南秦岭随枣地块耀岭河组双峰式火山岩: 对扬子克拉通北缘大陆裂解过程的约束

吴年文, 江拓, 徐琼, 赵小明, 赵龙, 邱啸飞. 南秦岭随枣地块耀岭河组双峰式火山岩: 对扬子克拉通北缘大陆裂解过程的约束[J]. 地质通报, 2021, 40(6): 920-929.
引用本文: 吴年文, 江拓, 徐琼, 赵小明, 赵龙, 邱啸飞. 南秦岭随枣地块耀岭河组双峰式火山岩: 对扬子克拉通北缘大陆裂解过程的约束[J]. 地质通报, 2021, 40(6): 920-929.
WU Nianwen, JIANG Tuo, XU Qiong, ZHAO Xiaoming, ZHAO Long, QIU Xiaofei. Recognition of Late Neoproterozoic bimodal volcanic rocks from the Yaolinghe Formation in the Suizao terrane of South Qinling massif and constraints on the continental rifting of the northern margin of Yangtze craton[J]. Geological Bulletin of China, 2021, 40(6): 920-929.
Citation: WU Nianwen, JIANG Tuo, XU Qiong, ZHAO Xiaoming, ZHAO Long, QIU Xiaofei. Recognition of Late Neoproterozoic bimodal volcanic rocks from the Yaolinghe Formation in the Suizao terrane of South Qinling massif and constraints on the continental rifting of the northern margin of Yangtze craton[J]. Geological Bulletin of China, 2021, 40(6): 920-929.

南秦岭随枣地块耀岭河组双峰式火山岩: 对扬子克拉通北缘大陆裂解过程的约束

  • 基金项目:
    中国地质调查局项目《国家地质大数据汇聚与管理》(编号:DD20190385)、《地质调查综合智能编图系统与应用》(编号:DD20190415)和国家自然科学基金项目《扬子克拉通神农架地区新元古代基性岩墙时代、成因和构造意义的地球化学研究》(批准号:41303026)
详细信息
    作者简介: 吴年文(1987-), 硕士, 助理研究员, 从事区域地质调查及地层学研究。E-mail: wunianwen@mail.cgs.gov.cn
    通讯作者: 邱啸飞(1985-), 副研究员, 岩石学和地球化学专业。E-mail: qiuxiaofei@mail.cgs.gov.cn
  • 中图分类号: P588.14

Recognition of Late Neoproterozoic bimodal volcanic rocks from the Yaolinghe Formation in the Suizao terrane of South Qinling massif and constraints on the continental rifting of the northern margin of Yangtze craton

More Information
  • 长期以来,扬子克拉通北缘新元古代地质构造演化一直是地学界研究的热点。在南秦岭随州地区耀岭河组中新识别出一套双峰式变火山岩,对其开展锆石U-Pb年代学研究结果表明,变玄武岩中锆石较少,且多为捕获锆石,年龄组成特征与下伏武当岩群顶部岩石中碎屑锆石基本一致;白云母千枚岩中锆石年龄集中,获得的U-Pb年龄为623±3 Ma,代表了南秦岭随枣地区耀岭河组的形成时代,该结果与侵入武当岩群中的基性岩墙年龄650~600 Ma一致,两者应为同时期不同产出相的岩浆作用的产物。结合区域研究成果,扬子克拉通北缘裂解可能经历了更长期且复杂的地质构造过程,西部裂解较早,东部(现今方向)较晚,总体呈"拉链式"裂解模式。

  • 加载中
  • 图 1  随枣地块耀岭河组地质简图

    Figure 1. 

    图 2  随枣地块耀岭河组白云母千枚岩(a、c)和蚀变玄武岩(b、d)野外和镜下岩相学照片

    Figure 2. 

    图 3  随枣地块耀岭河组双峰式火山岩锆石阴极发光(CL)图像及锆石年龄

    Figure 3. 

    图 4  耀岭河组白云母千枚岩锆石谐和年龄图

    Figure 4. 

    图 5  耀岭河组枕状玄武岩捕获锆石年龄谱

    Figure 5. 

    表 1  随枣地块耀岭河组白云母千枚岩LA-ICP-MS锆石U-Th-Pb同位素测试结果

    Table 1.  LA-ICP-MS zircon U-Th-Pb dating results from the muscovite-phyllite of the Yaolinghe Formation in the Suizao terrane

    点号 元素/10-6 Th/U 同位素比值 表面年龄/Ma 谐和度
    Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
    17GC-11-01 242 250 0.97 0.05983 0.00083 0.83520 0.01428 0.10124 0.00133 598 30 616 8 622 8 99%
    17GC-11-02 244 225 1.08 0.06306 0.00095 0.87453 0.01513 0.10056 0.00125 709 31 638 8 618 7 96%
    17GC-11-03 135 178 0.76 0.06042 0.00089 0.83539 0.01423 0.10032 0.00128 618 31 617 8 616 7 99%
    17GC-11-05 341 297 1.15 0.06260 0.00089 0.87015 0.01378 0.10075 0.00119 694 30 636 7 619 7 97%
    17GC-11-06 159 179 0.88 0.06121 0.00101 0.86187 0.01464 0.10225 0.00133 656 37 631 8 628 8 99%
    17GC-11-07 253 240 1.06 0.06329 0.00086 0.89117 0.01547 0.10195 0.00136 717 29 647 8 626 8 96%
    17GC-11-08 165 224 0.74 0.06224 0.00071 0.85821 0.01160 0.09983 0.00112 683 24 629 6 613 7 97%
    17GC-11-10 325 292 1.11 0.06262 0.00084 0.89443 0.01618 0.10325 0.00147 694 29 649 9 633 9 97%
    17GC-11-11 160 192 0.83 0.06194 0.00090 0.87721 0.01389 0.10270 0.00137 672 31 639 8 630 8 98%
    17GC-11-12 125 149 0.83 0.05960 0.00106 0.84735 0.01557 0.10324 0.00136 591 39 623 9 633 8 98%
    17GC-11-13 198 236 0.84 0.06150 0.00088 0.86900 0.01594 0.10216 0.00122 657 27 635 9 627 7 98%
    17GC-11-14 294 285 1.03 0.06060 0.00071 0.84505 0.01063 0.10130 0.00123 633 26 622 6 622 7 99%
    17GC-11-15 104 140 0.74 0.06336 0.00091 0.89639 0.01498 0.10264 0.00123 720 25 650 8 630 7 96%
    17GC-11-16 339 294 1.15 0.06137 0.00069 0.84974 0.01157 0.10049 0.00112 654 24 625 6 617 7 98%
    17GC-11-17 302 250 1.21 0.06173 0.00084 0.84711 0.01383 0.09970 0.00128 665 30 623 8 613 8 98%
    17GC-11-18 392 427 0.92 0.06216 0.00073 0.85267 0.01030 0.09993 0.00133 680 26 626 6 614 8 98%
    17GC-11-19 300 271 1.11 0.06529 0.00112 0.92414 0.01631 0.10308 0.00132 783 37 665 9 632 8 95%
    17GC-11-20 120 145 0.83 0.06299 0.00099 0.87753 0.01550 0.10109 0.00109 709 34 640 8 621 6 97%
    17GC-11-22 313 300 1.04 0.06237 0.00081 0.87670 0.01493 0.10190 0.00120 687 32 639 8 626 7 97%
    17GC-11-23 216 216 1.00 0.06167 0.00090 0.86816 0.01409 0.10234 0.00130 661 31 635 8 628 8 98%
    17GC-11-25 228 259 0.88 0.06256 0.00099 0.86331 0.01536 0.10020 0.00123 694 34 632 8 616 7 97%
    17GC-11-27 151 178 0.85 0.06054 0.00095 0.84546 0.01662 0.10129 0.00137 633 33 622 9 622 8 99%
    下载: 导出CSV

    表 2  随枣地块耀岭河组变玄武岩LA-ICP-MS锆石U-Th-Pb同位素测试结果

    Table 2.  LA-ICP-MS zircom U-Th-Pb analysis results from the metabasalt of the Yaolinghe Formation in the Suizao terrane

    点号 元素/10-6 Th/U 同位素比值 表面年龄/Ma 谐和度
    Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
    17GC-13-01 97.6 58.9 1.66 0.07367 0.00203 1.33552 0.04012 0.13147 0.00200 1032 56 861 17 796 11 92%
    17GC-13-02 214 345 0.62 0.20696 0.00191 15.9222 0.19504 0.55840 0.00603 2883 10 2872 12 2860 25 99%
    17GC-13-03 146 164 0.89 0.06808 0.00103 1.21670 0.02150 0.13009 0.00189 872 31 808 10 788 11 97%
    17GC-13-04 101 146 0.69 0.12448 0.00111 6.16464 0.08084 0.35935 0.00400 2021 17 1999 12 1979 19 98%
    17GC-13-05 27.8 27.8 1.00 0.12484 0.01304 2.71459 0.43474 0.13303 0.00416 2028 191 1332 119 805 24 50%
    17GC-13-06 164 232 0.71 0.11220 0.00105 5.00605 0.07068 0.32385 0.00399 1836 18 1820 12 1808 19 99%
    17GC-13-07 191 176 1.08 0.06656 0.00088 1.14021 0.01572 0.12476 0.00165 833 27 773 7 758 9 98%
    17GC-13-08 223 130 1.72 0.06619 0.00094 1.14075 0.01945 0.12505 0.00148 813 30 773 9 760 8 98%
    17GC-13-09 150 151 1.00 0.07624 0.00645 0.66382 0.06970 0.05985 0.00096 1102 170 517 43 375 6 68%
    17GC-13-10 40.8 41.7 0.98 0.06313 0.00153 1.07244 0.02693 0.12383 0.00219 722 52 740 13 753 13 98%
    17GC-13-11 519 422 1.23 0.12868 0.00605 2.56614 0.28455 0.13325 0.00527 2080 83 1291 81 806 30 53%
    17GC-13-12 63.2 116 0.55 0.18423 0.00187 12.5917 0.14965 0.49604 0.00610 2691 17 2650 11 2597 26 97%
    17GC-13-13 50.9 61.5 0.83 0.16282 0.00162 10.2759 0.15144 0.45730 0.00605 2487 17 2460 14 2428 27 98%
    17GC-13-14 1043 626 1.66 0.08597 0.00218 0.75286 0.01658 0.06408 0.00090 1339 50 570 10 400 5 65%
    17GC-13-15 255 318 0.80 0.07046 0.00170 1.02346 0.02514 0.10640 0.00192 943 45 716 13 652 11 90%
    17GC-13-16 50.7 88.5 0.57 0.06706 0.00124 1.13528 0.02557 0.12260 0.00171 839 161 770 12 746 10 96%
    17GC-13-17 1004 744 1.35 0.07105 0.00341 0.65102 0.02996 0.06688 0.00073 959 98 509 18 417 4 80%
    17GC-13-18 94.0 417 0.23 0.18636 0.00394 13.0734 1.79294 0.48566 0.05204 2710 36 2685 129 2552 22 94%
    17GC-13-19 77.8 80.2 0.97 0.06736 0.00097 1.23889 0.02053 0.13304 0.00149 850 30 818 9 805 8 98%
    17GC-13-20 133 214 0.62 0.17942 0.00207 9.97593 0.14193 0.40208 0.00455 2647 19 2433 13 2179 21 88%
    下载: 导出CSV
  • [1]

    Dalziel I W D. Neoproterozoic-Paleozoic geography and tectonics: Review, hypothesis, environmental speculation[J]. Geological Society of America Bulletin, 1997, 108: 16-42. http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=abull&resid=109/1/16

    [2]

    Gaucher C, Sial A N, Halverson G P, et al. The Neoproterozoic and Cambrian: a time of upheavals, extremes and innovations[C]//Gaucher C, Sial A N, Halverson G P, et al. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: a Focus on Southwestern Gondwana, Developments in Precambrian Geology. Amsterdam, Elsevier, 2009, 16: 3-11.

    [3]

    Stern R J. Neoproterozoic crustal growth: The solid Earth system during a critical episode of Earth history[J]. Gondwana Research, 2015, 14: 33-50. http://www.sciencedirect.com/science/article/pii/S1342937X07001761

    [4]

    Chen J F, Foland K A, Xing F M, et al. Magmatism along the southeast margin of the Yangtze block: Precambrian collision of the Yangtze and Cathysia blocks of China[J]. Geology, 1991, 19: 815-818. doi: 10.1130/0091-7613(1991)019<0815:MATSMO>2.3.CO;2

    [5]

    Li Z X, Kinny P D. Grenvillian continental collision in South China: new SHRIMP U-Pb zircon results and implications for the configuration of Rodinia[J]. Geology, 2002, 30: 163-166. doi: 10.1130/0091-7613(2002)030<0163:GCCISC>2.0.CO;2

    [6]

    Greentree M R, Li Z X, Li X H, et al. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia[J]. Precambrian Research, 2006, 151: 79-100. doi: 10.1016/j.precamres.2006.08.002

    [7]

    Wang X L, Zhou J C, Griffin W L, et al. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Research, 2007, 159: 117-131. doi: 10.1016/j.precamres.2007.06.005

    [8]

    Zhao J H, Zhou M F, Yan D P, et al. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny[J]. Geology, 2011, 39: 299-302. doi: 10.1130/G31701.1

    [9]

    Qiu X F, Ling W L, Liu X M, et al. Recognition of Grenvillian volcanic suite in the Shennongjia region and its tectonic significance for the South China Craton[J]. Precambrian Research, 2011, 191: 101-119. doi: 10.1016/j.precamres.2011.09.011

    [10]

    Qiu X F, Yang H M, Lu S S, et al. Geochronology and geochemistry of Grenville-aged(1063±16 Ma)metabasalts in the Shennongjia district, Yangtze block: implications for tectonic evolution of the South China Craton[J]. International Geology Review, 2015, 57: 76-96. doi: 10.1080/00206814.2014.991949

    [11]

    Qiu X F, Zhao X M, Yang H M, et al. Geochemical and Nd isotopic compositions of the Palaeoproterozoic metasedimentary rocks in the Kongling complex, nucleus of Yangtze craton, South China block: implications for provenance and tectonic evolution[J]. Geological Magazine, 2018, 155: 1263-1276. doi: 10.1017/S0016756817000048

    [12]

    Peng S B, Kusky T M, Jiang X F, et al. Geology, geochemistry, and geochronology of the Miaowan ophiolite, Yangtze craton: Implications for South China's amalgamation history with the Rodinian supercontinent[J]. Gondwana Research, 2012, 21: 577-594. doi: 10.1016/j.gr.2011.07.010

    [13]

    Wu Y B, Gao S, Zhang H F, et al. Geochemistry and zircon U-Pb geochronology of Paleoproterozoic arc related granitoid in the Northwestern Yangtze Block and its geological implications[J]. Precambrian Research, 2012, 200: 26-37. http://www.sciencedirect.com/science/article/pii/S0301926812000046

    [14]

    张国伟, 张宗清, 董云鹏. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义[J]. 岩石学报, 1995, 11: 101-114. doi: 10.3321/j.issn:1000-0569.1995.02.002

    [15]

    张国伟, 张本仁, 袁学诚, 等. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 2001: 1-855.

    [16]

    Dong Y P, Zhang G W, Neubauer F, et al. Tectonic evolution of the Qinling orogen, China: Review and synthesis[J]. Journal of Asian Earth Sciences, 2011, 41: 213-237. doi: 10.1016/j.jseaes.2011.03.002

    [17]

    Dong Y P, Safonova I, Wang T. Tectonic evolution of the Qinling orogen and adjacent orogenic belts[J]. Gondwana Research, 2016, 30: 1-5. doi: 10.1016/j.gr.2015.12.001

    [18]

    Meng Q R, Zhang G W. Geologic framework and tectonic evolution of the Qinling orogen, central China[J]. Tectonophysics, 2000, 323: 183-196. doi: 10.1016/S0040-1951(00)00106-2

    [19]

    Ling W L, Ren B F, Duan R C, et al. Timing of the Wudangshan, Yaolinghe volcanic sequences and mafic sills in South Qinling: U-Pb zircon geochronology and tectonic implication[J]. Chinese Science Bulletin, 2008, 53: 2192-2199. http://www.cnki.com.cn/Article/CJFDTotal-JXTW200814014.htm

    [20]

    薛怀民, 马芳, 宋永勤. 扬子克拉通北缘随(州)-枣(阳)地区新元古代变质岩浆岩的地球化学和SHRIMP锆石U-Pb年代学研究[J]. 岩石学报, 2011, 27: 1116-1130. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201104021.htm

    [21]

    薛怀民, 马芳. 桐柏山造山带南麓随州群变沉积岩中碎屑锆石的年代学及其地质意义[J]. 岩石学报, 2013, 29: 564-580. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302016.htm

    [22]

    Yang Y A, Wang X C, Li Q L, et al. Integrated in situ U-Pb age and Hf-O analyses of zircon from Suixian Group in northern Yangtze: New insights into the Neoproterozoic low-δ 18 O magmas in the South China Block[J]. Precambrian Research, 2016, 273: 151-164. doi: 10.1016/j.precamres.2015.12.008

    [23]

    Liu H, Zhao J H, Cawood P A, et al. South China in Rodinia: Constrains from the Neoproterozoic Suixian volcano-sedimentary group of the South Qinling Belt[J]. Precambrian Research, 2018, 314: 170-193. doi: 10.1016/j.precamres.2018.05.018

    [24]

    洪吉安, 马斌, 黄琦. 湖北枣阳大阜山镁铁/超镁铁杂岩体与金红石矿床成因[J]. 地质科学, 2009, 44: 231-244.

    [25]

    Wang M X, Wang Y, Bo W. Platinum-group elemental and Sr-Nd-Os isotopic geochemistry of the~635 Ma mafic intrusions in the northern margin of the Yangtze Block: a link of metasomatized subcontinental lithospheric mantle and Ni-Cu-(PGE)sulfide mineralization[J]. Precambrian Research, 2017, 309: 325-342. http://www.sciencedirect.com/science/article/pii/S0301926816303503

    [26]

    Zhao J H, Asimow P D. Formation and evolution of a magmatic system in a rifting continental margin: Neoproterozoic arc-and MORB-like dike swarms in South China[J]. Journal of Petrology, 2018, 59: 1811-1844. doi: 10.1093/petrology/egy080

    [27]

    Liu Y S, Zong K Q, Kelemen P B, et al. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates[J]. Chemical Geology, 2008, 247: 133-153. doi: 10.1016/j.chemgeo.2007.10.016

    [28]

    Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211: 47-69. doi: 10.1016/j.chemgeo.2004.06.017

    [29]

    Ludwig K R. ISOPLOT 3.0: A geochronological toolkit for Microsoft Excel(Berkeley Geochronology Center, Berkeley, California)[M]. BGC Special Publication 1a, Berkeley, 2003: 55.

    [30]

    Hu J, Liu X C, Chen L Y, et al. A~2.5 Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling Complex in the South Qinling orogen[J]. Chinese Science Bulletin, 2013, 58: 3564-3579. doi: 10.1007/s11434-013-5904-1

    [31]

    Nie H, Yao J, Wan X, et al. Precambrian tectonothermal evolution of South Qinling and its affinity to the Yangtze Block: Evidence from zircon ages and Hf-Nd isotopic compositions of basement rocks[J]. Precambrian Research, 2016, 286: 167-179. doi: 10.1016/j.precamres.2016.10.005

    [32]

    陆松年, 李怀坤, 王惠初, 等. 秦-祁-昆造山带元古宙副变质岩层碎屑错石年龄谱研究[J]. 岩石学报, 2009, 25: 2195-2208. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200909013.htm

    [33]

    卢山松, 江拓, 彭三国, 等. 武当地块与扬子陆核区新元古代早期沉积岩碎屑锆石U-Pb年代学对比及其地质意义[J]. 岩石矿物学杂志, 2017, 36: 646-654. doi: 10.3969/j.issn.1000-6524.2017.05.005

    [34]

    Deng Q Wang J, Wang Z J, et al. Continental flood basalts of the Huashan Group, northern margin of the Yangtze block-implications for the breakup of Rodinia[J]. International Geology Review, 2013, 55: 1865-1884. doi: 10.1080/00206814.2013.799257

    [35]

    Xu Y, Yang K G, Polat A, et al. The~860 Ma mafic dikes and granitoids from the northern margin of the Yangtze Block, China: A record of oceanic subduction in the early Neoproterozoic[J]. Precambrian Research, 2016, 275: 310-331. doi: 10.1016/j.precamres.2016.01.021

    [36]

    朱江, 彭三国, 彭练红, 等. 扬子陆块北缘西大别地区定远组双峰式火山岩U-Pb年代学及其地质构造意义[J]. 地球科学, 2019, 44: 355-365. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201902001.htm

    [37]

    Chaves A D O, Neves J M C. Magmatism, rifting and sedimentation related to Late Paleoproterozoic mantle plume events of Central and Southeastern Brazil[J]. Journal of Geodynamics, 2005, 39: 197-208. doi: 10.1016/j.jog.2004.10.003

    [38]

    祝禧艳, 陈福坤, 王伟, 等. 豫西地区秦岭造山带武当岩群火山岩和沉积岩锆石U-Pb年龄[J]. 地球学报, 2008, 29: 817-829. doi: 10.3321/j.issn:1006-3021.2008.06.025

    [39]

    李建华, 张岳桥, 徐先兵, 等. 北大巴山凤凰山岩体锆石U-Pb LA-ICP-MS年龄及其构造意义[J]. 地质论评, 2012, 58: 581-593. doi: 10.3969/j.issn.0371-5736.2012.03.019

  • 加载中

(5)

(2)

计量
  • 文章访问数:  1772
  • PDF下载数:  14
  • 施引文献:  0
出版历程
收稿日期:  2020-07-21
修回日期:  2020-09-25
刊出日期:  2021-06-15

目录