Geochemical characteristics, zircon U-Pb age of SSZ ophiolite in the Baiheshan area of the Beishan orogenic belt, Inner Mongolia, and its indication for the evolution of the Paleo-Asian Ocean
-
摘要:
红石山-百合山蛇绿混杂岩带是北山造山带最北部的一条蛇绿混杂岩带,前人对百合山蛇绿岩的研究很少涉及。百合山蛇绿岩主要由变质橄榄岩、辉石橄榄岩、堆晶辉石岩、辉长岩、玄武岩等组成,对其中的辉长岩进行地球化学和锆石U-Pb年龄测试,以了解洋盆性质和形成时间。研究结果显示:辉长岩具有Al2O3、MgO含量高,P2O5含量低,富集大离子亲石元素、亏损高场强元素的特征,岩石初始87Sr/86Sr值为0.70418~0.70711,(143Nd/144Nd)i为0.512392~0.512568,εNd(t)值为+4.61~+7.28,反映岩浆物质来源于亏损地幔源区,形成过程受到俯冲消减流体的影响。辉长岩LA-MC-ICP-MS锆石U-Pb定年结果为344.6±1.8 Ma,岩石地球化学分析显示其属SSZ型(俯冲带型)蛇绿岩,形成于俯冲板片之上的不成熟弧后盆地环境,应为北侧雀儿山-圆包山岛弧基础上发育的早石炭世有限洋盆,代表了古亚洲洋在北山北部的分支洋盆。结合区域上广泛分布于百合山蛇绿混杂岩带南侧的晚石炭世—早二叠世白山岩浆弧特征,指示古亚洲洋在北山北部的演化至少持续到晚古生代晚期。
Abstract:The Hongshishan-Baiheshan ophiolite mélanges belt is the northernmost ophiolite mélanges belt in the Beishan area.However, most of the researchers have been focused on the Hongshishan ophiolite mélanges but paid very insufficient attention to the Baiheshan ophiolite.The authors analyzed geochemistry and zircon U-Pb chronology of gabbros in order to understand the ocean basin tectonic environment and formation time.The results show that gabbro has high content of Al2O3, MgO and LILE but poor content of P2O5 and HFSE.Meanwhile, the gabbro have bulk Sr-Nd isotope composition of (87Sr/86Sr)i=0.70418~0.70711, (143Nd/144Nd)i=0.512392~0.512568, and εNd(t)=+ 4.61~+ 7.28.These data show that the magma of gabbro might have come from depleted mantle source area and the formation process of gabbro was affected by the subduction fluid.The LA-MC-ICP-MS zircon U-Pb dating yielded a 206Pb/238U age of 344.6±1.8 Ma for the Baiheshan ophiolite.The petrogeochemical analysis shows that gabbro formed SSZ type ophiolites in the subducting plate above the immature back-arc basin.The result suggests that Baiheshan ophiolite mélanges belt might have been a Carboniferous limited ocean formed in the Queershan-Yuanbaoshan arc and may have been the branch ocean basin of the Paleo-Asian Ocean in the Beishan area.According to the studies of the Late Carboniferous-Early Permian Baishan magmatic arc located in the southern part of the Hongshishan-Baiheshan ophiolite mélanges belt, the authors hold that the evolution of the Paleo-Asian Ocean lasted at least to the end of the Late Paleozoic.
-
Key words:
- Hongshishan-Baiheshan /
- ophiolite belt /
- gabbro /
- SSZ ophiolites /
- zircon U-Pb ages /
- back-arc basin
-
-
表 1 百合山辉长岩(TW2005-3)LA-ICP-MS锆石U-Th-Pb同位素分析结果
Table 1. LA-ICP-MS zircon U-Th-Pb dating results of the gabbro from Baiheshan ophiolite mélanges(TW2005-3)
测点 元素含量/10-6 同位素比值 年龄/Ma U Th 232Th/238U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 206Pb/238U 1σ 207Pb/235U 1σ SAM.01 29 22 0.756 0.0557 0.0006 0.416 0.03 0.0542 0.004 350 4 353 29 SAM.02 1548 1772 1.144 0.0366 0.0004 0.259 0.004 0.0512 0.0006 232 2 234 3 SAM.03 32 28 0.884 0.0738 0.0009 2.347 0.07 0.231 0.006 459 5 1227 36 SAM.04 34 21 0.613 0.0553 0.0006 0.410 0.03 0.0537 0.004 347 4 349 26 SAM.05 1464 1032 0.705 0.0554 0.0005 0.413 0.005 0.0541 0.0006 348 3 351 5 SAM.06 38 34 0.897 0.0552 0.0006 0.416 0.03 0.0546 0.004 346 4 353 24 SAM.07 19 11 0.601 0.0554 0.0007 0.411 0.05 0.0538 0.008 348 4 350 47 SAM.08 26 18 0.686 0.0546 0.0006 0.407 0.04 0.0541 0.006 343 4 347 36 SAM.09 27 18 0.679 0.0551 0.0006 0.415 0.04 0.0545 0.005 346 4 352 32 SAM.10 27 20 0.727 0.0543 0.0006 0.406 0.04 0.0542 0.005 341 4 346 32 SAM.11 56 48 0.852 0.0553 0.0006 0.411 0.02 0.0539 0.002 347 4 349 16 SAM.12 16 12 0.708 0.0552 0.0008 0.414 0.07 0.0544 0.009 346 5 352 56 SAM.13 28 23 0.812 0.0542 0.0007 0.404 0.04 0.0539 0.005 341 4 344 34 SAM.14 142 77 0.544 0.0481 0.0005 0.353 0.009 0.0533 0.001 303 3 307 7 SAM.15 21 14 0.681 0.0541 0.0008 0.401 0.06 0.0538 0.008 340 5 343 53 SAM.16 66 50 0.759 0.0549 0.0006 0.409 0.02 0.0541 0.002 344 4 348 14 SAM.17 31 10 0.317 0.0553 0.0007 0.408 0.04 0.0536 0.005 347 4 347 32 SAM.18 80 60 0.751 0.0544 0.0006 0.409 0.02 0.0545 0.002 342 4 348 13 SAM.19 14 9 0.643 0.0582 0.0009 0.439 0.07 0.0546 0.009 365 5 369 60 SAM.20 29 2 0.0628 0.0542 0.0006 0.407 0.03 0.0544 0.005 340 4 346 29 SAM.21 361 389 1.0776 0.0659 0.0007 0.506 0.008 0.0557 0.0008 411 4 416 7 SAM.22 20 16 0.782 0.0551 0.0007 0.404 0.06 0.0532 0.008 346 4 345 48 SAM.23 388 141 0.363 0.0641 0.0006 0.490 0.008 0.0554 0.0008 400 4 405 6 SAM.24 898 1165 1.296 0.0377 0.0005 0.268 0.004 0.0514 0.0008 239 3 241 3 SAM.25 613 533 0.869 0.133 0.001 1.218 0.02 0.0667 0.0008 802 8 809 11 SAM.26 363 178 0.490 0.0586 0.0006 0.437 0.008 0.0541 0.0009 367 4 368 6 SAM.27 200 142 0.710 0.0426 0.0004 0.306 0.007 0.0520 0.001 269 3 271 6 SAM.28 201 314 1.560 0.0439 0.0004 0.319 0.01 0.0528 0.002 277 3 281 11 SAM.29 428 112 0.263 0.0694 0.0007 0.535 0.007 0.0559 0.0007 433 4 435 6 SAM.30 94 111 1.187 0.0545 0.0006 0.412 0.02 0.0548 0.003 342 3 350 16 SAM.31 254 187 0.736 0.0475 0.0005 0.343 0.006 0.0524 0.0008 299 3 300 5 SAM.32 155 102 0.655 0.0693 0.0007 0.539 0.01 0.0563 0.0009 432 4 437 8 表 2 百合山辉长岩主量、微量和稀土元素分析结果
Table 2. Major, trace elements and REE analyses for the gabbro from Baiheshan ophiolite mélanges
样号 YQ1059-1 YQ5004-1 YQ6208-1 YQ2005-3 PM01YQ46-1 PM01YQ37-1b PM01YQ39-1 SiO2 48.66 48.78 47.89 51.28 48.33 47.1 49.16 Al2O3 16.77 16.82 17.48 19.12 23.53 19.66 17.78 Fe2O3 1.53 2.61 1.23 1.83 1.11 2.38 2 FeO 2.75 3.79 2.83 3.28 0.99 3.68 3.86 CaO 14.95 14.4 13.12 11.27 14.27 12.97 12.95 MgO 10.09 8.93 10.72 7.03 5.6 8.82 8.94 K2O 0.044 0.062 0.79 0.18 0.25 0.15 0.16 Na2O 2.32 1.65 2.06 3.3 2.84 2 2.22 TiO2 0.12 0.26 0.13 0.15 0.08 0.22 0.18 P2O5 0.006 0.01 0.011 0.01 0.013 0.008 0.009 MnO 0.1 0.12 0.09 0.1 0.044 0.11 0.12 灼失量 2.36 2.15 3.34 2.08 2.84 2.5 2.19 总计 99.70 99.58 99.69 99.63 99.90 99.60 99.57 Mg# 81.34 72.17 82.92 71.78 83.39 72.98 73.79 TFeO 4.13 6.14 3.94 4.93 1.99 5.82 5.66 m/f 0.23 0.38 0.20 0.39 0.20 0.37 0.35 Cr 568 233 645 147 210 285 211 Ni 137 133 214 89.9 80.4 133 126 Co 31.3 38.5 31.5 34.1 20.5 39.8 35.6 Rb 4.9 5.8 30.2 9.7 11.7 7.3 9.2 Cs 0.38 0.21 2.58 0.4 1.44 0.85 0.76 Sr 94.2 113 111 116 118 146 141 Ba 8.73 14.9 64.4 21.6 15.7 21.1 18.2 V 130 164 110 107 51 128 145 Sc 26.7 28.6 23 23.4 10.3 22.6 26.9 Nb 0.067 0.073 0.14 0.68 0.072 0.1 0.12 Ta 0.025 0.026 0.032 0.055 0.036 0.052 0.043 Zr 1.64 3.83 3.17 10.5 0.91 3.61 3.03 Hf 0.083 0.19 0.14 0.43 0.04 0.17 0.14 Ga 8.4 11.6 8.08 11 10.9 11.3 11.7 U 0.17 0.071 0.079 0.14 0.076 0.026 0.058 Th 0.026 0.042 0.026 0.91 0.0066 0.012 0.14 La 0.086 0.37 0.17 0.99 0.049 0.22 0.43 Ce 0.34 0.9 0.48 3.57 0.2 0.72 0.74 Pr 0.067 0.19 0.09 0.58 0.035 0.14 0.18 Nd 0.45 1.11 0.57 3.05 0.26 0.92 1.01 Sm 0.19 0.48 0.25 1.08 0.1 0.4 0.41 Eu 0.13 0.25 0.1 0.32 0.12 0.27 0.22 Gd 0.31 0.67 0.34 1.52 0.15 0.53 0.57 Tb 0.073 0.16 0.076 0.32 0.031 0.12 0.13 Dy 0.59 1.09 0.57 2.27 0.25 0.88 1.01 Ho 0.14 0.26 0.13 0.5 0.056 0.2 0.22 Er 0.41 0.78 0.41 1.45 0.17 0.6 0.71 Tm 0.063 0.12 0.057 0.22 0.026 0.091 0.11 Yb 0.44 0.84 0.43 1.6 0.17 0.63 0.79 Lu 0.066 0.12 0.063 0.26 0.023 0.09 0.12 Y 3.5 6.54 3.41 13.4 1.48 5.26 6.12 ΣREE 3.36 7.34 3.74 17.73 1.64 5.81 6.65 LREE 1.26 3.30 1.66 9.59 0.76 2.67 2.99 HREE 2.09 4.04 2.08 8.14 0.88 3.14 3.66 LREE/HREE 0.60 0.82 0.80 1.18 0.87 0.85 0.82 LaN/YbN 0.14 0.32 0.28 0.44 0.21 0.25 0.39 δEu 1.64 1.35 1.05 0.76 3.00 1.79 1.39 δCe 1.10 0.83 0.95 1.16 1.18 1.01 0.65 注:Mg#=100*Mg2+/(Mg2++Fe2+); TFeO=FeO+Fe2O3*0.8998;m/f=(TFeO/72)/(MgO/40);N为球粒陨石标准化值[29];主量元素含量单位为%,微量和稀土元素含量单位为10-6 表 3 百合山辉长岩全岩Sr-Nd同位素分析结果
Table 3. Sr-Nd dating results of the gabbro from Baiheshan ophiolite mélanges
原始样号 YQ1059-1 YQ5004-1 YQ6208-1 YQ2005-3 PM01YQ46-1 PM01YQ37-1b PM01YQ39-1 87Sr/86Sr 0.705454 0.704502 0.708445 0.704703 0.704661 0.704697 0.704527 143Nd/144Nd 0.513519 0.513431 0.51338 0.513264 0.513366 0.51341 0.5134 ISr 0.7052 0.70425 0.70711 0.70429 0.70418 0.70445 0.70421 INd 0.512568 0.512457 0.512392 0.512467 0.5125 0.512431 0.512486 εSr(t) 15.7 2.2 42.8 2.8 1.2 5 1.6 εNd(t) 7.28 5.12 3.85 5.31 5.95 4.61 5.68 -
[1] Xiao W J, Mao Q G, Windley B F, et al.Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J].American Journal of Science, 2010, 310:1553-1594. doi: 10.2475/10.2010.12
[2] Kröner A, Windley B F, Badarch G T, et al.Accretionary growth and crust formation in the Central Asian Orogenic Belt and comparison with the ArabianNubian-Shield[J].Geol.Soc.Am, Mem., 2007, 200:181-209. https://pubs.geoscienceworld.org/books/book/443/chapter/3799102/Accretionary-growth-and-crust-formation-in-the
[3] Zong K Q, Klemd R, Yuan Y, et al.The assembly of Rodinia:The correlation of early Neoproterozoic(ca.900 Ma)high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt(CAOB)[J].Precambrian Research, 2017, 290:32-48. doi: 10.1016/j.precamres.2016.12.010
[4] Shi Y R, Zhang W, Krönera A, et al.Cambrian ophiolite complexes in the beishan area, china, southern margin of the central asian orogenic belt[J].Journal of Asian Earth Sciences, 2018, 153:193-205. doi: 10.1016/j.jseaes.2017.05.021
[5] 牛文超, 任邦方, 任云伟, 等.内蒙古北山地区发现新元古代片麻状花岗岩:锆石U-Pb定年证据[J].中国地质, 2017, 44(2):409-410. http://d.wanfangdata.com.cn/Periodical/zgdizhi201702019
[6] 牛文超, 任邦方, 任云伟, 等.北山北带新元古代岩浆记录:来自内蒙古哈珠地区片麻状花岗岩的证据[J].地球科学.2019, 44(1):284-297. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=DQKX201901022
[7] 左国朝, 何国琦.北山板块构造及成矿规律[M].北京:北京大学出版社, 1990:1-240.
[8] 杨合群, 李英, 赵国斌, 等.北山蛇绿岩特征及构造属性[J].西北地质, 2010, 43(1):26-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz201001002
[9] 李向民, 余吉远, 王国强, 等.甘肃北山地区芨芨台子蛇绿岩LA-ICP-MS锆石U-Pb测年及其地质意义[J].地质通报, 2012, 31(12):2025-2031. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD201212011.htm
[10] 王国强, 李向民, 徐学义, 等.甘肃北山红石山蛇绿岩锆石U-Pb年代学研究及构造意义[J].岩石学报, 2014, 30(6):1685-1694. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201406011
[11] 牛文超, 辛后田, 段连峰, 等.内蒙古北山地区百合山蛇绿混杂岩带的厘定及其洋盆俯冲极性——基于1:5万清河沟幅地质图的新认识[J].中国地质, 2019, 46(5):977-994. http://www.cnki.com.cn/Article/CJFDTotal-DIZI201905004.htm
[12] Shi Y, Li L, Kröner A, et al.Carboniferous Alaskan-type complex along the Sino-Mongolian boundary, southern margin of the Central Asian Orogenic Belt[J].Acta Geochimica, 2017, 36(2):1-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdqhx-e201702015
[13] 张金龙, 陈超, 潘志, 张桂凤, 张欢, 李庆喆.内蒙古北山西林淘勒二断井组的厘定与沉积环境分析[J].地质调查与研究, 2017, 40(4), 274-280. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz201704004
[14] 潘志龙, 王硕, 邱振, 等.内蒙古北山地区咸水沟一带早石炭世红柳园组火山岩地球化学、锆石U-Pb年龄及Hf同位素特征[J].地质调查与研究, 2017, 40(2):99-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz201702003
[15] Zheng R, Wu T, Zhang W, et al.Late Paleozoic subduction system in the southern Central Asian Orogenic Belt:Evidences from geochronology and geochemistry of the Xiaohuangshan ophiolite in the Beishan orogenic belt[J].Journal of Asian Earth Sciences, 2013, 62:463-475. doi: 10.1016/j.jseaes.2012.10.033
[16] 宋东方, 肖文交, 韩春明, 等.北山中部增生造山过程:构造变形和40Ar-39Ar年代学制约[J].岩石学报, 2018, 34(7):2087-2098. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201807017.htm
[17] 余吉远, 李向民, 王国强, 等.甘肃北山地区辉铜山和帐房山蛇绿岩LA-ICP-MS锆石U-Pb年龄及地质意义[J].地质通报.2012, 31(12):2038-2045. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD201212013.htm
[18] 刘雪亚, 王荃.中国西部北山造山带的大地构造及其演化[J].地学研究, 1995, 28:7-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000002240926
[19] 聂凤军, 江思宏, 白大明, 等.北山地区金属矿床成矿规律及找矿方向[M].北京:地质出版社, 2002, 1-408.
[20] 赵茹石, 周振环, 毛金海, 等.甘肃省板块构造单元划分及其构造演化[J].中国区域地质, 1994, 13(1):28-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400629561
[21] 魏志军, 黄增保, 金霞, 等.甘肃红石山地区蛇绿混杂岩地质特征[J].西北地质, 2004, 37(1):13-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz200402003
[22] 孙立新, 张家辉, 任邦方, 等.北山造山带白云山蛇绿混杂岩的地球化学特征、时代及地质意义[J].岩石矿物学杂志, 2017, (2):131-147. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201702001
[23] 黄增保, 金霞.甘肃北山红石山蛇绿混杂岩带中基性火山岩构造环境分析[J].中国地质, 2006, 33(5):1030-1037. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200605011
[24] 王小红, 杨建国, 谢燮, 等.甘肃北山红石山基性-超基性岩体的成因类型及构造意义[J].西北地质, 2013, 46(1):40-55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz201301005
[25] 李怀坤, 苏文博, 周红英, 等.华北克拉通北部长城系底界年龄小于1670 Ma:来自北京密云花岗斑岩岩脉锆石LA-MC-ICPMS U-Pb年龄的约束[J].地学前缘, 2011, 18(3):108-120. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201103013.htm
[26] Rubatto D, Gebauer D.Use of Cathodoluninescence for U-Pb Zircon Sating by IOM Microprobe.Some Examples from the Western Alps[C]//Pagel M, Barbin V, Blanc P, et al.Cathodolunminescence in Geoscience.Berlin: Springer-Verlag.Berlin Heidelberg, German, 2000: 373-400.
[27] Hoskin P W O, Schaltegger U.The composition of zircon and igneous and metamorphic petrogenesis[J].Reviews in Mineralogy and Geochemistry, 2003, 53(1):27-62. doi: 10.2113/0530027
[28] Xu Y G, Menzies M A, Thirlwall M F, et al.Exotic Lithosphere Mantle beneath the Western Yangtze Craton:Petrogenetic Links to Tibet Using Highly Magnesian Ultrapotassic Rocks[J].Geology, 2001, 29(9):863-874. doi: 10.1130/0091-7613(2001)029<0863:ELMBTW>2.0.CO;2
[29] Sun S S, McDonough W F.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society[J].London, Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[30] Wilson M.Igneous Petrogenesis[M].Kluwer Academic Publishers, 1989:1-12.
[31] Miyashiro A.Volcanic rock series in island arc and active continental margins[J].Am.J.Sci., 1974, 274:321-355. doi: 10.2475/ajs.274.4.321
[32] DePaolo D J, Wasserburg G J.Inferences about magma sources and mantle structure from variations of 143Nd/144Nd[J].Geophysical Research Letters, 1976, 3(12):743-746. doi: 10.1029/GL003i012p00743
[33] Rollison H R.岩石地球化学[C]//杨学明, 杨晓勇, 陈双喜(译).合肥: 中国科学技术大学出版社, 2000: 180-184.
[34] 鲍佩声, 肖序常, 苏犁, 等.西藏洞错蛇绿岩的构造环境:岩石学、地球化学和年代学制约[J].中国科学(D辑), 2007, 37(3):298-307. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200703001.htm
[35] 赖绍聪, 刘池阳.青藏高原安多岛弧蛇绿岩地球化学及其成因[J].岩石学报, 2003, 19(4):675-682. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200304007.htm
[36] Langmuir C H, Bender J F, Bence A E, et al.Petrogenesis of basalts from the FAMOUS area:Mid-Atlantic Ridge[J].Earth & Planetary Science Letters, 1977, 36(1):133-156. https://ui.adsabs.harvard.edu/abs/1977E&PSL..36..133L/abstract
[37] Roex A P L, Dick H J B, Erlank A J, et al.Geochemistry, mineralogy and petrogenesis of lavas erupted along the Southwest Indian Ridge between the Bouvet triple junction and 11 degrees East[J].Journal of Petrology, 1983, 24(3):267-318. doi: 10.1093/petrology/24.3.267
[38] Aldanmaz E, Pearce J A, Thirlwall M F, et al.Petrogenetic Evolution of Lat Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey[J].Journal of Volcanology and Geothermal Research, 2000, 102(1/2):67-95. https://www.sciencedirect.com/science/article/pii/S0377027300001827
[39] Sajona F G, Maury R C, Bellon H, et al.High field strength element enrichment of Pliocene-Pleistocene island arc basalts, Zamboanga Peninsula, Western Mindanao(Philippines)[J].Journal of Petrology, 1996, 37(3):693-726. doi: 10.1093/petrology/37.3.693
[40] Winter J D.An Introduction to Igneous and Metamorphic Petrology[M].London:Prentice Hall, 2001:1-407.
[41] Pearce J A.Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Searchfor Archean Oceanic Crust[J].Lithos, 2008, 100(1/2/3/4):14-48. http://www.sciencedirect.com/science/article/pii/S0024493707001375
[42] 张旗, 周国庆.中国蛇绿岩[M].北京:科学出版社, 2001:1-200.
[43] Pearce J A, Lippard S J, Roberts S.Characteristics and tectonic significance of supra-subduction zone ophiolites[C]//Kokelaar B P, Howells M F.Marginal Basin Geology.Geological Society.London, Special Publication, 1984, 16(1): 77-94.
[44] Dilek Y, Furnes H.Ophiolites and their origins[J].Elements, 2014, 10(2):93-100. doi: 10.2113/gselements.10.2.93
[45] 史仁灯.班公湖SSZ型蛇绿岩年龄对班-怒洋时限的制约[J].科学通报, 2007, 52(2):223-227. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200702016
[46] 夏林圻, 夏祖春, 徐学义, 等.利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J].岩石矿物学杂志, 2007, 26(1):77-89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200701011
[47] Shervais J W.Island arc and ocean crust ophiolites: Contrasts in the petrology, geochemistry, and tectonic style of ophiolite assemblages in the California Coast Ranges[C]//Malpas J, Moores E, Panayiotou A, et al.Ophiolites: Oceanic Crustal Analogues.Nicosia, Cyprus: The Geological Survey Department, 1990: 507-520.
[48] Pearce J A.Immobile Element Fingerprinting of Ophiolites[J].Elements, 2014, 10(2):101-108. doi: 10.2113/gselements.10.2.101
[49] 内蒙古地质矿产局.内蒙古自治区岩石地层[M].武汉:中国地质大学出版社, 1996.
[50] 谢春林, 杨建国, 王立社, 等.甘肃北山地区古亚洲南缘古生代岛弧带位置的讨论[J].地质学报, 2009, 83(11):1584-1600. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200911004
[51] 陈智斌, 于洋, 薄海军.内蒙古额济纳地区奥陶纪火山岩地球化学特征及其地质意义[J].地球科学, 2020, 45(2):503-518. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx202002012
[52] 陈玉良, 康文彬, 梅华平, 等.甘肃北山北部红石山地区泥盆系雀儿山群火山岩地球化学特征及构造环境分析[J].西北地质, 2015, 48(4):50-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz201504006
[53] 任邦方, 任云伟, 牛文超, 等.内蒙古北山哈珠东山泥盆系雀儿山群火山岩锆石U-Pb年龄、Hf同位素特征及其地质意义[J].地球科学, 2019, 44(1):298-311. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201901021
[54] 牛亚卓, 魏建设, 史冀中, 等.甘肃北山地区北部上石炭统火山岩LA-ICP-MS锆石U-Pb年龄及其构造意义[J].地质通报, 2013, 32(11):1720-1727. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20131104&flag=1
[55] 贾元琴, 赵志雄, 许海, 等.北山风雷山地区白山组流纹岩LA-ICP-MS锆石U-Pb年龄及构造环境[J].中国地质, 2016, 43(1):91-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201601006
[56] 任云伟, 任邦方, 牛文超, 等.内蒙古哈珠地区石炭纪白山组火山岩:北山北部晚古生代活动陆缘岩浆作用的产物[J].地球科学, 2019, 44(1):312-327. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=DQKX201901024
[57] 赵志雄, 贾元琴, 许海, 等.北山交叉沟石英闪长岩锆石LA-ICP-MS U-Pb年龄及构造意义[J].地质学报, 2015, 89(7):1210-1218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201507005
[58] 赵志雄, 熊煜, 贾元琴, 等.北山独龙包地区晚石炭世陆缘弧岩浆作用——花岗闪长岩锆石U-Pb年龄及地球化学证据[J].地质论评, 2018, 64(3):597-609. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201803007
[59] 李敏, 辛后田, 任邦方, 等.内蒙古哈珠地区晚古生代花岗岩类成因及其构造意义[J].地球科学, 2019, 44(1):328-343. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201901023
[60] 李敏, 任邦方, 滕学建, 等.内蒙古北山造山带花岗岩地球化学、锆石U-Pb年龄和Hf同位素特征及地质意义[J].地球科学, 2018, 43(12):4586-4605. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201812023
[61] 卢进才, 史冀忠, 牛亚卓, 等.内蒙古西部北山-银额地区石炭纪-二叠纪层序地层与沉积演化[J].岩石学报, 2018, 34(10):3101-3115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201810017
[62] Zonenshain L P, Kuzmin M I.The Khan-Taishir Ophiolitic Complex of Western Mongolia, its Petrology, Origin and Comparison with other Ophiolitic Complexes[J].Contrib.Mineral.Petrol., 1978, 67:95-109. doi: 10.1007/BF00371637
[63] Helo C, Hegner E, Kröner A, et al.Geochemical signature of Paleozoic accretionary complexes of the Central Asian Orogenic Belt in South Mongolia:Constraints on arc environments and crustal growth[J].Chemical Geology, 2006, 227(3/4):236-257. https://www.sciencedirect.com/science/article/abs/pii/S0009254105004183
[64] Jian P, Kröner A, Jahn B M, et al.Zircon dating of Neoproterozoic and Cambrian ophiolites in West Mongolia and implications for the timing of orogenic processes in the central part of the Central Asian Orogenic Belt[J].Earth-Science Reviews, 2014, 133(6):62-93.
① 牛文超, 辛后田, 段连峰, 等.内蒙古1: 5万清河沟幅区域地质矿产图.中国地质调查局天津地质调查中心, 2018.
-