LA-ICP-MS zircon U-Pb ages of the two phases of magmatism in the Xiuwacu W-Mo deposit, northwest Yunnan, and their implications for ore genesis
-
摘要:
滇西北休瓦促矿区东、西部出露不同岩性的酸性侵入岩体,通过对2期岩浆作用成岩时代、地球化学特征的分析,结合前人研究成果探讨休瓦促矿床的成因。矿区东部黑云母花岗岩锆石U-Pb定年结果为214.9±1.3 Ma,西部花岗斑岩和二长花岗岩年龄分别为87.47±0.51 Ma和83.29±0.60 Ma;矿区获得的辉钼矿Re-Os年龄为82~86 Ma,与燕山晚期成岩年龄一致。地球化学特征分析显示,2期岩体表现出较一致的偏铝质-弱过铝质钾玄质系列特征,具有稀土元素右倾型配分模式,亏损高场强元素Nb、Sr、Zr、Hf,富集大离子亲石元素Rb、Th、U。Y-Nb和Yb-Ta图解表明,2期酸性侵入岩显示出了不同的构造背景,晚三叠世岩体落入同碰撞花岗岩范围,晚白垩世岩体落入板内花岗岩范围。结合矿区地质特征及前人流体包裹体,S、Pb、锆石Hf同位素研究结果,认为休瓦促钨钼矿床成矿物质主要来源于晚白垩世加厚下地壳的部分熔融,矿区断裂-裂隙系统为含矿岩浆-热液向上运移提供了通道,含矿热液温度的降低和大气降水的混合作用,使成矿物质在构造薄弱地带沉淀形成矿体。
Abstract:Two phases of intrusive magmatism were developed in the Xiuwacu deposit, northwest Yunnan.This study focused on the geochronological and geochemical characteristics of these intrusive rocks so as to define the petrogenesis of the Xiuwacu deposit.The LA-ICP-MS zircon U-Pb dating results show that biotite granite from the east of Xiuwacu deposit was formed at 214.9±1.3 Ma, granite porphyry and monzogranite from the west of Xiuwacu deposit was formed at 87.47±0.51 Ma and 83.29±0.60 Ma.The results of the studies show that the molybdenite from the Xiuwacu deposit was formed at 82~86 Ma, corresponding to Late Yanshanian.The two phases of intrusions have similar geochemical characteristics, both belonging to the shoshonitic type and metaluminous to slight peraluminous series, with enrichment of LILE(Rb, Th, U)and depletion of HFSE(Nb, Sr, Zr, Hf).The Y-Nb and Yb-Ta discrimination diagrams indicate that the two phases of intrusions were formed in different tectonic environments.The Late Triassic intrusive rocks fall into the field of syn-collision granites while the Late Cretaceous intrusive rocks fall into the field of intra-plate granites.Based on comprehensive study with regional geology and acquired achievements in fluid inclusions, S and Pb isotopes as well as zircon Hf isotopes, the authors infer that the partial melting of thickened lower crust in the Late Cretaceous seems to have been the main metallogenic material source of the Xiuwacu deposit.The ore-bearing thermal fluid migrated along the fault-crack system in the Xiuwacu deposit, and then the W-Mo orebodies were formed at the favorable position along with the combined effect of both temperature decreasing and the mixing with meteoric water.
-
Key words:
- zircon U-Pb age /
- Late Cretaceous /
- Xiuwacu /
- W-Mo deposit
-
图 2 休瓦促钨钼矿区地质图(a)和剖面简图(b)[15]
Figure 2.
表 1 休瓦促矿床黑云母花岗岩、花岗斑岩、二长花岗岩LA-ICP-MS锆石U-Th-Pb分析结果
Table 1. LA-ICP-MS zircon U-Th-Pb analytical data for biotite granite, granite porphyry and monzonitic granite in the Xiuwacu deposit
测点号 Th
/10-6U
/10-6Th/U 同位素比值 年龄/Ma 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ XWC-1晚三叠世黑云母花岗岩 1 329 1762 0.19 0.0508 0.0013 0.2394 0.0064 0.0338 0.0003 227.8 59.3 217.9 5.3 214.2 1.8 2 436 2376 0.18 0.0503 0.0012 0.2346 0.0056 0.0336 0.0003 209.3 55.5 214.0 4.6 212.9 1.7 3 1090 6358 0.17 0.0506 0.0010 0.2351 0.0049 0.0333 0.0003 233.4 38.0 214.4 4.0 211.2 1.8 4 351 1797 0.20 0.0497 0.0017 0.2305 0.0081 0.0333 0.0003 189.0 79.6 210.6 6.7 211.4 1.7 5 943 5501 0.17 0.0517 0.0009 0.2424 0.0044 0.0336 0.0002 272.3 45.4 220.4 3.6 213.0 1.4 6 474 2536 0.19 0.0509 0.0012 0.2400 0.0055 0.0341 0.0004 235.3 49.1 218.4 4.5 215.9 2.3 7 503 2669 0.19 0.0517 0.0011 0.2430 0.0058 0.0338 0.0003 333.4 48.1 220.9 4.4 214.5 1.8 8 2128 13068 0.16 0.0526 0.0010 0.2444 0.0045 0.0334 0.0002 322.3 10.2 222.0 3.7 211.5 1.1 9 472 2416 0.20 0.0528 0.0010 0.2496 0.0054 0.0341 0.0003 320.4 46.3 226.3 4.4 215.8 2.1 10 355 1853 0.19 0.0533 0.0014 0.2462 0.0062 0.0333 0.0002 342.7 57.4 223.4 5.0 211.4 1.3 11 331 1733 0.19 0.0493 0.0015 0.2367 0.0076 0.0345 0.0003 164.9 65.7 215.7 6.2 218.6 1.8 12 1092 6266 0.17 0.0497 0.0008 0.2302 0.0048 0.0333 0.0005 183.4 37.0 210.3 3.9 211.4 2.9 13 510 2884 0.18 0.0484 0.0012 0.2305 0.0061 0.0344 0.0004 120.5 59.3 210.6 5.0 218.3 2.3 14 527 2703 0.20 0.0518 0.0010 0.2489 0.0057 0.0346 0.0004 276.0 44.4 225.6 4.6 219.4 2.3 15 553 2894 0.19 0.0483 0.0012 0.2296 0.0063 0.0343 0.0004 122.3 61.1 209.8 5.2 217.2 2.2 16 255 1338 0.19 0.0489 0.0017 0.2342 0.0085 0.0346 0.0004 146.4 86.1 213.6 7.0 219.3 2.2 17 753 4273 0.18 0.0477 0.0011 0.2236 0.0054 0.0339 0.0003 83.4 86.1 204.9 4.5 214.7 1.6 18 394 2037 0.19 0.0496 0.0013 0.2383 0.0065 0.0347 0.0004 176.0 59.2 217.0 5.3 219.6 2.2 19 592 3107 0.19 0.0512 0.0012 0.2401 0.0056 0.0339 0.0003 255.6 53.7 218.5 4.6 215.0 1.8 20 545 2773 0.20 0.0479 0.0011 0.2290 0.0053 0.0346 0.0003 100.1 53.7 209.4 4.4 219.0 1.8 21 1079 7128 0.15 0.0479 0.0012 0.2278 0.0054 0.0344 0.0003 100.1 57.4 208.4 4.5 218.1 1.9 22 342 1819 0.19 0.0515 0.0030 0.2310 0.0140 0.0342 0.0005 261.2 131.5 218.4 11.5 217.0 3.1 23 484 2641 0.18 0.0478 0.0014 0.2275 0.0064 0.0345 0.0004 87.1 66.7 208.1 5.3 218.4 2.2 24 327 1698 0.19 0.0493 0.0017 0.2356 0.0080 0.0345 0.0004 164.9 81.5 214.8 6.6 218.6 2.4 XWC-3晚白垩世花岗斑岩 1 902 1501 0.60 0.0497 0.0056 0.0945 0.0112 0.0137 0.0003 183.4 244.4 91.7 10.4 87.5 1.9 2 1056 1733 0.61 0.0496 0.0029 0.0919 0.0053 0.0136 0.0002 176.0 137.0 89.3 4.9 87.0 1.1 3 999 1647 0.61 0.0508 0.0035 0.0951 0.0063 0.0137 0.0002 231.6 159.2 92.3 5.9 87.9 1.2 4 1923 4082 0.47 0.0503 0.0020 0.0958 0.0037 0.0138 0.0002 209.3 88.0 92.9 3.4 88.5 1.0 5 2982 8781 0.34 0.0484 0.0020 0.0909 0.0038 0.0134 0.0001 116.8 98.1 88.3 3.5 86.0 0.8 6 10435 11799 0.88 0.0480 0.0015 0.0898 0.0028 0.0135 0.0002 101.9 69.4 87.3 2.6 86.1 0.9 7 1991 5066 0.39 0.0485 0.0021 0.0925 0.0039 0.0137 0.0002 124.2 106.5 89.8 3.6 87.5 1.0 8 1548 2397 0.65 0.0486 0.0030 0.0897 0.0052 0.0135 0.0002 127.9 137.0 87.2 4.8 86.7 1.1 9 689 1285 0.54 0.0464 0.0032 0.0886 0.0062 0.0136 0.0002 16.8 159.2 86.2 5.8 87.2 1.3 10 2469 1684 1.47 0.0491 0.0028 0.0933 0.0055 0.0136 0.0002 150.1 135.2 90.6 5.1 86.7 1.1 11 586 1179 0.50 0.0473 0.0038 0.0877 0.0072 0.0135 0.0002 64.9 190.7 85.4 6.7 86.3 1.4 12 2458 7651 0.32 0.0497 0.0030 0.0951 0.0024 0.0138 0.0001 189.0 61.1 92.2 2.2 88.3 0.8 13 897 1245 0.72 0.0480 0.0040 0.0936 0.0082 0.0138 0.0002 101.9 185.2 90.9 7.6 88.1 1.3 14 814 1195 0.68 0.0487 0.0037 0.0919 0.0064 0.0136 0.0002 200.1 94.4 89.3 6.0 87.1 1.1 15 1666 1745 0.95 0.0499 0.0025 0.0947 0.0050 0.0137 0.0003 190.8 112.0 91.8 4.6 87.5 1.6 16 1652 2920 0.57 0.0502 0.0025 0.0976 0.0053 0.0140 0.0002 211.2 119.4 94.5 4.9 89.3 1.2 17 1684 1905 0.88 0.0513 0.0030 0.0965 0.0056 0.0140 0.0002 253.8 133.3 93.5 5.2 89.2 1.1 18 3211 3580 0.90 0.0496 0.0017 0.0933 0.0029 0.0138 0.0002 172.3 77.8 90.6 2.6 88.1 1.2 19 619 1161 0.53 0.0487 0.0039 0.0916 0.0076 0.0138 0.0003 131.6 177.8 89.0 7.0 88.6 1.6 XWC-6晚白垩世二长花岗岩 1 1345 2092 0.64 0.0481 0.0024 0.0860 0.0042 0.0131 0.0002 101.9 114.8 83.8 3.9 84.1 1.0 2 2662 20870 0.13 0.0462 0.0007 0.0820 0.0014 0.0128 0.0001 400.1 357.4 80.0 1.3 82.1 0.6 3 837 1669 0.50 0.0469 0.0026 0.0842 0.0047 0.0132 0.0002 42.7 125.9 82.1 4.4 84.7 1.3 4 1136 1502 0.76 0.0485 0.0030 0.0861 0.0051 0.0132 0.0002 124.2 137.0 83.8 4.8 84.8 1.3 5 3194 5820 0.55 0.0484 0.0019 0.0867 0.0037 0.0129 0.0002 120.5 89.8 84.4 3.5 82.7 1.0 6 6693 14811 0.45 0.0500 0.0013 0.0889 0.0026 0.0128 0.0001 194.5 61.1 86.4 2.4 82.1 0.7 7 1318 2218 0.59 0.0489 0.0027 0.0840 0.0048 0.0125 0.0001 142.7 129.6 81.9 4.5 80.1 0.9 8 1904 3171 0.60 0.0502 0.0023 0.0903 0.0040 0.0134 0.0002 211.2 102.8 87.8 3.7 85.5 1.2 9 1016 2061 0.49 0.0481 0.0025 0.0893 0.0048 0.0135 0.0002 101.9 118.5 86.9 4.4 86.1 1.2 10 1365 3107 0.44 0.0501 0.0024 0.0884 0.0041 0.0130 0.0002 198.2 112.9 86.0 3.8 82.9 0.9 11 2097 7081 0.30 0.0502 0.0017 0.0902 0.0035 0.0130 0.0002 211.2 81.5 87.7 3.3 83.1 1.3 12 1643 1403 1.17 0.0493 0.0038 0.0884 0.0070 0.0132 0.0002 161.2 170.3 86.0 6.6 84.3 1.3 13 2003 5259 0.38 0.0499 0.0025 0.0862 0.0045 0.0126 0.0002 190.8 112.0 84.0 4.2 80.7 1.1 14 3627 14323 0.25 0.0505 0.0012 0.0915 0.0022 0.0131 0.0001 216.7 52.8 88.9 2.0 83.7 0.6 15 1618 10302 0.16 0.0515 0.0013 0.0919 0.0024 0.0129 0.0001 261.2 54.6 89.3 2.3 82.3 0.9 16 1162 2665 0.44 0.0462 0.0028 0.0843 0.0055 0.0132 0.0002 9.4 140.7 82.2 5.1 84.5 1.0 17 4102 8690 0.47 0.0480 0.0012 0.0870 0.0022 0.0131 0.0001 98.2 63.9 84.7 2.1 84.0 0.8 表 2 休瓦促钨钼矿床岩体主量、微量和稀土元素分析结果
Table 2. Analyses of major, trace elements and REE of granite in the Xiuwacu Mo-W deposit
样品号 15XWC-2 15XWC-3 15XWC-4 15XWC-5 15XWC-6 15XWC-7 15XWC-8 岩性 黑云母花岗岩 矿化花岗斑岩 二长花岗岩 SiO2 70.59 78.71 78.68 77.62 74.46 74.63 73.66 TiO2 0.34 0.11 0.13 0.13 0.22 0.2 0.12 Al2O3 13.98 12.3 11.7 12.01 12.95 13.02 14.14 Fe2O3 2.65 1.18 1.1 1.22 1.89 1.68 0.98 MnO 0.057 0.02 0.022 0.032 0.047 0.042 0.027 MgO 1.11 0.067 0.064 0.061 0.25 0.23 0.14 CaO 2.67 0.07 0.094 0.38 1.13 1.07 1.04 Na2O 3.07 0.023 2.63 3.14 3.08 3.28 K2O 4.35 4.48 4.38 5.28 4.92 5.1 5.8 P2O5 0.16 0.023 0.027 0.026 0.066 0.056 0.038 烧失量 0.87 3.02 3.07 0.61 0.87 0.83 0.71 总计 99.85 100.00 99.27 100.00 99.94 99.94 99.94 V 53.83 62.8 6.061 5.777 11.47 10.45 6.803 Cr 14.93 11 4.813 2.844 5.352 5.944 13.01 Co 5.274 5.848 1.033 1.041 1.692 1.617 0.898 Ni 9.415 7.006 1.035 0.893 2.188 2.192 1.275 Cu 14.36 33.34 12.73 29.33 3.942 4.291 4.125 Zn 32.32 37.54 24.8 22.59 30.33 27.84 18.75 Ti 2101.6 2261 731.2 736.8 1342.8 1256.5 661.8 Mn 425.8 471.5 228 151 360.5 333.1 213.9 Ga 15.71 15.83 19.74 17.89 19.59 20.28 18.11 Ge 1.702 1.738 1.705 1.518 1.779 1.845 1.244 Rb 186.1 173.5 446.7 401.7 405.8 434.3 404.1 Sr 590.6 559.7 40.18 32.65 130.7 136.9 146.6 Zr 132 164.6 116.7 124.5 182.2 175.7 27.78 Nb 20.78 23.53 89.91 67.85 66.57 66.16 36.34 Cs 8.332 7.317 11.79 12.58 9.738 10.33 7.835 Ba 909.7 763.9 107.7 96.65 305.9 334.9 407 Hf 4.046 5.32 5.374 5.367 5.912 5.499 1.2 Ta 1.577 1.717 14.72 11.34 6.752 7.449 4.899 Pb 34.85 28.61 67.46 35.03 50.01 32.55 43.85 Th 23.94 23.44 46 47.03 48.72 50.55 26.9 U 6.948 7.038 25.69 22.97 13.25 16.48 7.926 La 39.09 41.46 29.7 30.49 51.33 56.74 31.36 Ce 70.08 74.82 55.48 57.82 90.7 98.96 53.68 Pr 7.581 8.154 6.206 6.242 9.21 9.907 5.806 Nd 26.28 27.36 20.5 19.76 29.07 30.43 18.21 Sm 4.408 4.377 4.236 3.655 5.107 4.868 3.401 Eu 0.997 0.924 0.269 0.239 0.556 0.563 0.627 Gd 3.644 3.634 4.013 3.161 4.523 4.256 2.975 Tb 0.471 0.483 0.726 0.525 0.677 0.626 0.477 Dy 2.606 2.633 4.633 3.271 3.96 3.507 2.702 Ho 0.523 0.537 1.001 0.695 0.804 0.735 0.561 Er 1.502 1.57 3.274 2.24 2.441 2.173 1.628 Tm 0.238 0.256 0.587 0.394 0.39 0.341 0.262 Yb 1.622 1.796 4.234 2.864 2.723 2.493 1.776 Lu 0.261 0.296 0.692 0.46 0.429 0.384 0.282 Sc 6.719 6.969 1.89 1.427 2.791 2.626 2.144 Y 15.92 16.57 33.2 23.52 26.46 23.95 17.92 ΕREE 181.94 191.84 170.64 156.76 231.17 242.56 143.81 (La/Yb)N 17.29 16.56 5.03 7.64 13.52 16.33 12.67 LREE/
HREE13.66 14.02 6.07 8.69 11.66 13.88 10.61 注:主量元素含量单位为%, 微量和稀土元素含量单位为10-6 -
[1] 钟大赉, 吴根耀, 赵永贵, 等.滇川西部古特提斯造山带[M].北京:科学出版, 1998.
[2] 李兴振, 刘文均, 王义昭, 等.西南三江地区特提斯构造演化与成矿(总论)[M].北京:地质出版社, 1999:1-276.
[3] 潘桂棠, 徐强, 侯增谦, 等.西南三江多岛弧造山过程成矿系统与资源评价[M].北京:地质出版社, 2003:1-420.
[4] 潘桂棠, 王立全, 李荣社, 等.多岛弧盆系构造模式:认识大陆地质的关键[J].沉积与特提斯地质, 2012, 32(3):1-20. doi: 10.3969/j.issn.1009-3850.2012.03.001
[5] 侯增谦, 杨岳清, 王海平, 等.三江义敦岛弧碰撞造山过程与成矿系统[M].北京:地质出版社, 2003:1-345.
[6] 李文昌, 潘桂棠, 侯增谦, 等.西南"三江"多岛弧盆-碰撞造山成矿理论与勘查技术背景[J].北京:地质出版社, 2010:1-491.
[7] 李文昌, 余海军, 尹光侯.西南"三江"格咱岛弧斑岩成矿系统[J].岩石学报, 2013, 29(4):1129-1144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201304003
[8] Deng J, Wang Q F, Li G J, et al.Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China[J].Gondwana Research, 2014, 26(2):419-437. doi: 10.1016/j.gr.2013.08.002
[9] 尹福光, 潘桂棠, 万方, 等.西南"三江"造山带大地构造相[J].沉积与特提斯地质, 2006, 26(4):33-39. doi: 10.3969/j.issn.1009-3850.2006.04.005
[10] 李建康, 李文昌, 王登红, 等.中甸弧燕山晚期成矿事件的Re-Os定年及成矿规律研究[J].岩石学报, 2007, 23(10):2415-2422. doi: 10.3969/j.issn.1000-0569.2007.10.010
[11] 余海军, 李文昌.滇西北休瓦促钼矿区两期侵入岩年代学、地球化学及其地质意义[J].矿床地质, 2014, 33(增刊):319-320. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8450536
[12] 余海军, 李文昌.滇西北休瓦促Mo-W矿区印支晚期和燕山晚期岩浆活动与成矿作用:来自锆石U-Pb年代学和地球化学的证据[J].岩石学报, 2016, 32(8):2265-2280. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201608003
[13] 王新松, 毕献武, 胡瑞忠, 等.滇西北中甸地区休瓦促岩浆热液型Mo-W矿床S、Pb同位素对成矿物质来源的约束[J].岩石学报, 2015, 31(1):3171-3188. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201511002
[14] 刘学龙, 李文昌, 杨富成, 等.云南格咱岛弧带休瓦促Mo-W-Cu矿床两期岩浆作用的锆石U-Pb年龄、Hf同位素组成及构造意义[J].地质学报, 2017, 91(4):849-863. doi: 10.3969/j.issn.0001-5717.2017.04.011
[15] 张向飞, 李文昌, 尹光候, 等.滇西北休瓦促钨钼矿区复式岩体地质及其成矿特征——来自年代学、氧逸度和地球化学的约束[J].岩石学报, 2017, 33(7):2018-2036. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201707004
[16] Wang X S, Bi X W, Leng C B, et al.Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo-Cu-(W)mineralization in the southern Yidun arc, SW China:Implications for metallogenesis and geodynamic setting[J].Ore Geology Reviews, 2014, 61:73-95. doi: 10.1016/j.oregeorev.2014.01.006
[17] He J, Wang B D, Wang L Q, et al.Geochemistry and geochronology of the Late Cretaceous Tongchanggou Mo-Cu deposit, Yidun Terrane, SE Tibet:Implications for post-collisional metallogenesis[J].Journal of Asian Earth Science, 2019, 172:308-327. doi: 10.1016/j.jseaes.2018.09.015
[18] Hou Z Q.Tectonic-magmatic evolution of the Yidun island-arc and geodynamic setting of Kuroko-type sulfid deposits in Sanjiang region, SW China[J].Resource Geology, 1993, 17:336-350. https://www.researchgate.net/publication/284691697_Tectono-magmatic_evolution_of_the_Yidun_island-arc_and_geodynamic_setting_of_Kuroko-type_sulfide_deposits_in_Sanjiang_Region_China
[19] Hou Z Q, Zaw K, Pan G T, et al.Sanjiang tethyan metallogenesis in S.W.China:Tectonic setting, metallogenic epochs and deposit types[J].Ore Geology Reviews, 2007, 31(1/4):48-87. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.oregeorev.2004.12.007/
[20] 侯增谦, 曲晓明, 周继荣, 等.三江地区义敦岛弧碰撞造山过程:花岗岩记录[J].地质学报, 2001, 75(4):484-497. doi: 10.3321/j.issn:0001-5717.2001.04.008
[21] 侯增谦, 杨岳清, 曲晓明, 等.三江地区义敦岛弧造山带演化和成矿系统[J].地质学报, 2004, 78(1):109-120. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200401013
[22] 曲晓明, 侯增谦, 周书贵.川西连龙矽卡岩型锡、银多金属矿床成矿地质特征[J].地球学报, 2001, 22(1):20-34.
[23] 曲晓明, 侯增谦, 周书贵, 等.川西连龙含锡花岗岩的时代与形成构造环境[J].地球学报, 2002, 23(3):223-228. doi: 10.3321/j.issn:1006-3021.2002.03.006
[24] Qu X M, Hou Z Q, Zhou S G.Geochemical and Nd, Sr isotopic study of the post-orogenic granites in the Yidu arc belt of northern Sanjiang region, southwestern China[J].Resource Geology, 2002, 52(2):163-172. doi: 10.1111/j.1751-3928.2002.tb00128.x
[25] 刘权.四川夏塞银多金属矿床地质特征及成因[J].矿床地质, 2003, 22(2):121-128. doi: 10.3969/j.issn.0258-7106.2003.02.002
[26] 邹光富, 郑荣才, 胡世华, 等.四川巴塘县夏塞银多金属矿床特征[J].成都理工大学学报(自然科学版), 2008, 35(1):93-102. doi: 10.3969/j.issn.1671-9727.2008.01.016
[27] 林青.四川巴塘县夏隆银铅锌矿床特征与找矿前景[J].四川地质学报, 2010, 30(4):447-449. doi: 10.3969/j.issn.1006-0995.2010.04.019
[28] 王新松, 毕献武, 冷成彪, 等.滇西北中甸红山Cu多金属矿床花岗斑岩锆石LA-ICP-MS U-Pb定年及其地质意义[J].矿物学报, 2011, 31(3):315-321. http://www.cnki.com.cn/Article/CJFDTotal-KWXB201103003.htm
[29] 杨岳清, 侯增谦, 黄典豪, 等.中甸弧碰撞造山作用和岩浆成矿系统[J].地球学报, 2002, 23(1):17-24. doi: 10.3321/j.issn:1006-3021.2002.01.004
[30] 曾普胜, 侯增谦, 李丽辉, 等.滇西北普朗斑岩铜矿床成矿时代及其意义[J].地质通报, 2004, 23(11):1127-1131. doi: 10.3969/j.issn.1671-2552.2004.11.013 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2004011199&flag=1
[31] 徐兴旺, 蔡新平, 屈文俊, 等.滇西北红山晚白垩世花岗斑岩型Cu-Mo成矿系统及其大地构造学意义[J].地质学报, 2006, 80(9):1422-1433. doi: 10.3321/j.issn:0001-5717.2006.09.016
[32] 尹光候, 李文昌, 蒋成兴, 等.中甸火山-岩浆弧燕子山期热林复式岩体演化与Ar-Ar定年及铜钼矿化[J].地质与勘探, 2009, 45(4):385-394. http://www.cnki.com.cn/Article/CJFDTotal-DZKT200904007.htm
[33] 李文昌, 余海军, 尹光候, 等.滇西北铜厂沟钼多金属矿床辉钼矿Re-Os同位素年龄及其成矿环境[J].矿床地质, 2012, 31(2):282-292. doi: 10.3969/j.issn.0258-7106.2012.02.009
[34] Yu H J, Li W C, Yin G H, et al.Zircon U-Pb ages of the granodioritic porphyry in the Laba molybdenum deposit, Yunnan, SW China and its geological implication[J].Acta Geologica Sinica, 2014, 88(4):1183-1194. doi: 10.1111/1755-6724.12282
[35] Li W C, Yin G H, Yu H J, et al.The Yanshanian granites and associated Mo-polymetallic mineralization in the Xiangcheng-Luoji area of the Sanjiang-Yangtze conjunction zone in southwest China[J].Acta Geologica Sinica, 2014, 88(6):1742-1756. doi: 10.1111/1755-6724.12341
[36] Zu B, Xue C J, Zhao Y, et al.Late cretaceous metallogeny in the Zhongdian area:Constraints from Re-Os dating of molybdenite and pyrrhotite from the Hongshan Cu deposit, Yunnan, China[J].Ore Geology Reviews, 2015, 64:1-12. doi: 10.1016/j.oregeorev.2014.06.009
[37] 余海军, 李文昌, 尹光候, 等.滇西北铜厂沟Mo-Cu矿床岩体年代学、地球化学及其地质意义[J].岩石学报, 2015, 31(11):217-3233. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201511005
[38] 杨立强, 高雪, 和文言.义敦岛弧晚白垩世斑岩成矿系统[J].岩石学报, 2015, 31(11):3155-3170. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201511001
[39] 王泽传, 赵茂春, 严城民, 等.滇西北大地构造单元的划分与特征[J].沉积与特提斯地质, 2015, 35(2):66-75. doi: 10.3969/j.issn.1009-3850.2015.02.010
[40] Liu Y S, Hu Z C, Gao S et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257(1/2):34-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=babd721ac13e2675d9485b52683be64c
[41] Chen J L, Xu J F, Wang B D, et al.Origin of Cenozoic alkaline potassic volcanic rocks at Konglongxiang, Lhasa terrane, Tibetan Plateau Products of partial melting of a mafic lower-crustal source?[J].Chemical Geology, 2010, 273:286-299. doi: 10.1016/j.chemgeo.2010.03.003
[42] 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
[43] Hoskin P W O, Black L P.Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J].Journal of Metamorphic Geology, 2000, 8:423-439. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=20f7cb4f6d72be021ecb081c5fa74229
[44] Middlemost E A K.Naming materials in the magma/igneous rock system[J].Earth-Science Reviews, 1994, 37(3/4):215-224. http://cn.bing.com/academic/profile?id=734bf86c098739b75858e5b7d1c062b4&encoded=0&v=paper_preview&mkt=zh-cn
[45] Maniar P D, Piccoli P M.Tectonic discrimination of granitoids[J].Geological Society of America Bulletin, 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[46] 蒋成兴, 尹光候, 杨艳, 等.川西乡城-滇西北洛吉地区燕山期花岗岩及铜钼多金属成矿作用[J].金属矿产, 2013, 49(6):1017-1035 http://d.old.wanfangdata.com.cn/Periodical/dzykt201306002
[47] 孟健寅, 杨立强, 吕亮.滇西北红山铜钼矿床辉钼矿Re-Os同位素测年及其成矿意义[J].岩石学报, 2013, 29(4):1214-1222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201304009
[48] 张向飞.滇西北休瓦促钨钼矿区复式岩体成岩成矿作用[D].中国地质大学(北京)博士学位论文, 2018: 103-107.
[49] 王蝶, 卢焕章, 毕献武.与花岗质岩浆系统有关的石英脉型钨矿和斑岩型铜矿成矿流体特征比较[J].地学前缘, 2011, 18:121-131. http://d.old.wanfangdata.com.cn/Periodical/dxqy201105012
[50] Heinrich C A, Driesner T, Stefánsson A, et al.Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits[J].Geology, 2004, 32:761-764. doi: 10.1130/G20629.1
[51] Audétat A, Pettke T, Dolejš D.Magmatic anhydrite and calcite in the ore-forming quartz-monzodiorite magma at Santa Rita, New Mexieo(USA):genetic constraints on porphyry-Cu mineralization[J].Lithos, 2004, 74(324):147-161.
[52] Nagaseki H, Hayashi K.Experimental study of the behavior of copper and zinc in a boiling hydrothermal system[J].Geology, 2008, 36(1):27-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10eabbff7612c4d268552aa408d6bb01
[53] Wilkinson J J.Triggers for the formation of porphyry ore deposits in magmatic arcs[J].Nature Geoscience, 2013, 6(11):917-925. doi: 10.1038/ngeo1940
[54] Ulrich T, Mavrogenes J.An experimental study of the solubility of molybdenum in H2O and KCl-H2O solutions for convective thinning of the lithosphere and the source of ocean island salts[J].Journal of Petrology, 2008, 72:2316-2330.
[55] Cao K, Xu J F, Chen J L, et al.Double-layer structure of the crust beneath the Zhongdian arc, SW China:U-Pb geochronology and Hf isotope evidence[J].Journal of Asian Earth Sciences, 2016, 115:455-467. doi: 10.1016/j.jseaes.2015.10.024