The zircon U-Pb age and geochemical characteristics of ore-bearing granite in the Niuduo graphite deposit eastern Tibet
-
摘要:
藏东察雅—左贡地区可能存在一条晶质石墨矿带,从北向南已发现纽多、地果、青果3处石墨矿床,找矿潜力巨大。以矿区基本地质特征为基础,对含矿岩体花岗岩的岩石学、岩石地球化学及锆石U-Pb同位素进行研究,结果表明含矿花岗岩具有富钾、过铝、钙碱性S型花岗岩的特征;稀土元素配分曲线呈右倾斜的轻稀土元素富集型,轻、重稀土元素分馏明显,具有明显的负Eu异常,微量元素特征显示亏损Nb、Ba、Sr、P、Ti等高场强元素,尤其亏损Ti,相对富集Rb、K、U等大离子亲石元素;样品锆石具有明显的振荡环带和较高的Th/U值(普遍大于0.4),属于典型的岩浆成因锆石,用LA-ICP-MS技术测得锆石206Pb/238U年龄为258.1±1.9 Ma(95%置信度,MSWD=3.5,n=35),表明岩体形成时代为晚二叠世。岩石地球化学特征表明,纽多花岗岩来源于陆壳杂砂岩的部分熔融,且成岩温度较高,可能是碰撞造山导致地壳加厚增温重熔形成的。
-
关键词:
- 花岗岩 /
- 地球化学 /
- LA-ICP-MS锆石U-Pb年龄 /
- 纽多 /
- 藏东
Abstract:There may be a crystalline graphite ore belt from Chaya to Zuogong in eastern Tibet, which has great potential for prospecting.Three graphite orebodies were discovered from north to south, i.e., Niuduo, Diguo and Qingguo.The latest geological survey shows that the Niuduo graphite deposit is expected to reach the scale of large-scale deposits, but the theoretical research work remains very insufficient.In this paper, based on the basic geological characteristics of the mining area, the authors studied the petrology, petrogeochemistry and zircon U-Pb chronology of the ore-bearing rock mass.The results show that the ore-bearing granite has the characteristics of K-rich, peraluminium, calc-alkaline S-type granite, and the REE distribution curve is right-inclined LREE enrichment type, with obvious LREE fractionation and obvious negative Eu anomaly.Trace element characteristics show that high field strength elements such as Nb, Ba, Sr, P and Ti are deficient, especially Ti, while large ion lithophile elements such as Rb, K and U are relatively enriched.Zircons in the samples have obvious oscillatory zones with high Th/U ratios(generally higher than 0.4), suggesting typical magmatic zircons.The 206Pb/238U age of zircons determined by LA-ICP-MS is 258.1+1.9 Ma, MSWD=3.5(n=35), and the age of zircons is Late Permian.Geochemistry shows that the Niuduo granite originated from partial melting of continental crustal complex sandstone, and the diagenetic temperature was relatively high.It may have been formed by collisional orogeny resulting in crustal thickening, warming and remelting.
-
Key words:
- granite /
- geochemistry /
- LA-ICP-MS zircon U-Pb age /
- Niuduo /
- eastern Tibet
-
图 5 纽多细粒花岗岩稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)[12]
Figure 5.
表 1 纽多细粒花岗岩主量、微量和稀土元素分析结果
Table 1. Whole-rock major elements, trace elements and REE data from the fine-grained granite of Niuduo
样品号 nd/B1 nd/B2 nd/B3 nd/B4 nd/B5 nd/B6 SiO2 74.31 61.05 66.13 57.35 58.83 77.63 TiO2 0.22 0.63 0.46 0.89 0.68 0.18 Al2O3 12.82 13.99 14.27 14.20 14.73 12.61 TFe2O3 0.69 5.68 3.49 3.81 3.28 0.44 MnO 0.01 0.07 0.03 0.05 0.04 0.01 MgO 0.14 0.68 0.37 0.76 0.75 0.08 CaO 0.72 0.92 0.70 1.03 0.98 0.61 Na2O 3.05 3.43 2.64 3.00 3.00 3.06 K2O 4.89 3.50 4.43 2.36 2.52 3.90 P2O5 0.03 0.10 0.11 0.13 0.10 0.03 烧失量 3.05 9.20 7.09 16.05 15.16 1.66 总计 99.92 99.24 99.72 99.63 100.06 100.21 A/NK 1.24 1.48 1.56 1.89 1.92 1.36 A/CNK 1.11 1.29 1.41 1.57 1.6 1.23 R1 2797 2174 2573 2563 2607 3209 R2 346 451 403 511 508 321 Li 5.34 19.8 18.7 36.9 30.2 6.41 Be 4.08 2.30 3.60 2.69 3.01 3.78 Sc 3.49 9.66 8.36 11.3 11.1 2.07 V 12.7 54.1 37.3 83.0 82.1 7.03 Cr 4.38 21.1 12.2 34.4 34.2 3.81 Co 0.52 2.01 1.61 3.85 2.11 0.48 Ni 1.32 6.17 5.99 10.4 5.92 2.63 Cu 5.48 5.60 7.10 23.6 21.3 6.69 Zn 11.8 222 38.0 80.7 48.0 12.0 Ga 23.2 26.4 25.1 21.6 23.1 20.6 Rb 166 104 161 114 106 128 Sr 104 133 151 114 109 146 Y 61.4 69.2 61.6 34.1 35.4 31.7 Zr 230 204 234 215 191 344 Nb 29.6 42.9 25.9 26.0 22.9 21.3 Sn 2.43 4.88 4.94 4.30 5.32 3.59 Cs 3.51 2.62 6.21 7.79 6.53 3.42 Ba 268 269 356 246 226 324 La 80.6 58.4 63.7 41.5 37.9 53.1 Ce 160 101 111 81.8 76.3 98.5 Pr 17.6 12.4 12.6 9.73 8.93 11.0 Nd
Sm160.4
11.644.6
9.0544.3
8.8236.2
7.1733.3
7.0338.0
6.84Eu
Gd0.73
9.551.08
8.811.20
8.131.30
6.351.24
5.830.90
5.52Tb 1.79 1.76 1.50 1.04 1.01 0.90 Dy 10.4 11.0 9.87 6.24 6.32 5.51 Ho 2.04 2.19 1.98 1.20 1.18 1.04 Er 5.97 6.64 5.99 3.54 3.52 3.14 Tm 0.91 1.04 0.92 0.52 0.55 0.50 Yb 5.75 6.48 6.16 3.69 3.63 3.74 Lu 0.89 0.95 0.88 0.53 0.53 0.56 Hf 6.90 6.05 7.00 6.04 5.30 9.75 Ta 2.16 3.14 2.35 1.67 1.69 1.54 Tl 0.83 0.55 0.79 0.65 0.56 0.64 Pb 42.9 20.4 22.7 7.51 10.0 26.0 Th 33.8 21.9 27.9 16.3 17.3 27.0 U 4.96 2.53 4.42 2.87 2.12 7.48 ΣREE 367 265 277 201 187 229 LREE 331 226 242 178 165 208 HREE 37.32 38.92 35.45 23.11 22.55 20.90 LREE/HREE 8.88 5.81 6.82 7.69 7.31 9.97 LaN/YbN 10.06 6.46 7.41 8.07 7.51 10.18 δEu 0.21 0.37 0.43 0.59 0.59 0.45 δCe 1.04 0.92 0.97 1.00 1.02 1.00 注:A/NK=Al2O3/(Na2O+K2O)(mol);A/CNK=Al2O3/(CaO+Na2O+K2O)(mol);R1=4Si-11(Na+K)-2(Fe+Ti);R2=6Ca+2Mg+Al;主量元素含量单位为%, 微量和稀土元素含量单位为10-6 表 2 纽多细粒花岗岩(nd-B1)LA-ICP-MS锆石U-Th-Pb分析结果
Table 2. LA-ICP-MS zircon U-Th-Pb analytical data from the fine-grained granite of Niuduo(nd-B1 sample)
测点
号含量/10-6 Th/U 同位素比值 年龄/Ma Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 01 84 822 1808 0.45 0.0473 0.0019 0.2680 0.0104 0.0410 0.0004 61.2 105.5 241 8.3 259 2.8 02 23 259 465 0.56 0.0477 0.0030 0.2718 0.0169 0.0415 0.0006 87.1 140.7 244 13.5 262 3.6 03 64 801 1289 0.62 0.0500 0.0019 0.2947 0.0111 0.0423 0.0005 195 87.0 262 8.7 267 3.2 04 43 393 950 0.41 0.0519 0.0022 0.2995 0.0124 0.0416 0.0005 280 93.5 266 9.7 263 3.1 05 41 380 885 0.43 0.0535 0.0022 0.3058 0.0120 0.0411 0.0005 350 92.6 271 9.4 260 2.9 06 17 199 349 0.57 0.0515 0.0030 0.2946 0.0163 0.0417 0.0007 261 135.2 262 12.8 264 4.1 07 37 369 784 0.47 0.0496 0.0020 0.2885 0.0116 0.0417 0.0005 176 128.7 257 9.1 264 3.3 08 14 176 292 0.60 0.0497 0.0030 0.2889 0.0160 0.0422 0.0006 189 143.5 258 12.6 266 3.7 09 38 462 806 0.57 0.0486 0.0020 0.2831 0.0117 0.0420 0.0005 128 100.0 253 9.2 265 3.3 10 39 587 762 0.77 0.0501 0.0020 0.2900 0.0113 0.0417 0.0005 198 99.1 259 8.9 264 3.0 13 56 752 1158 0.65 0.0565 0.0021 0.3176 0.0116 0.0404 0.0005 472 83.3 280 8.9 255 2.8 14 38 378 806 0.47 0.0508 0.0021 0.2920 0.0115 0.0414 0.0005 235 62.0 260 9.0 261 3.2 15 89 1654 1681 0.98 0.0525 0.0017 0.2979 0.0095 0.0408 0.0004 306 78.7 265 7.4 258 2.7 16 45 517 971 0.53 0.0500 0.0018 0.2758 0.0095 0.0397 0.0004 195 83.3 247 7.6 251 2.3 17 66 758 1341 0.57 0.0499 0.0017 0.2913 0.0101 0.0420 0.0005 191 112.0 260 7.9 265 3.1 18 56 513 1225 0.42 0.0525 0.0019 0.2877 0.0102 0.0395 0.0004 309 78.7 257 8.0 250 2.7 19 49 563 1017 0.55 0.0531 0.0021 0.2943 0.0112 0.0400 0.0004 345 95.4 262 8.8 253 2.7 20 20 194 423 0.46 0.0490 0.0026 0.2802 0.0148 0.0412 0.0005 150 156.5 251 11.7 260 3.3 21 51 509 1035 0.49 0.0520 0.0019 0.3052 0.0111 0.0420 0.0005 287 78.7 270 8.7 266 2.9 22 65 786 1367 0.58 0.0502 0.0019 0.2816 0.0107 0.0401 0.0004 206 88.9 252 8.5 254 2.7 23 104 1419 2208 0.64 0.0502 0.0018 0.2788 0.0099 0.0397 0.0004 206 83.3 250 7.9 251 2.6 24 39 452 812 0.56 0.0492 0.0022 0.2886 0.0128 0.0418 0.0005 167 103.7 257 10.1 264 3.2 25 63 760 1353 0.56 0.0522 0.0022 0.2933 0.0118 0.0402 0.0005 300 94.4 261 9.3 254 2.9 26 40 364 862 0.42 0.0504 0.0023 0.2944 0.0134 0.0416 0.0005 213 105.5 262 10.5 263 3.0 27 32 299 679 0.44 0.0516 0.0023 0.3011 0.0128 0.0419 0.0005 333 101.8 267 10.0 265 3.0 28 49 577 1023 0.56 0.0518 0.0022 0.2928 0.0120 0.0406 0.0004 276 96.3 261 9.4 257 2.6 29 26 231 549 0.42 0.0520 0.0026 0.3031 0.0148 0.0421 0.0006 283 112.9 269 11.5 266 3.6 30 71 1004 1413 0.71 0.0545 0.0023 0.3107 0.0131 0.0410 0.0004 391 91.7 275 10.1 259 2.7 31 31 319 686 0.47 0.0525 0.0025 0.2927 0.0140 0.0399 0.0005 309 107.4 261 11.0 252 3.2 32 48 570 864 0.66 0.0556 0.0024 0.3205 0.0131 0.0416 0.0005 435 91.7 282 10.0 263 2.9 34 102 1456 2112 0.69 0.0515 0.0017 0.2858 0.0094 0.0396 0.0004 265 77.8 255 7.4 250 2.5 35 88 1377 1776 0.78 0.0518 0.0019 0.2907 0.0101 0.0401 0.0005 276 88.0 259 7.9 253 3.2 36 37 346 800 0.43 0.0509 0.0024 0.2866 0.0134 0.0402 0.0005 235 111.1 256 10.6 254 3.0 37 43 401 913 0.44 0.0503 0.0023 0.2856 0.0127 0.0404 0.0005 206 105.5 255 10.0 255 3.1 38 71 836 1487 0.56 0.0500 0.0020 0.2813 0.0107 0.0400 0.0005 195 92.6 252 8.5 253 2.9 -
[1] 扎西平措, 何亮, 杜秋, 等.藏东地区石墨矿成矿规律及找矿方向研究[J].西藏科技, 2019, (11):29-31.
[2] 周新, 冯德新, 樊炳良, 等.藏东纽多石墨矿床地质特征及成因[J].现代矿业, 2019, 35(11):57-60.
[3] 何亮, 林彬, 扎西平措, 等.西藏首例大型石墨矿床——青果矿床地质特征及含矿岩体U-Pb年龄[J].中国地质, 网络首发, 2020-01-22.
[4] 樊炳良, 白涛, 冯德新, 等.藏东纽多黑云母二长花岗岩锆石U-Pb年龄及成因[J].地质通报, 2018, 37(7):1226-1235. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20180707&flag=1
[5] 王新雨.北澜沧江带二叠—三叠纪花岗岩类对古特提斯洋俯冲、闭合过程的约束[D].中国地质大学(北京)博士学位论文, 2018.
[6] Liu Y S, Hu Z C, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internalstandard[J].Chemical Geology, 2008, 257:34-43. doi: 10.1016/j.chemgeo.2008.08.004
[7] Liu Y S, Gao S, Hu Z C, et al.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J].Journal of Petrology, 2010, 51:537-571. doi: 10.1093/petrology/egp082
[8] Ludwig K R.User's Manual for isoplot 3.00:A Geochronological Toolkit for Microsoft Excel[M].Berkeley:Berkeley Geochronology Center, Special Publication N0.4a.2003.
[9] Peccerillo R, Taylor S R.Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonuarea, Northern Turkey[J].Contributions to Mineralogy and Petrology, 1976, 58:63-81. doi: 10.1007/BF00384745
[10] Middlemost E A K.Magmas and Magmatic Rocks[M].London:Longman, 1985:1-266.
[11] Maniar P D, Piccoli P M.Tectonic discrimination of granitoids[J].Geological Society of America Bulletin, 1989, 101:635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[12] Sun S S, McDonough W F.Chemical and isotopic systematics in ocean basalt: Implication for mantle composition and processes[C]//Saunders A D, Norry M J.Magmatism in the Ocean Basins.Geological Society of London Special Publications, 1989, 42: 313-345.
[13] 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2007, 8(16):1589-1604.
[14] Hoskin P W O, Ireland T R.Rare Earth Element Chemistry of Zirconand Its Use as a Provenance Indicator[J].Geology, 2000, 28(7):627-630. doi: 10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO;2
[15] Chappell B W, White A J R.Two contrasting granite types[J].Pacific Geol, 1974, 8:173-174.
[16] Chappell B W, White A J R.I and S-type granites in the Lachlan Fold Belt[J]. Trans. R. Soc. Edinburgh:Earth Sci., 1992, 83:1-26. doi: 10.1017/S0263593300007720
[17] Brown M.Granite:from genesis to emplacement[J].Bulletin of the Geological Society of America, 2013, 125(7/8):1079-1113.
[18] Sylvester P J.Post-collisional strongly peraluminous granites[J].Lithos, 1998, 45:29-44. doi: 10.1016/S0024-4937(98)00024-3
[19] Pearce J A, Harris N B W, Tindle A G.Trace element dis-crimination diagrams for the tectonic interpretation of granitic rocks[J].Journal of Petrology, 1984, 25:956-983. doi: 10.1093/petrology/25.4.956