S-Pb isotope characteristics and prospecting model of the Nagengkangqieer silver deposit in the eastern segment of East Kunlun Mountain
-
摘要:
那更康切尔银矿是东昆仑造山带的大型热液脉型独立银矿床,有望达到超大型规模。以矿区地质特征为研究基础,开展硫化物硫-铅同位素、二长花岗岩和花岗闪长岩铅同位素研究,探讨成矿物质来源及两类岩体与成矿的关系。矿区硫化物样品(黄铁矿、方铅矿和闪锌矿)的δ34S值介于-6.1‰~3.9‰之间,主体δ34S值介于-4‰~2.1‰之间,数值集中,指示成矿物质硫源具有深源岩浆硫的特征。矿石铅同位素组成中206Pb/204Pb、207Pb/204Pb、208Pb/204Pb的变化范围分别为18.28~18.62、15.6~15.73、38.38~39.1,矿石铅具有壳幔混合源的特点。矿区内二长花岗岩LA-ICP-MS锆石U-Pb年龄为239±1 Ma,(206Pb/204Pb)i、(207Pb/204Pb)i、(208Pb/204Pb)i值分别为18.389~18.585、15.638~15.648、38.288~38.558;花岗闪长岩LA-ICP-MS锆石U-Pb年龄为252±1 Ma,(206Pb/204Pb)i、(207Pb/204Pb)i、(208Pb/204Pb)i值分别为18.348~18.447、15.625~15.629、38.394~38.412,铅同位素组成投图显示成矿与2类岩浆岩关系较弱,与区域上鄂拉山组火山岩呈较明显的线性相关。那更康切尔银矿与邻区哈日扎铅锌银矿床具有相似的成矿物质来源,硫源具有同一性,且矿石铅同位素组成表现出很明显的线性关系,表明2个矿床的成矿物质具有相近或相似的源区或演化过程。成矿地质条件、成矿物质来源及成矿流体特征均表明两者属中-低温热液脉型矿床。综合本文及前人对那更康切尔银矿床的研究,构建了成矿模式和找矿模型,为区域内同类型银矿床的找矿工作提供了指导作用。
Abstract:The Nagengkangqieer silver deposit is a large-sized hydrothermal vein-type independent deposit expected to become a superlarge silver deposit.Based on the study of geological characteristics of the mining area, the authors investigated the ore-forming material source and the relationship between the two types of magmatic rock and mineralization by studying the S-Pb isotopes of the ore sulfide and the Pb isotope of the monzonitic granite and granodiorite.The δ34S values of the sulfide samples(pyrite, galena and sphalerite)range from -6.1‰ to 3.9‰, mainly from -4‰ to 2.1‰.The concentrated values suggest that the ore-forming material(sulfur source)had the characteristics of deep source magma sulfur.The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb values of sulfides range from 18.28 to 18.62, 15.6 to 15.73 and 38.38 to 39.1, respectively.The LA-ICP-MS zircon U-Pb age of the monzonitic granite in the mining area is 239±1 Ma, and the (206Pb/204Pb)i, (207Pb/204Pb)i, (208Pb/204Pb)i values of the monzonitic granite range from 18.389 to 18.585, 15.638 to 15.648 and 38.288 to 38.558, respectively.The LA-ICP-MS zircon U-Pb age of granodiorite is 252±1 Ma, and the (206Pb/204Pb)i, (207Pb/204Pb)i, (208Pb/204Pb)i values of the granodiorite range from 18.348 to 18.447, 15.625 to 15.629 and 38.394 to 38.412, respectively.The lead isotope composition plot shows that the ore-forming process had weak relationship with the two types of magmatic rocks, and it had obvious linear correlation with the volcanic rocks of the Erlashan Formation in this area.A comparative analysis of the neighboring Harzhaz lead-zinc-silver deposit which had similar sources of ore-forming materials shows that the sulfur source was identical, and the Pb isotopic composition of the ore exhibits a distinct linear relationship, indicating that the ore-forming materials of the two deposits had the similar source region or evolution process.The ore-forming geological conditions, ore-forming material sources and fluid characteristics of the two deposits indicate that the two deposits are both medium and low temperature hydrothermal vein deposits.On the basis of the research conducted by the authors and previous researchers, the metallogenic model and prospecting model were constructed to provide guidance in search for the same type of silver deposits in this area.
-
Key words:
- S-Pb isotopes /
- East Kunlun orogenic belt /
- Nagengkangqieer /
- Harizha /
- metallogenic model /
- prospecting mode
-
-
图 4 7号勘探线剖面图(a)和48号勘探线剖面图(b)(剖面位置见图 2)
Figure 4.
图 图版Ⅱ a.网脉状构造碎裂岩;b.金水口岩群中皱纹状矿石;c.石英脉中团块状、星点状硫化物;d.浸染状黄铁矿、毒砂;f.乳浊状、叶片状黄铜矿、磁黄铁矿沿闪锌矿两组解理定向分布;g.自然银交代方铅矿,辉铜矿交代方铅矿、闪锌矿呈尖角状交代结构;h.毒砂早于闪锌矿形成,辉铜矿和方铅矿沿闪锌矿裂隙充填交代;i.辉铜矿沿黄铜矿边缘交代呈镶边结构j.石墨穿插自形黄铁矿;k.银黝铜矿呈尖角状交代闪锌矿,与方铅矿呈共结边结构;l.闪锌矿沿着黄铁矿粒间充交代呈网状。Py—黄铁矿;Sph—闪锌矿;Gn—方铅矿;Slv—自然银;Ccp—黄铜矿;Cc—辉铜矿;Po—磁黄天矿;Apy—毒砂;Mrc—白铁矿;Td—银黝铜矿;Gr—石墨;Q—石英
表 1 那更康切尔银矿矿石矿物硫同位素组成
Table 1. Sulfur isotopic composition of ore sulfides from the Nagengkangqieer silver deposit
矿床 样号 测试对象 δ34SV-CDT/‰ 样号 测试对象 δ34SV-CDT/‰ 来源 那更康切尔 ZK1602-2 黄铁矿 -1.9 ZK0704-13-Gn 方铅矿 -2.4 本文 ZK1603-8 黄铁矿 3.9 ZK0704-14-Gn 方铅矿 -1.4 ZK0704-13-Py 黄铁矿 -1.2 KS1 方铅矿 -2.1 ZK0704-14-Py 黄铁矿 2.1 KS2 方铅矿 -4.0 KS3 黄铁矿 -1.7 - 黄铁矿(10件) -3.5~0.5 - 闪锌矿(3件) -2.4~-2.2 [6] - 方铅矿(3件) -6.1~-3.1 哈日扎 - 金属硫化物 -0.5~-3.8 [5] 索拉沟 - 金属硫化物 -3.9~4.4 [7] 什多龙 - 金属硫化物 4.6~6.7 [8] 表 2 那更康切尔银矿矿石矿物铅同位素组成
Table 2. Lead isotopic composition of ore sulfides from the Nagengkangqieer silver deposit
矿床 样品编号 样品 206Pb/204Pb 2σ 207Pb/204Pb 2σ 208Pb/204Pb 2σ △β △γ μ ω 那更康切尔 ZK1602-2 黄铁矿 18.313 0.003 15.631 0.002 38.497 0.006 20.56 39.39 9.54 37.59 ZK1603-8 黄铁矿 18.398 0.002 15.615 0.002 38.47 0.006 19.14 35.09 9.49 36.86 ZK0704-13-Py 黄铁矿 18.313 0.002 15.642 0.001 38.521 0.004 21.35 40.63 9.56 37.80 ZK0704-14-Py 黄铁矿 18.297 0.001 15.625 0.001 38.468 0.003 20.19 38.79 9.53 37.50 KS3 黄铁矿 18.340 0.002 15.663 0.002 38.599 0.006 22.75 43.00 9.60 38.17 ZK0704-13-Gn 方铅矿 18.287 0.003 15.609 0.002 38.412 0.006 19.09 36.74 9.49 37.17 ZK0704-14-Gn 方铅矿 18.31 0.002 15.638 0.002 38.509 0.005 21.07 40.18 9.55 37.73 KS1 方铅矿 18.322 0.002 15.657 0.002 38.573 0.007 22.38 42.55 9.59 38.11 KS2 方铅矿 18.302 0.002 15.629 0.002 38.477 0.005 20.46 39.09 9.53 37.55 矿床 样品编号 样品 206Pb/204Pb 2σ 207Pb/204Pb 2σ 208Pb/204Pb 2σ (206Pb/204Pb)i (207Pb/204Pb)i (208Pb/204Pb)i 那更康切尔 NG-1 二长花岗岩 18.790 0.003 15.656 0.002 39.321 0.006 18.426 15.638 38.402 NG-2 二长花岗岩 18.767 0.002 15.662 0.002 39.046 0.004 18.389 15.643 38.288 NG-3 二长花岗岩 18.719 0.002 15.655 0.002 39.344 0.005 18.585 15.648 38.558 NG-11 花岗闪长岩 18.605 0.002 15.642 0.002 39.277 0.005 18.348 15.629 38.407 NG-19 花岗闪长岩 18.605 0.002 15.642 0.002 39.277 0.005 18.401 15.628 38.394 NG-14 花岗闪长岩 18.550 0.002 15.636 0.002 38.994 0.004 18.447 15.625 38.412 注:锆石U-Pb年龄数据及配套的U、Th、Pb含量数据据参考文献②,其中二长花岗岩和花岗闪长岩分别用239 Ma、252 Ma进行校正 表 3 东昆仑东段印支晚期斑岩型矿床成岩成矿年龄数据
Table 3. Late Indosinian of magmatic and mineralization age for porphyry deposits in eastern segment of East Kunlun
矿床名称 类型 岩体 测试对象 测试方法 年龄/Ma 资料来源 热水钼多金属矿床 斑岩型 斑状二长花岗岩 锆石
辉钼矿LA-ICP-MS
Re-Os230.9±1.4
230.2±2.5[40]
[16]加当根铜钼矿床 斑岩型 花岗闪长斑岩 锆石
辉钼矿LA-ICP-MS
Re-Os227±1
227.2±1.9[39]
[41]哈龙休玛钼(钨)矿床 斑岩型 花岗闪长斑岩 锆石
辉钼矿LA-ICP-MS
Re-Os224.68±0.88
224±1.5[42] 赛什塘铜矿 矽卡岩型 斑状石英闪长岩 锆石
辉钼矿LA-ICP-MS
Re-Os222.6±2.4
224.5±1.8[43]
[44] -
[1] 李建亮, 鲁海峰, 陈静, 等.东昆仑东段地区银多金属矿控矿因素及找矿潜力分析[J].地质找矿论丛, 2017, 32(2):172-179. http://d.old.wanfangdata.com.cn/Periodical/dzzklc201702002
[2] Xia R, Wang C, Qing M, et al.Molybdenite Re-Os, zircon U-Pb dating and Hf isotopic analysis of the Shuangqing Fe-Pb-Zn-Cu skarn deposit, East Kunlun Mountains, Qinghai Province, China[J].Ore Geology Reviews, 2015, 66:114-131. doi: 10.1016/j.oregeorev.2014.10.024
[3] Xia R, Wang C, Qing M, et al.Zircon U-Pb dating, geochemistry and Sr-Nd-Pb-Hf-O isotopes for the Nan'getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen:Record of closure of the Paleo-Tethys[J].Lithos, 2015, 234/235:47-60. doi: 10.1016/j.lithos.2015.07.018
[4] 刘颜, 付乐兵, 王凤林, 等.东昆仑东段坑得弄舍多金属矿床Pb-Zn与Au-Ag成矿关系研究[J].大地构造与成矿学, 2018, 42(3):480-493. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201803006
[5] 张斌, 杨涛, 杨生飞, 等.东昆仑哈日扎铅锌多金属矿床金属矿物与S-Pb同位素特征[J].现代地质, 2018, 32(4):646-654. http://d.old.wanfangdata.com.cn/Periodical/xddz201804002
[6] 李敏同, 李忠权.东昆仑那更康切尔银矿床S-Pb-C-O同位素地球化学特征[J].矿物学报, 2017, 37(6):771-781. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201706012.htm
[7] 燕宁, 李社宏, 陆智平, 等.青海省兴海县索拉沟铜多金属矿成矿地质特征与矿床成因[J].大地构造与成矿学, 2011, 35(1):161-166. doi: 10.3969/j.issn.1001-1552.2011.01.017
[8] 王勇.什多龙铅锌矿包裹体硫同位素特征及矿床成因[J].四川地质学报, 2016, 36(2):261-263. doi: 10.3969/j.issn.1006-0995.2016.02.019
[9] 李敏同, 陈晓东, 许远平, 等.东昆仑那更康切尔沟银矿床银矿物特征及成矿元素沉淀机制浅析[J].地质论评, 2018, 64(3):723-736. http://d.old.wanfangdata.com.cn/Periodical/dzlp201803019
[10] 杨涛, 周洪兵, 郑振华, 等.东昆仑那更康切尔银多金属矿床地质特征及成因类型[J].西北地质, 2017, 50(4):186-199. doi: 10.3969/j.issn.1009-6248.2017.04.020
[11] 许远平, 谢万洪, 杨永峰, 等.青海东昆仑那更康切尔银矿地质特征及找矿远景浅析[J].新疆地质, 2014, 32(1):113-117. http://d.old.wanfangdata.com.cn/Periodical/xjdz201401020
[12] 许庆林, 孙丰月, 李碧乐, 等.东昆仑莫河下拉银多金属矿床花岗斑岩年代学、地球化学特征及其构造背景[J].大地构造与成矿学, 2014, 38(2):421-433. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201402021
[13] 许志琴, 杨经绥, 李海兵, 等.造山的高原:青藏高原的地体拼合、碰撞造山及隆升机制[M].北京:地质出版社, 2007:1-458.
[14] 刘建楠, 丰成友, 肖克炎, 等.东昆仑成矿带成矿特征与资源潜力分析[J].地质学报, 2016, 90(7):1364-1376. doi: 10.3969/j.issn.0001-5717.2016.07.008
[15] 丰成友, 李东生, 吴正寿, 等.东昆仑祁漫塔格成矿带矿床类型、时空分布及多金属成矿作用[J].西北地质, 2010, 43(4):10-17. doi: 10.3969/j.issn.1009-6248.2010.04.002
[16] 国显正, 贾群子, 郑有业, 等.东昆仑热水钼多金属矿床辉钼矿Re-Os同位素年龄及地质意义[J].地质学报, 2016, 90(10):2818-2829. doi: 10.3969/j.issn.0001-5717.2016.10.019
[17] 罗照华, 邓晋福, 曹永清, 等.青海省东昆仑地区晚古生代-早中生代火山活动与区域构造演化[J].现代地质, 1999, (1):51-56. http://d.old.wanfangdata.com.cn/NSTLQK/10.1038-ajg.2011.100/
[18] 李金超, 杜玮, 成永生, 等.青海省东昆仑成矿带主要金矿床特征及关键控矿因素分析[J].地质与勘探, 2015, 51(6):1079-1088. http://d.old.wanfangdata.com.cn/Periodical/dzykt201506009
[19] 国显正, 谢万洪, 周洪兵, 等.东昆仑那更康切尔银多金属矿床流纹斑岩锆石U-Pb年代学、地球化学特征及其地质意义[J].地球科学, 2019, 44(7):2505-2518. http://d.old.wanfangdata.com.cn/Periodical/dqkx201907022
[20] Zhou J, Huang Z, Zhou M, et al.Constraints of C-O-S-Pb isotope compositions and Rb-Sr isotopic age on the origin of the Tianqiao carbonate-hosted Pb-Zn deposit, SW China[J].Ore Geology Reviews, 2013, 53:77-92. doi: 10.1016/j.oregeorev.2013.01.001
[21] 张理刚.铅同位素地质研究现状及展望[J].地质与勘探, 1992, (4):21-29. http://www.cnki.com.cn/Article/CJFDTotal-DZKT199204004.htm
[22] 张乾, 潘家永, 邵树勋.中国某些金属矿床矿石铅来源的铅同位素诠释[J].地球化学, 2000, (3):231-238. doi: 10.3321/j.issn:0379-1726.2000.03.004
[23] Ohmoto H. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits[J].Economic Geology, 1972, 67(5):551-578. doi: 10.2113/gsecongeo.67.5.551
[24] Rollinson H R.Using geochemical data:Evaluation, presentation, interpretation[M].New York:John Wiley & Sons, 1993:1-352.
[25] Jochen H.Stable Isotope Geochemistry[M].Berlin:Springer, 2009:1-285.
[26] 张宏飞, 高山.地球化学[M].北京:地质出版社, 2012:1-233.
[27] 吴开兴, 胡瑞忠, 毕献武, 等.矿石铅同位素示踪成矿物质来源综述[J].地质地球化学, 2002, (03):73-81. doi: 10.3969/j.issn.1672-9250.2002.03.013
[28] Zartman R E, Doe B R, Zartman R E, et al.Plumbotectonics; the model[J].Tectonophysics, 1981, 75(1):135-162. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0040-1951(81)90213-4/
[29] 陈静, 谢智勇, 李彬, 等.东昆仑拉陵灶火地区泥盆纪侵入岩成因及其地质意义[J].矿物岩石, 2013, 33(2):26-34. http://d.old.wanfangdata.com.cn/Periodical/kwys201302005
[30] 刘云华, 莫宣学, 喻学惠, 等.东昆仑野马泉地区景忍花岗岩锆石SHRIMP U-Pb定年及其地质意义[J].岩石学报, 2006, (10):2457-2463. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200610006
[31] 刘成东, 莫宣学, 罗照华, 等.东昆仑造山带花岗岩类Pb-Sr-Nd-O同位素特征[J].地球学报, 2003, (6):584-588. doi: 10.3321/j.issn:1006-3021.2003.06.020
[32] 张爱奎, 刘光莲, 莫宣学, 等.青海祁漫塔格晚古生代-早中生代侵入岩构造背景与成矿关系[J].西北地质, 2012, 45(1):9-19. doi: 10.3969/j.issn.1009-6248.2012.01.003
[33] 丰成友, 王松, 李国臣, 等.青海祁漫塔格中晚三叠世花岗岩:年代学、地球化学及成矿意义[J].岩石学报, 2012, 28(2):665-678. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202024
[34] 张本龙.青海省都兰县八路沟多金属矿床地球化学特征及成矿时代研究[D].吉林大学硕士学位论文, 2013: 42-43.
http://cdmd.cnki.com.cn/Article/CDMD-10183-1013195063.htm [35] 张宏飞, 靳兰兰, 张利, 等.西秦岭花岗岩类地球化学和Pb-Sr-Nd同位素组成对基底性质及其构造属性的限制[J].中国科学(D辑), 2005, (10):10-22. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200510002
[36] 朱炳泉, 李献华, 戴漠, 等.地球科学中同位素体系理论与应用——兼论中国大陆壳幔演化[M].北京:科学出版社, 1998:1-330.
[37] 杨经绥, 许志琴, 李海兵, 等.东昆仑阿尼玛卿地区古特提斯火山作用和板块构造体系[J].岩石矿物学杂志, 2005, 24(5):369-380. doi: 10.3969/j.issn.1000-6524.2005.05.004
[38] 袁万明, 莫宣学, 喻学惠, 等.东昆仑印支期区域构造背景的花岗岩记录[J].地质论评, 2000, 46(2):203-211. doi: 10.3321/j.issn:0371-5736.2000.02.012
[39] 许庆林.青海东昆仑造山带斑岩型矿床成矿作用研究[D].吉林大学博士学位论文, 2014: 132-134.
http://cdmd.cnki.com.cn/Article/CDMD-10183-1014267862.htm [40] 国显正, 贾群子, 李金超, 等.东昆仑热水钼矿区似斑状黑云母二长花岗岩元素地球化学及年代学研究[J].中国地质, 2016, 43(4):1165-1177. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201604004
[41] 向鹏.青海省加当根斑岩型铜(钼)矿床成矿特征及成矿条件研究[D].中国地质大学硕士学位论文, 2011: 63-64.
http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2009742 [42] 鲁海峰, 杨延乾, 何皎, 等.东昆仑哈陇休玛钼(钨)矿床花岗闪长斑岩锆石U-Pb及辉钼矿Re-Os同位素定年及其地质意义[J].矿物岩石, 2017, 37(2):33-39. http://d.old.wanfangdata.com.cn/Periodical/kwys201702004
[43] Wang H, Feng C, Li D, et al.Geology, geochronology and geochemistry of the Saishitang Cu deposit, East Kunlun Mountains, NW China:Constraints on ore genesis and tectonic setting[J].Ore Geology Reviews, 2016, 72:43-59. doi: 10.1016/j.oregeorev.2015.07.002
[44] 王辉, 丰成友, 李大新, 等.青海赛什塘铜矿床辉钼矿Re-Os年代学及硫同位素地球化学研究[J].地质学报, 2015, 89(3):487-497. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201503003
[45] Chen X D, Li Y G, Li M T, et al.Ore geology, fluid inclusions, and C-H-O-S-Pb isotopes of Nagengkangqieergou Ag-polymetallic deposit, East Kunlun Orogen, NW China[J].Geological Journal, 2020, 55(4):2572-2590. doi: 10.1002/gj.3526
[46] Sillitoe R H.Porphyry Copper Systems[J].Economic Geology, 2010, 105(1):3-41. doi: 10.2113/gsecongeo.105.1.3
[47] 张斌.东昆仑哈日扎南区铅锌多金属矿床地质特征及成因探讨[D].长安大学硕士学位论文, 2017: 16-57.
http://cdmd.cnki.com.cn/Article/CDMD-10710-1017868484.htm [48] 何安全, 李玉春, 赵俊伟.青海索拉沟银多金属矿床成矿特征及成因探讨[J].吉林地质, 2009, 28(3):29-34. doi: 10.3969/j.issn.1001-2427.2009.03.008
[49] 刘会文, 李彦强.那日马拉黑地区银多金属矿地质特征及矿床成因[J].西部探矿工程, 2009, 21(6):139-142. doi: 10.3969/j.issn.1004-5716.2009.06.047
① 四川省冶金地质勘查局水文工程大队.青海省都兰县那更康切尔沟银多金属矿普查2017年度工作报告.2017.
② 青海省有色第三地质勘查院.青海都兰沟里金矿整装勘查区矿产调查与找矿预测成果总报告.2018.
③ 中国地质大学(武汉)地质调查研究院.青海省鄂拉山口地区多金属矿成矿规律与找矿预测成果报告.2018.
-