近远震作用下黄土滑坡动力响应与变形——以甘肃天水震区黎坪村滑坡为例

车福东, 王涛, 辛鹏, 张泽林, 梁昌玉, 刘甲美. 近远震作用下黄土滑坡动力响应与变形——以甘肃天水震区黎坪村滑坡为例[J]. 地质通报, 2020, 39(12): 1981-1992.
引用本文: 车福东, 王涛, 辛鹏, 张泽林, 梁昌玉, 刘甲美. 近远震作用下黄土滑坡动力响应与变形——以甘肃天水震区黎坪村滑坡为例[J]. 地质通报, 2020, 39(12): 1981-1992.
CHE Fudong, WANG Tao, XIN Peng, ZHANG Zelin, LIANG Changyu, LIU Jiamei. Investigation of dynamic response and deformation characteristics of loess landslide under near and far earthquakes: A case study of Liping landslide in Tianshui earthquake area, Gansu Province[J]. Geological Bulletin of China, 2020, 39(12): 1981-1992.
Citation: CHE Fudong, WANG Tao, XIN Peng, ZHANG Zelin, LIANG Changyu, LIU Jiamei. Investigation of dynamic response and deformation characteristics of loess landslide under near and far earthquakes: A case study of Liping landslide in Tianshui earthquake area, Gansu Province[J]. Geological Bulletin of China, 2020, 39(12): 1981-1992.

近远震作用下黄土滑坡动力响应与变形——以甘肃天水震区黎坪村滑坡为例

  • 基金项目:
    国家自然科学基金项目《考虑地震动场地效应的潜在地震滑坡危险性预测研究》(批准号:41572313)、《陇中盆地水震耦合作用下黄土-泥岩接触面滑坡液化-滑移机制及危险性定量评价研究》(批准号:41972301)、国家重点研发计划课题《地震及地震滑坡危险性分析方法研究及算法研发》(编号:2018YFC1504601)和中国地质调查局项目《渭河中上游城镇灾害地质调查》(编号:DD20190717)
详细信息
    作者简介: 车福东(1994-), 在读硕士生, 从事滑坡动力响应及稳定性研究。E-mail:2947343784@qq.com
    通讯作者: 王涛(1982-), 博士, 副研究员, 从事地震滑坡形成机理及危险性评估研究。E-mail:wangtaoig@cags.ac.cn
  • 中图分类号: P642.13+1;P642.22

Investigation of dynamic response and deformation characteristics of loess landslide under near and far earthquakes: A case study of Liping landslide in Tianshui earthquake area, Gansu Province

More Information
  • 中国黄土高原区地震滑坡灾害效应重、潜在风险高,地震滑坡响应和变形机理是研究热点之一。以天水震区黎坪村大型黄土滑坡为例,采用标准正弦波探讨了近远震地震动要素对滑坡动力响应的影响特征,采用汶川远震和岷县近震地震动时程记录反演了滑坡实际变形特征。结果显示,测点PGA放大系数随振幅的变化规律与坡体位置有关,测点PGA放大系数在坡体位置大于0.75倍坡高时,随振幅的增加而减小;当小于0.75倍坡高时,随振幅的增加而显著增强;测点PGA放大系数与频率变化呈负相关性,即随着频率的增加而减小。坡体变形与振幅和持时变化呈正相关性,即测点最大水平和竖直位移随着振幅和持时增加而增加,滑坡急剧变形的临界幅值约为0.05 g;坡体变形与频率变化呈负相关性,坡体测点最大水平和竖直位移随频率变大呈下降趋势,滑坡急剧变形临界频率约为5 Hz;对比分析显示,振幅对坡体失稳的影响程度大于频率的影响程度。相比岷县近震,坡体主滑体滑动与汶川远震产生的高幅值、低频率及长持时的地震波作用密不可分,表明在地震滑坡稳定性研究时,如果忽视远场强震影响,可能导致潜在安全风险。关于近震和远震作用下滑坡动力响应及其变形差异研究方法对地震滑坡稳定性分析研究具有借鉴意义。

  • 加载中
  • 图 1  黎坪村滑坡平面图

    Figure 1. 

    图 2  黎坪村滑坡全貌图(镜向NW)

    Figure 2. 

    图 图版Ⅰ   

    Figure 图版Ⅰ. 

    图 3  黎坪村滑坡工程地质剖面

    Figure 3. 

    图 4  滑坡体数值模型和测线及监测点位置

    Figure 4. 

    图 5  2008年汶川地震波(a)和2013年岷县地震波(b)加速度时程(经过基线校正与滤波)

    Figure 5. 

    图 6  2008年汶川(a)和2013年岷县(b)地震波傅里叶变换频谱

    Figure 6. 

    图 7  不同振幅条件下PGA放大系数与水平比(a)、占高比(b)关系

    Figure 7. 

    图 8  不同振幅条件下坡体最大位移

    Figure 8. 

    图 9  不同频率条件下PGA放大系数与水平比(a)、占高比(b)关系

    Figure 9. 

    图 10  不同频率条件下坡体最大位移

    Figure 10. 

    图 11  不同持时条件下坡体最大位移

    Figure 11. 

    图 12  两次地震工况水平和竖直测线上测点PGA放大系数与水平比(a)、占高比(b)的关系

    Figure 12. 

    图 13  两次地震工况坡面测线测点PGA放大系数与水平比(a)、占高比(b)的关系

    Figure 13. 

    图 14  汶川(a)和岷县(b)地震工况水平位移场分布

    Figure 14. 

    表 1  岩土体物理力学性质参数

    Table 1.  Physical and mechanical properties of rock and soil mass

    层位序号 密度/(kg·m-3) 弹性模/MPa 泊松比 黏聚力/MPa 抗拉强/MPa 内摩擦角/°
    1 1973 64.5 0.25 0.04 0.03 20
    2 2320 78.4 0.15 0.92 1.12 25
    3 2657 83.3 0.13 1.2 1.37 29
    下载: 导出CSV

    表 2  考虑不同地震动参数及实际地震动时程设计的工况

    Table 2.  Design conditions considering different ground motion parameters and actual ground motion records

    工况编号 波类型 幅值/g 频率/Hz 持时/s
    TS-01 汶川地震波 0.066 主频约5.3 50
    TS-02 岷县地震波 0.022 主频约9.1 50
    TS-03 正弦波 0.05 0.5 30
    TS-04 正弦波 0.05 1 30
    TS-05 正弦波 0.05 2 30
    TS-06 正弦波 0.05 6 30
    TS-07 正弦波 0.05 10 30
    TS-08 正弦波 0.0125 2 30
    TS-09 正弦波 0.025 2 30
    TS-10 正弦波 0.1 2 30
    TS-11 正弦波 0.2 2 30
    TS-12 正弦波 0.05 2 10
    TS-13 正弦波 0.05 2 50
    下载: 导出CSV
  • [1]

    袁丽侠.宁夏海原地震诱发黄土滑坡的形成机制研究[D].西北大学博士学位论文, 2005.

    [2]

    Sun P, Shao T Q, Shi J S, et al.Giant Landslides Triggered by the 1718 Tongwei Earthquake in Pan'an, Gansu Province, China[J].Acta Geologica Sinica, 2015, 89(1):309-310. http://onlinelibrary.wiley.com/doi/10.1111/1755-6724.12417/abstract

    [3]

    王兰民, 孙军杰.黄土高原城镇建设中的地震安全问题[J].地震工程与工程振动, 2014, 34(4):115-122. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201404015.htm

    [4]

    高孟潭等.GB18306-2015中国地震动参数区划图[M].北京:中国标准出版社, 2015.

    [5]

    Peng J B, Wang S K, Wang Q Y, et al.Distribution and genetic types of loess landslides in China[J].Journal of Asian Earth Sciences, 2019, 170:329-350. doi: 10.1016/j.jseaes.2018.11.015

    [6]

    王家鼎, 张倬元.地震诱发高速黄土滑坡的机理研究[J].岩土工程学报, 1999, 21(6):670-674. doi: 10.3321/j.issn:1000-4548.1999.06.008

    [7]

    邓龙胜, 范文.宁夏海原8.5级地震诱发黄土滑坡的变形破坏特征及发育机理[J].灾害学, 2013, 28(3):30-37. doi: 10.3969/j.issn.1000-811X.2013.03.007

    [8]

    王兰民.黄土地层大规模地震液化滑移的机理与风险评估[J].岩土工程学报, 2020, 42(1):1-19. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001004.htm

    [9]

    王峻.黄土易损性与地震黄土滑坡关系探讨[J].甘肃科学学报, 2008, 20(2):36-40. doi: 10.3969/j.issn.1004-0366.2008.02.011

    [10]

    王谦, 王兰民, 王峻, 等.岷县漳县地震灾后重建场地黄土震害预测[J].水文地质工程地质, 2017, 44(5):137-142. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201705023.htm

    [11]

    谢睿, 裴向军.强震作用下饱和黄土液化特征试验研究[J].路基工程, 2014, (2):49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201402013.htm

    [12]

    言志信, 张森, 张学东, 等.顺层岩质边坡地震动力响应及地震动参数影响研究[J].岩石力学与工程学报, 2011, 30(S2):3522-3528. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2022.htm

    [13]

    Zhang Z L, Wang T, Wu S R, et al.The role of seismic triggering in a deep-seated mudstone landslide, China:Historical reconstruction and mechanism analysis[J].Engineering Geology, 2017, 226:122-135. doi: 10.1016/j.enggeo.2017.06.001

    [14]

    张泽林, 吴树仁, 王涛, 等.地震波振幅对黄土-泥岩边坡动力响应规律的影响[J].岩土力学, 2018, 39(7):2403-2412. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807012.htm

    [15]

    张泽林, 吴树仁, 王涛, 等.地震作用下黄土滑坡加速度深度放大效应及震后变形模式研究[J].土木工程学报, 2018, 51(4):102-110. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201804013.htm

    [16]

    孙萍, 祝恩珍, 张帅, 等.地震作用下甘肃天水地区黄土-泥岩接触面滑坡机理[J].现代地质, 2019, 33(1):218-226. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201901021.htm

    [17]

    刘汉香, 许强, 范宣梅.地震动参数对斜坡加速度动力响应规律的影响[J].地震动工程与工程振动, 2012, 32(2):41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201202005.htm

    [18]

    邓龙胜, 范文.黄土边坡动力响应的影响效应研究[J].工程地质学报, 2012, 20(4):483-490. doi: 10.3969/j.issn.1004-9665.2012.04.003

    [19]

    Zhang Z L, Wang T, Wu S R, et al.Dynamics characteristic of red clay in a deep-seated landslide, Northwest China:An experiment study[J].Engineering Geology, 2018, 239:254-268. doi: 10.1016/j.enggeo.2018.04.005

    [20]

    陈永明, 石玉成.中国西北黄土地区地震滑坡基本特征[J].地震研究, 2006, 29(3):276-280, 318. doi: 10.3969/j.issn.1000-0666.2006.03.012

    [21]

    黄帅, 宋波, 蔡德钩, 等.近远场地震下高陡边坡的动力响应及永久位移分析[J].岩土工程学报, 2013, 35(S2):768-773. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2142.htm

    [22]

    杨长卫.岩质边坡的地震动特性及基覆型边坡的滑坡成因、稳定性判识、危害范围评价体系的研究[D].西南交通大学博士学位论文, 2014.

    [23]

    王雷, 赵法锁, 程晓辉, 等.黄土基岩接触面滑坡滑带土物理力学特性及微观结构[J].地球科学与环境学报, 2017, 39(3):450-458. doi: 10.3969/j.issn.1672-6561.2017.03.013

    [24]

    邓亚虹, 徐召, 孙科, 等.一种考虑波动效应的拟动力地震边坡稳定性分析方法[J].地球科学与环境学报, 2019, 41(5):620-630. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201905013.htm

    [25]

    王阿丹, 王昌业, 李萍, 等.西安白鹿塬北缘黄土边坡稳定的可靠度分析[J].地球科学与环境学报, 2012, 34(1):104-110. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201201016.htm

    [26]

    贺汇文, 龙建辉, 苏生瑞, 等.某高速公路滑坡的数值模拟及后缘坡体稳定性分析[J].地球科学与环境学报, 2008, 30(2):183-187. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX200802013.htm

    [27]

    徐光兴, 姚令侃, 李朝红, 等.边坡地震动力响应规律及地震动参数影响研究[J].岩土工程学报, 2008, 30(6):918-923. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200806022.htm

    [28]

    邢爱国, 吴志坚, 陈龙珠, 等.汶川地震在甘肃省的次生典型边坡灾害特征[J].西北地震学报, 2010, 32(1):95-98. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201001019.htm

  • 加载中

(15)

(2)

计量
  • 文章访问数:  654
  • PDF下载数:  12
  • 施引文献:  0
出版历程
收稿日期:  2020-09-02
修回日期:  2020-10-20
刊出日期:  2020-12-25

目录