.issn.1001-1552.2010.02.004

    [11]

    马本俊, 吴时国, 范建柯. 板片窗构造研究综述[J]. 海洋地质前沿, 2015, 31(12): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201512001.htm

    [12]

    Fan J, Li C, Sun Z, et al. Early Cretaceous MORB-type basalt and A-type rhyolite in northern Tibet: Evidence for ridge subduction in the Bangong-Nujiang Tethyan Ocean[J]. Journal of Asian Earth Sciences, 2018, 154: 187-201. doi: 10.1016/j.jseaes.2017.12.020

    [13]

    张丽鹏, 李贺, 王鲲. 板块俯冲与斑岩铜金成矿[J]. 岩石学报, 2020, 36(1): 113-124. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202001012.htm

    [14]

    Sisson V B, Pavlis T L, Roeske S M, et al. Introduction: An overview of ridge-trench interactions in modern and ancient settings[C]//Sisson V B, Roeske S M, Pavlis T L, et al. Geology of a transpressional orogen developed during ridge-trench interaction along the North Pacific margin. Boulder, Colarado, Geological Society of America Special Paper, 2003, 371: 1-18.

    [15]

    Li S, Yin C, Guilmette C, et al. Birth and demise of the Bangong-Nujiang Tethyan Ocean: A review from the Gerze area of central Tibet[J]. Earth-Science Reviews, 2019, 198: 102907. doi: 10.1016/j.earscirev.2019.102907

    [16]

    Peng Y, Yu S, Li S, et al. The odyssey of Tibetan Plateau accretion prior to Cenozoic India-Asia collision: Probing the Mesozoic tectonic evolution of the Bangong-Nujiang Suture[J]. Earth-Science Reviews, 2020, 211: 103376. doi: 10.1016/j.earscirev.2020.103376

    [17]

    刘飞, 杨经绥, 连东洋, 等. 青藏高原新特提斯蛇绿岩的地质特征及其构造演化[J]. 岩石学报, 2020, 36(10): 2913-2945. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202010001.htm

    [18]

    Kapp P, Decelles P G. Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses[J]. American Journal of Science, 2019, 319(3): 159-254. doi: 10.2475/03.2019.01

    [19]

    许志琴, 杨经绥, 侯增谦, 等. 青藏高原大陆动力学研究若干进展[J]. 中国地质, 2016, 43(1): 1-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201601001.htm

    [20]

    Xu Z, Dilek Y, Cao H, et al. Paleo-Tethyan evolution of Tibet as recorded in the East Cimmerides and WestCathaysides[J]. Journal of Asian Earth Sciences, 2015, 105: 320-337. doi: 10.1016/j.jseaes.2015.01.021

    [21]

    Bai W, Zhou M, Robinson P T. Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibet[J]. Canadian Journal of Earth Sciences, 1993, 30(8): 1650-1659. doi: 10.1139/e93-143

    [22]

    Wang W, Wang M, Zhai Q, et al. Transition from oceanic subduction to continental collision recorded in the Bangong-Nujiang suture zone: Insights from Early Cretaceous magmatic rocks in the north-central Tibet[J]. Gondwana Research, 2020, 78: 77-91. doi: 10.1016/j.gr.2019.09.008

    [23]

    陈言飞. 青藏高原东南部(昌都-察隅) 早中生代岩浆-变质作用及构造意义[D]. 中国地质大学(北京) 博士学位论文, 2019.

    [24]

    Peng Y, Yu S, Li S, et al. Early Jurassic and Late Cretaceous granites in the Tongka micro-block, Central Tibet: Implications for the evolution of the Bangong-Nujiang ocean[J]. Journal of Asian Earth Sciences, 2020, 194: 104030. doi: 10.1016/j.jseaes.2019.104030

    [25]

    郑一义. 西藏丁青地区蛇绿岩-混杂岩的发现[C]//青藏高原地质文集(13). 北京: 地质出版社, 1983: 177-189.

    [26]

    王玉净, 王建平, 刘彦明, 等. 西藏丁青蛇绿岩特征、时代及其地质意义[J]. 微体古生物学报, 2002, (4): 417-420. doi: 10.3969/j.issn.1000-0674.2002.04.009

    [27]

    李观龙, 杨经绥, 薄容众, 等. 西藏班公湖-怒江缝合带东段丁青蛇绿岩中的铬铁矿: 产出特征与类型[J]. 中国地质, 2019, 46(1): 1-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201901002.htm

    [28]

    李达周, 张旗, 张魁武. 西藏丁青地区与玻镁安山岩类有关的蛇绿岩的矿物学特征[J]. 岩石矿物学杂志, 1988, (3): 235-243. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW198803006.htm

    [29]

    张旗. 丁青蛇绿岩新知[J]. 地质科学, 1983, 18(1): 101-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198301010.htm

    [30]

    邹光富. 西藏丁青蛇绿岩岩石地球化学特征及其成因意义[J]. 西藏地质, 1993, 10(2): 46-58.

    [31]

    张旗, 杨瑞英. 西藏丁青蛇绿岩中玻镁安山岩类的深成岩及其地质意义[J]. 科学通报, 1985, (16): 1243-1245. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198516012.htm

    [32]

    刘文斌, 钱青, 岳国利, 等. 西藏丁青弧前蛇绿岩的地球化学特征[J]. 岩石学报, 2002, 18(3): 392-400. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200203014.htm

    [33]

    林靓. 西藏丁青蛇绿岩的形成时代与岩石地球化学特征[D]. 中国科学院大学硕士学位论文, 2015.

    [34]

    李观龙. 班公湖-怒江缝合带东段丁青蛇绿岩地幔橄榄岩和铬铁矿特征[D]. 中国地质大学(北京) 硕士学位论文, 2019.

    [35]

    强巴扎西, 谢尧武, 吴彦旺, 等. 藏东丁青蛇绿岩中堆晶辉长岩锆石SIMS U-Pb定年及其意义[J]. 地质通报, 2009, 28(9): 1253-1258. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20090913&flag=1

    [36]

    Wang B, Wang L, Chung S, et al. Evolution of the Bangong-Nujiang Tethyan ocean: Insights from the geochronology and geochemistry of mafic rocks within ophiolites[J]. Lithos, 2016, 245: 18-33. doi: 10.1016/j.lithos.2015.07.016

    [37]

    李小波. 班公湖-怒江结合带安多-丁青蛇绿岩地球化学特征及构造演化研究[D]. 中国地质大学(北京) 硕士学位论文, 2016.

    [38]

    王玉净, 王建平, 裴放. 西藏丁青蛇绿岩带中一个晚三叠世放射虫动物群[J]. 微体古生物学报, 2002, (4): 323-336. doi: 10.3969/j.issn.1000-0674.2002.04.001

    [39]

    王建平, 刘彦明, 李秋生, 等. 西藏班公湖-丁青蛇绿岩带东段侏罗纪盖层沉积的地层划分[J]. 地质通报, 2002, 21(7): 405-410. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=200207103&flag=1

    [40]

    Raymond L A. Perspectives on the roles of melanges in subduction accretionary complexes: A review[J]. Gondwana Research, 2019, 74: 68-89. doi: 10.1016/j.gr.2019.03.005

    [41]

    闫臻, 王宗起, 付长垒, 等. 混杂岩基本特征与专题地质填图[J]. 地质通报, 2018, 37(2/3): 167-191. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2018020301&flag=1

    [42]

    闫臻, 付长垒, 张继恩, 等. 混杂岩地质调查与填图方法[M]. 北京: 地质出版社, 2020: 1-80.

    [43]

    韦振权, 夏斌, 周国庆, 等. 西藏丁青宗白蛇绿混杂岩地球化学特征及其洋中脊叠加洋岛的成因[J]. 地质论评, 2007, (2): 187-197. doi: 10.3321/j.issn:0371-5736.2007.02.006

    [44]

    薄容众, 杨经绥, 李观龙, 等. 班怒带东段丁青蛇绿岩中镁铁质岩石年代学及构造背景[J]. 地质学报, 2019, 93(10): 2617-2638. doi: 10.3969/j.issn.0001-5717.2019.10.015

    [45]

    Mattinson J M, Echeverria L M. Ortigalita Peak gabbro, Franciscan Complex: U-Pb dates of intrusion and high-pressure-low-temperature metamorphism[J]. Geology, 1980, 8(12): 589-593. doi: 10.1130/0091-7613(1980)8<589:OPGFCU>2.0.CO;2

    [46]

    曾敏, 陈建平, 位冲冲. 木嘎岗日岩群是羌塘南缘的增生楔杂岩[J]. 地学前缘, 2017, 24(5): 207-217. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201705025.htm

    [47]

    Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobileelements[J]. Chemical geology, 1977, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2

    [48]

    Le Maitre R W, Streckeisen A, Zanettin B, et al. Igneous Rocks: A classification and glossary of terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks[M]. New York: Cambridge University Press, 2002: 1-236.

    [49]

    Liu F, Yang J, Dilek Y, et al. Geochronology and geochemistry of basaltic lavas in the Dongbo andPurang ophiolites of the Yarlung-Zangbo Suture zone: Plume-influenced continental margin-type oceanic lithosphere in southern Tibet[J]. Gondwana Research, 2015, 27(2): 701-718. doi: 10.1016/j.gr.2014.08.002

    [50]

    Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition andprocesses[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [51]

    刘飞, 杨经绥, 陈松永, 等. 雅鲁藏布江缝合带西段基性岩地球化学和Sr-Nd-Pb同位素特征: 新特提斯洋内俯冲的证据[J]. 中国地质, 2013, 40(3): 361-374. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201303008.htm

    [52]

    Saccani E. A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics[J]. Geoscience Frontiers, 2015, 6(4): 481-501. doi: 10.1016/j.gsf.2014.03.006

    [53]

    Li C, Arndt N T, Tang Q, et al. Trace element indiscrimination diagrams[J]. Lithos, 2015, 232: 76-83. doi: 10.1016/j.lithos.2015.06.022

    [54]

    Xia L, Li X. Basalt geochemistry as a diagnostic indicator of tectonic setting[J]. Gondwana Research, 2019, 65: 43-67. doi: 10.1016/j.gr.2018.08.006

    [55]

    杨婧, 王金荣, 张旗, 等. 全球岛弧玄武岩数据挖掘——在玄武岩判别图上的表现及初步解释[J]. 地质通报, 2016, 35(12): 1937-1949. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20161201&flag=1

    [56]

    刘飞, 连东洋, 牛晓露, 等. 雅鲁藏布江缝合带西段东波MORB型均质辉长岩的大洋核杂岩成因[J]. 地球科学, 2018, 43(4): 952-974. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201804003.htm

    [57]

    Pearce J A. Supra-subduction zone ophiolites: The search for modernanalogues[J]. Special Papers-Geological Society of America, 2003: 269-294.

    [58]

    Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic calssification adn to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J]. Earth and planetary science letters, 1980, 50(1): 11-30. doi: 10.1016/0012-821X(80)90116-8

    [59]

    Condie K C. Incompatible element ratios in oceanic basalts and komatiites: Tracking deep mantle sources and continental growth rates withtime[J]. Geochemistry Geophysics Geosystems, 2013, 4(1): 1-28. http://onlinelibrary.wiley.com/doi/10.1029/2002GC000333

    [60]

    Saccani E, Allahyari K, Beccaluva L, et al. Geochemistry and petrology of the Kermanshah ophiolites(Iran): Implication for the interaction between passive rifting, oceanic accretion, and OIB-type components in the Southern Neo-Tethys Ocean[J]. Gondwana Research, 2013, 24: 392-411. doi: 10.1016/j.gr.2012.10.009

    [61]

    An A, Choi S H, Yu Y, et al. Petrogenesis of Late Cenozoic basaltic rocks from southern Vietnam[J]. Lithos, 2017, 272/273: 192-204. doi: 10.1016/j.lithos.2016.12.008

    [62]

    Aldanmaz E, Pearce J A, Thirlwall M F, et al. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey[J]. Journal of Volcanology and Geothermal Research, 2000, 102(1/2): 67-95. http://www.sciencedirect.com/science/article/pii/S0377027300001827

    [63]

    冯光英, 刘燊, 冯彩霞, 等. 吉林红旗岭超基性岩体的锆石U-Pb年龄、Sr-Nd-Hf同位素特征及岩石成因[J]. 岩石学报, 2011, (6): 1594-1606. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106003.htm

    [64]

    Chauvet F, Lapierre H, Maury R C, et al. Triassic alkaline magmatism of the Hawasina Nappes: Post-breakup melting of the Oman lithospheric mantle modified by the Permian Neotethyan Plume[J]. Lithos, 2011, 122(1/2): 122-136. http://www.sciencedirect.com/science/article/pii/S002449371000349X

    [65]

    Gamal El Dien H, Doucet L S, Li Z, et al. Global geochemical fingerprinting of plume intensity suggests coupling with the supercontinent cycle[J]. Nature Communications, 2019, 10(1): 5270. doi: 10.1038/s41467-019-13300-4

    [66]

    牛耀龄. 板内洋岛玄武岩(OIB) 成因的一些基本概念和存在的问题[J]. 科学通报, 2010, (2): 103-114. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201002002.htm

    [67]

    牛耀龄. 全国构造与地球动力学-岩石学与地球动力学方法应用实例[J]. 北京: 科学出版社. 2013: 1-307.

    [68]

    Xu W, Li C, Wang M, et al. Subduction of a spreading ridge within the Bangong Co-Nujiang Tethys Ocean: Evidence from Early Cretaceous mafic dykes in the Duolong porphyry Cu-Au deposit, western Tibet[J]. Gondwana Research, 2017, 41: 128-141. doi: 10.1016/j.gr.2015.09.010

    [69]

    吴建亮, 尹显科, 刘文, 等. 西藏班公湖-怒江缝合带西段野马去申拉组富Nb火山岩的发现及其指示意义[J]. 地质通报, 2019, 38(4): 5-17. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20190401&flag=1

    [70]

    Wei S, Tang J, Song Y, et al. Early Cretaceous bimodal volcanism in the Duolong Cu mining district, western Tibet: Record of slab breakoff that triggered ca. 108-113 Ma magmatism in the western Qiangtang terrane[J]. Journal of Asian Earth Sciences, 2017, 138: 588-607. doi: 10.1016/j.jseaes.2016.12.010

    [71]

    Xu W, Li C, Xu M J, et al. Petrology, geochemistry, and geochronology of boninitic dikes from the Kangqiong ophiolite: implications for the Early Cretaceous evolution of Bangong-Nujiang Neo-Tethys Ocean in Tibet[J]. International Geology Review, 2015, 57(16): 2028-2043. doi: 10.1080/00206814.2015.1050464

    [72]

    Shi R, Yang J, Xu Z, et al. Discovery of the boninite series volcanic rocks in the Bangong Lake ophiolite mélange, western Tibet, and its tectonici mplications[J]. Chinese Science Bulletin, 2004, 12: 1272-1278.

    [73]

    Yang Z, Wang Q, Hao L, et al. Subduction erosion and crustal material recycling indicatedby adakites in central Tibet[J]. Geology, 2021. https://doi.org/10.1130/G48486.1 doi: 10.1130/G48486.1

    [74]

    Li H, Wang M, Zeng X, et al. Generation of Jurassic high-Mg diorite and plagiogranite intrusions of the Asa area, Tibet: Products of intra-oceanic subduction of the Meso-Tethys Ocean[J]. Lithos, 2020, 362/363: 105481. doi: 10.1016/j.lithos.2020.105481

    [75]

    Ma Y, Zhong Y, Furnes H, et al. Origin and tectonic implications of boninite dikes in the Shiquanhe ophiolite, western Bangong Suture, Tibet[J]. Journal of Asian Earth Sciences, 2021, 205: 104594. doi: 10.1016/j.jseaes.2020.104594

    [76]

    Ducea M N, Saleeby J B, Bergantz G. The Architecture, Chemistry, and Evolution of Continental Magmatic Arcs[J]. Annual Review of Earth and Planetary Sciences, 2015, 43(1): 299-331. doi: 10.1146/annurev-earth-060614-105049

    [77]

    肖文交, 李继亮, 宋东方, 等. 增生型造山带结构解析与时空制约[J]. 地球科学, 2019, 44(5): 1661-1687. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201905019.htm

    [78]

    Dilek Y, Furnes H. Tethyan ophiolites and Tethyanseaways[J]. Journal of the Geological Society, 2019, 176(5): 899-912. doi: 10.1144/jgs2019-129

    [79]

    吴福元, 万博, 赵亮, 等. 特提斯地球动力学[J]. 岩石学报, 2020, 36(6): 1627-1674. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202006001.htm

    [80]

    Liu T, Zhai Q, Wang J, et al. Tectonic significance of the Dongqiao ophiolite in the north-central Tibetan plateau: Evidence from zircon dating, petrological, geochemical and Sr-Nd-Hf isotopic characterization[J]. Journal of Asian Earth Sciences, 2016, 116: 139-154. doi: 10.1016/j.jseaes.2015.11.014

    [81]

    Yan L, Zhang K. Infant intra-oceanic arc magmatism due to initial subduction induced by oceanic plateau accretion: A case study of the Bangong Meso-Tethys, central Tibet, western China[J]. Gondwana Research, 2020, 79: 110-124. doi: 10.1016/j.gr.2019.08.008

    [82]

    徐建鑫, 李才, 范建军, 等. 西藏改则县拉果错蛇绿岩构造属性: 来自岩石学、地球化学、年代学及Lu-Hf同位素的制约[J]. 地质通报, 2018, 37(8): 1541-1553. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20180818&flag=1

    [83]

    Zeng X, Wang M, Li C, et al. Lower Cretaceous turbidites in the Shiquanhe-Namco Ophiolite Mélange Zone, Asa area, Tibet: Constraints on the evolution of the Meso-Tethys Ocean[J]. Geoscience Frontiers, 2021, 12(4): 101127. doi: 10.1016/j.gsf.2020.12.008

    [84]

    Xu M, Li C, Zhang X, et al. Nature and evolution of the Neo-Tethys in central Tibet: synthesis of ophiolitic petrology, geochemistry, and geochronology[J]. International Geology Review, 2014, 9(56): 1072-1096.

    [85]

    刘一鸣, 李三忠, 于胜尧, 等. 青藏高原班公湖-怒江缝合带及周缘燕山期微地块聚合与增生造山过程[J]. 大地构造与成矿学, 2019, 43(4): 824-838. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201904014.htm

    [86]

    Zhu D, Li S, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 2016, 245: 7-17. doi: 10.1016/j.lithos.2015.06.023

    [87]

    Lai W, Hu X, Zhu D, et al. Discovery of the early Jurassic Gajia mélange in the Bangong-Nujiang suture zone: Southward subduction of the Bangong-Nujiang Ocean?[J]. International Journal of Earth Sciences, 2017, 106(4): 1277-1288. doi: 10.1007/s00531-016-1405-1

    [88]

    Tang Y, Zhai Q, Hu P, et al. Southward subduction of the Bangong-Nujiang Tethys Ocean: insights from ca. 161-129 Ma arc volcanic rocks in the north of Lhasa terrane, Tibet[J]. International Journal of Earth Sciences, 2020, 109(2): 631-647. doi: 10.1007/s00531-020-01823-x

    [89]

    曲晓明, 王瑞江, 辛洪波, 等. 西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学[J]. 地球化学, 2009, 38(6): 523-535. doi: 10.3321/j.issn:0379-1726.2009.06.002

    [90]

    Fan J, Li C, Sun Z, et al. Early Cretaceous MORB-type basalt and A-type rhyolite in northern Tibet: Evidence for ridge subduction in the Bangong-Nujiang Tethyan Ocean[J]. Journal of Asian Earth Sciences, 2018, 154: 187-201. doi: 10.1016/j.jseaes.2017.12.020

  • 加载中

(10)

(2)

计量
  • 文章访问数:  1227
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2021-03-04
修回日期:  2021-04-26
刊出日期:  2021-08-15

目录