LA-ICP-MS zircon U-Pb dating, rock genesis and tectonic environment of southern Lianyang intrusive body in western Guangdong
-
摘要:
连阳岩体位于扬子板块与华夏板块结合带,岩性为粗中粒斑状角闪黑云二长花岗岩和中细粒斑状黑云二长花岗岩。利用LA-ICP-MS锆石U-Pb法,获得其年龄分别为99.4±0.7 Ma和98.7±0.9 Ma,属晚白垩世侵入岩。岩体具有较高εNd(t)值(-4.22~-7.2和-4.78~-7.52)和较低的T2DM值(1.24~1.49 Ga和1.29~1.51 Ga)。岩石学、地球化学和Sm-Nd同位素研究表明,连阳岩体南段的岩石类型可能为I型和A型的过渡类型。幔源岩浆不仅提供了熔融所需的热,同时也为区内花岗岩的形成提供了物质成分。燕山晚期南岭地区花岗岩的形成构造环境与同期华南花岗岩不同,受印支运动后伸展拉张和古太平洋板块俯冲的双重影响,在拉张剪切环境中形成了东西向花岗岩带。
Abstract:Lianyang pluton, located in the border area between Yangtze plate and Cathaysia plate, consists mainly of coarse-medium-grained hornblende biotite monzogranite and medium-fine -grained biotite monzogranite.Zircon U-Pb pluton ages of 99.4±0.7 Ma and 98.7±0.9 Ma suggest Late Cretaceous granites.The granites have high εNd(t) values (-4.22~-7.2 and -4.78~-7.52) and young Nd model age (1.24~1.49 Ga and 1.29~1.51 Ga).In combination with previous data and mineralogical and geochemical analysis as well as Nd isotopes, the authors have reached the conclusion that the pluton is a transitional type granite between Ⅰ-type and A-type.The mantle provided both the rock material and the heat for the formation of magma.The Nanling granite is different from other granite of Yanshanian period.Influenced by extensional environment after Indosinian and subduction of paleo-Pacific plate, the granite was formed in a tectonic setting of shear-extension.
-
Key words:
- U-Pb dating /
- Nd isotope /
- granite /
- Lianyang pluton /
- Nanling
-
图 1 华南主要构造单元及连阳岩体地质简图(据参考文献[1]修改)
Figure 1.
图 9 连阳岩体南段花岗岩岩石成因类型判别图解(底图据参考文献[17])
Figure 9.
图 10 连阳岩体南段花岗岩t-εNd(t)图解(底图据参考文献[1]修改)
Figure 10.
表 1 连阳岩体南段斑状角闪黑云二长花岗岩LA-ICP-MS锆石U-Th-Pb测年结果
Table 1. LA-ICP-MS zircon U-Th-Pb data for the grained hornblende biotite monzogranite from the southern Lianyang pluton
分析点 元素含量/10-6 同位素比值 232Th/
238U年龄/Ma Th U 207Pb/206Pb σ 207Pb/235U σ 206Pb/238U σ 208Pb/232Th σ 207Pb/206Pb σ 207Pb/235U σ 206Pb/238U σ 208Pb/232Th σ 粗中粒斑状角闪黑云二长花岗岩 PM06-56-1 258 227 0.04807 0.00186 0.10197 0.00372 0.01539 0.00019 0.00497 0.0003 1.14 103 62 99 3 98 1 100 6 PM06-56-2 433 481 0.048 0.00112 0.1014 0.00213 0.01532 0.00013 0.00513 0.00026 0.9 99 34 98 2 98 0.8 103 5 PM06-56-4 400 318 0.04804 0.00141 0.10337 0.00282 0.01561 0.00016 0.00544 0.00033 1.25 101 45 100 3 100 1 110 7 PM06-56-7 305 322 0.04811 0.00153 0.10506 0.0031 0.01584 0.00017 0.0055 0.00043 0.95 105 49 101 3 101 1 111 9 PM06-56-8 433 472 0.0481 0.00141 0.10392 0.00281 0.01567 0.00016 0.00537 0.00047 0.92 104 44 100 3 100 1 108 9 PM06-56-9 301 451 0.04799 0.00283 0.10334 0.00579 0.01562 0.00029 0.00581 0.001 0.67 99 91 100 5 100 2 117 20 PM06-56-10 335 474 0.04806 0.00144 0.10261 0.00285 0.01549 0.00016 0.00514 0.00049 0.7 102 46 99 3 99 1 104 10 PM06-56-11 538 492 0.04807 0.00221 0.10551 0.00458 0.01592 0.00024 0.00517 0.00077 1.1 103 71 102 4 102 2 104 15 PM06-56-12 829 943 0.04807 0.00153 0.1047 0.00334 0.0158 0.00026 0.0048 0.00044 0.88 103 45 101 3 101 2 97 9 PM06-56-13 653 757 0.04789 0.00094 0.10216 0.00209 0.01547 0.00021 0.0047 0.00027 0.86 94 25 99 2 99 1 95 5 PM06-56-14 320 340 0.04797 0.00281 0.10231 0.00578 0.01547 0.00032 0.00575 0.00091 0.94 98 88 99 5 99 2 116 18 PM06-56-15 841 910 0.04813 0.00173 0.10315 0.00363 0.01555 0.00025 0.00539 0.00073 0.93 106 53 100 3 99 2 109 15 PM06-56-16 732 721 0.04803 0.00121 0.10299 0.00265 0.01555 0.00023 0.00507 0.00039 1.02 101 34 100 2 99 1 102 8 PM06-56-17 663 569 0.04807 0.00123 0.1061 0.00274 0.01601 0.00023 0.00491 0.00039 1.16 103 35 102 3 102 1 99 8 PM06-56-18 357 233 0.04802 0.00162 0.10276 0.00345 0.01552 0.00024 0.00471 0.00034 1.54 100 50 99 3 99 2 95 7 PM06-56-20 565 493 0.04806 0.00147 0.10182 0.00307 0.01537 0.00023 0.00453 0.00048 1.15 102 43 98 3 98 1 91 10 PM06-56-21 477 470 0.04805 0.00127 0.10392 0.00277 0.01569 0.00023 0.00473 0.00041 1.02 102 36 100 3 100 1 95 8 PM06-56-22 1204 1178 0.04799 0.00153 0.10074 0.00319 0.01523 0.00024 0.0046 0.0006 1.02 99 45 97 3 97 2 93 12 中细粒斑状黑云二长花岗岩 D1016-1 233 248 0.04803 0.00171 0.10201 0.00341 0.0154 0.00017 0.00454 0.00021 0.93 101 58 99 3 99 1 92 4 D1016-2 229 237 0.04802 0.00169 0.1007 0.00333 0.01521 0.00017 0.0046 0.00023 0.97 100 57 97 3 97 1 93 5 D1016-3 655 987 0.04801 0.00182 0.10298 0.00367 0.01556 0.0002 0.00523 0.00047 0.66 100 59 100 3 100 1 105 9 D1016-4 148 159 0.04807 0.00198 0.10341 0.00403 0.0156 0.00019 0.00449 0.00024 0.93 103 67 100 4 100 1 91 5 D1016-5 499 648 0.04803 0.00121 0.10231 0.00234 0.01545 0.00014 0.00452 0.00026 0.76 101 37 99 2 98.8 0.9 91 5 D1016-7 290 311 0.04811 0.00153 0.10443 0.00308 0.01575 0.00017 0.00476 0.0003 0.93 105 49 101 3 101 1 96 6 D1016-8 348 369 0.048 0.00149 0.10139 0.00292 0.01532 0.00016 0.00475 0.00029 0.94 99 48 98 3 98 1 96 6 D1016-9 240 209 0.04804 0.00175 0.10239 0.00351 0.01546 0.00018 0.00462 0.00028 1.15 101 58 99 3 99 1 93 6 D1016-10 115 111 0.04804 0.0024 0.10213 0.00487 0.01542 0.00022 0.00499 0.00031 1.04 101 81 99 4 99 1 101 6 D1016-12 31 51 0.048 0.00452 0.10101 0.0092 0.01527 0.00036 0.00524 0.00056 0.61 99 158 98 8 98 2 106 11 D1016-13 404 482 0.04801 0.00121 0.09883 0.00227 0.01493 0.00013 0.00441 0.0002 0.84 100 38 96 2 95.5 0.8 89 4 D1016-14 385 408 0.04802 0.00252 0.10034 0.005 0.01516 0.00025 0.00477 0.00044 0.94 100 81 97 5 97 2 96 9 D1016-15 754 983 0.04799 0.00093 0.10084 0.0017 0.01524 0.00012 0.00441 0.0002 0.77 99 25 98 2 97.5 0.8 89 4 D1016-17 344 613 0.0479 0.00368 0.10406 0.00761 0.01576 0.00037 0.0046 0.00091 0.56 94 119 101 7 101 2 93 18 D1016-18 287 210 0.04806 0.002 0.10496 0.00411 0.01584 0.00021 0.00436 0.00028 1.37 102 66 101 4 101 1 88 6 D1016-19 324 324 0.04803 0.00205 0.10659 0.00428 0.01609 0.00022 0.00472 0.00039 1 101 67 103 4 103 1 95 8 D1016-21 278 295 0.04799 0.00146 0.09992 0.00282 0.0151 0.00015 0.00441 0.00025 0.94 99 48 97 3 96.6 1 89 5 D1016-22 299 296 0.04805 0.00169 0.10254 0.00338 0.01548 0.00018 0.00462 0.00033 1.01 102 55 99 3 99 1 93 7 D1016-23 252 307 0.04793 0.00323 0.09775 0.00626 0.0148 0.00031 0.00425 0.00066 0.82 96 104 95 6 95 2 86 13 D1016-24 178 191 0.04799 0.00181 0.10151 0.00361 0.01534 0.00018 0.00439 0.0003 0.93 99 61 98 3 98 1 89 6 表 2 连阳岩体南段花岗岩主量、微量和稀土元素分析结果
Table 2. Major, trace elements and REE analyses of the southern Lianyang pluton
样品编号 DP203-1 PM06-47 PM06-52 PM06-56 PM06-60 PM06-66 PM06-55 DP245-1 PM06-53 DP181-2 DP204-1 PM06-1 PM06-41 DP186-1 DP202-1 岩性 粗中粒斑状角闪黑云二长花岗岩 中细粒斑状黑云二长花岗岩 SiO2 73.83 74.44 71.81 70.45 72.45 72.94 73.58 74.76 76.09 75.25 75.47 76.20 75.61 76.86 76.07 Al2O3 13.30 12.96 13.50 13.62 13.48 13.44 12.99 12.79 12.32 12.69 12.70 12.38 12.46 12.54 12.48 TiO2 0.29 0.27 0.40 0.53 0.33 0.31 0.31 0.24 0.20 0.21 0.19 0.17 0.22 0.17 0.16 Fe2O3 0.6 0.88 1.00 1.30 0.83 0.94 0.76 0.72 0.68 0.56 0.52 0.54 0.49 0.21 0.30 FeO 1.28 0.95 1.42 2.02 1.72 1.31 1.52 1.08 0.78 1.06 0.94 0.62 1.17 0.43 0.95 CaO 1.46 1.03 1.88 2.03 1.43 1.47 1.29 1.06 1.14 0.71 0.76 0.79 1.02 0.48 0.78 MgO 0.32 0.31 0.51 0.80 0.40 0.44 0.32 0.27 0.18 0.23 0.17 0.21 0.20 0.13 0.10 K2O 4.77 5.38 5.04 5.08 5.38 5.07 5.07 5.11 4.94 5.08 5.19 5.46 4.90 5.25 5.15 Na2O 3.34 3.04 3.62 3.30 3.28 3.43 3.32 3.20 3.12 3.34 3.28 3.07 3.41 3.22 3.32 MnO 0.04 0.04 0.05 0.07 0.06 0.05 0.05 0.03 0.04 0.047 0.04 0.02 0.05 0.01 0.03 P2O5 0.07 0.06 0.11 0.14 0.09 0.08 0.08 0.05 0.05 0.04 0.04 0.03 0.05 0.04 0.03 H2O+ 0.37 0.43 0.45 0.41 0.35 0.17 0.5 0.30 0.32 0.4 0.42 0.32 0.30 0.41 0.37 烧失量 0.59 0.58 0.56 0.55 0.46 0.41 0.65 0.62 0.39 0.74 0.67 0.46 0.39 0.62 0.61 总计 99.90 99.93 99.89 99.88 99.89 99.90 99.92 99.95 99.92 99.95 99.97 99.95 99.95 99.96 99.97 DI 89.16 91.45 88.05 84.7 88.56 89.01 89.81 91.49 92.26 93.09 93.35 94.04 92.32 95.66 93.84 A/NK 1.25 1.20 1.18 1.24 1.20 1.21 1.18 1.18 1.17 1.15 1.15 1.13 1.14 1.14 1.13 A/CNK 0.999 1.021 0.910 0.932 0.975 0.974 0.977 1.005 0.981 1.033 1.025 0.999 0.976 1.058 1.002 σ43 2.13 2.25 2.59 2.55 2.54 2.41 2.30 2.17 1.96 2.19 2.20 2.19 2.11 2.12 2.17 A/MF 3.92 3.98 2.95 2.08 2.99 3.22 3.30 4.08 5.07 4.53 5.23 5.89 4.46 10.90 6.29 C/MF 0.78 0.58 0.75 0.56 0.58 0.64 0.60 0.61 0.85 0.46 0.57 0.68 0.66 0.72 0.71 La 35.1 55.7 64.0 48.7 63.1 57.7 75.1 46.0 89.5 65.9 56.4 49.3 80.0 40.8 57.4 Ce 68.4 105 111 94 116 95.8 131 81 134 127 110 90.5 147 74.4 111 Pr 8.12 11.5 13.9 10.8 12.3 10.5 14.5 10.3 14.4 14.6 12.3 10.9 15.4 8.68 12.5 Nd 31.6 39.4 50.4 40.6 42.4 35.7 50.5 34.7 45.9 52 44 39.6 52.6 30.6 44.5 Sm 6.48 8.18 10.1 8.23 8.04 6.39 9.94 7.39 7.65 10 7.7 6.85 10.4 5.69 8.29 Eu 1.05 0.72 1.38 1.37 1.11 1.14 1.23 0.6 1.11 0.48 0.43 0.55 0.6 0.34 0.34 Gd 5.94 6.61 8.04 6.41 6.61 5.45 8.14 6.89 7.07 9.75 7.30 6.68 8.27 5.53 8.03 Tb 1.08 1.38 1.63 1.29 1.25 0.95 1.62 1.39 1.16 1.70 1.26 1.12 1.68 1.02 1.37 Dy 6.27 8.29 9.70 7.47 7.06 5.21 9.66 8.64 6.37 10.3 7.45 6.77 9.99 6.16 8.17 Ho 1.27 1.82 2.07 1.59 1.51 1.07 2.03 1.94 1.39 2.13 1.53 1.42 2.14 1.28 1.72 Er 3.83 4.92 5.65 4.22 4.16 2.83 5.56 6.03 3.94 6.81 4.99 4.63 5.86 3.96 5.47 Tm 0.65 1.03 1.16 0.89 0.89 0.57 1.2 1.06 0.84 1.08 0.85 0.87 1.28 0.66 0.91 Yb 4.22 5.41 6.37 4.92 5.04 3.15 6.80 7.21 4.70 7.22 5.82 5.77 7.24 4.33 6.13 Lu 0.63 0.82 0.96 0.74 0.76 0.48 1.02 1.21 0.73 1.13 0.92 0.78 1.09 0.66 0.95 Y 35.5 56.5 63.3 46.3 44.8 31.5 62.5 58.6 42.0 60.0 46.5 42.1 65 39.3 48.7 ΣREE 174.64 250.78 286.36 231.23 270.0 226 318.30 214.0 318.76 310.0 260.95 225.74 343.55 184.11 266.78 LREE 150.75 220.50 250.78 203.70 242.95 207.23 282.27 179.99 292.56 269.98 230.83 197.70 306.00 160.51 234.03 HREE 23.809 30.28 35.58 27.53 27.28 19.71 36.03 34.37 26.20 40.12 30.12 28.04 37.55 23.60 32.75 L/H 6.31 7.28 7.05 7.40 8.91 10.51 7.83 5.24 11.17 6.73 7.66 7.05 8.15 6.80 7.15 LaN/YbN 5.97 7.39 7.21 7.10 8.98 13.14 7.92 4.58 13.66 6.55 6.95 6.13 7.93 6.76 6.72 δEu 0.51 0.29 0.45 0.56 0.45 0.58 0.41 0.25 0.45 0.15 0.17 0.25 0.19 0.18 0.13 δCe 0.96 0.96 0.87 0.96 0.96 0.88 0.91 0.88 0.83 0.96 0.98 0.92 0.96 0.92 0.97 Li 50.5 70.5 34.0 57.3 78.3 66.5 67.2 59.2 37.4 63.2 66.3 38.6 96.1 7.33 64.8 Be 4.96 4.00 5.27 4.41 6.21 4.89 7.36 7.97 4.26 5.12 6.47 6.50 11.0 3.54 5.24 Sc 3.70 4.25 5.40 7.47 5.35 4.90 4.93 3.05 2.93 4.34 3.06 3.52 4.26 2.31 2.75 V 17.1 18.5 33.0 40.2 22.4 29.1 20.5 14.7 14.1 11.4 9.51 16.8 16.7 7.92 7.53 Cr 3.29 5.73 8.31 8.96 7.15 8.42 7.29 2.91 5.14 3.49 2.62 4.14 5.36 2.27 2.76 Co 2.08 2.45 4.86 6.55 3.24 3.89 2.92 1.97 1.94 1.87 1.21 1.20 1.65 0.72 0.99 Ni 1.11 1.26 3.26 3.89 2.1 2.48 2.16 0.96 1.13 1.07 0.53 0.73 2.14 0.39 0.47 Cu 4.12 3.51 6.15 7.34 3.64 4.33 3.63 2.63 4.36 3.87 1.9 8.00 2.26 1.85 4.83 Zn 38.6 30.9 50.9 69.7 52.2 48.5 50.1 26.0 39.7 34.9 31.4 28.2 33.4 15.2 23.5 Ga 16.1 16.2 19.1 18.7 18.5 19.8 18.3 17.0 15.6 18.4 17.4 18.2 18.3 15.0 16.3 Rb 299 431 274 299 353 324 389 384 243 440 456 481 470 401 415 Sr 96.0 50.3 88.5 106 59.8 77.4 57.1 50.5 62.4 33.8 37.2 49.2 32.2 43.6 26.8 Zr 181 160 143 224 259 178 181 157 91.7 180 156 107 131 140 136 Nb 17.5 21.8 24.9 23.7 26.8 20.9 31.2 21.9 16.5 29.0 27.3 25.4 30.2 19.4 24.1 Mo 3.50 0.67 0.70 1.91 1.43 0.46 2.29 0.26 0.37 0.57 1.49 0.74 0.92 0.61 2.14 Cs 26.0 0.08 0.16 0.05 0.06 0.06 0.12 20.5 0.15 24.5 20.4 14.8 0.05 8.78 20.1 Ba 618 354 657 707 454 466 441 249 314 178 173 299 179 143 100 Hf 6.35 5.90 6.17 10.80 9.79 7.04 8.51 5.17 3.73 7.45 7.31 4.74 5.46 5.10 6.67 Ta 2.20 1.74 2.52 2.27 2.61 1.75 3.43 3.50 2.11 3.96 4.05 2.95 4.03 2.30 3.32 W 6.23 3.42 2.77 4.04 7.30 6.04 6.35 2.42 3.73 3.39 4.28 4.64 5.91 1.76 3.21 Pb 46.2 45.5 53.4 43.5 48.6 49.4 40.2 35.9 58.3 55.8 44.3 74.5 50.1 36.3 45.3 Bi 0.29 0.35 0.65 0.27 0.31 0.30 1.61 0.59 0.27 0.50 0.24 0.26 0.31 0.29 0.16 Th 34.3 37.9 34.0 29.9 33.0 31.0 26.7 50.1 30.2 60.6 53.8 63.6 48.4 47.6 60.5 U 10.2 11.7 9.26 9.0 10.9 6.58 10.1 15.3 7.2 19.4 16.6 17.4 18.0 11.0 20.3 Sn 4.26 6.06 8.39 4.85 6.12 5.01 5.46 3.62 3.93 6.12 4.00 5.28 5.61 2.70 2.66 Au 0.33 0.27 0.34 0.27 0.32 0.38 0.48 0.96 0.35 0.38 0.47 0.38 0.35 0.44 0.36 注:主量元素含量单位为%,稀土和微量元素含量单位为10-6,Au含量单位为10-9 表 3 燕山期连阳岩体南段Nd同位素组成
Table 3. Nd isotopic data of the southern Lianyang pluton
次序 样号 (147Sm/144Nd)m (143Nd/144Nd)m ±2σ t/Ma εNd(0) εNd(t) (143Nd/144Nd)i fSm/Nd T2DM/Ga 早期粗中粒斑状角级黑云二长花岗岩 PM06-45 0.115375778 0.512249 2 99 -7.6 -6.56 0.512174 -0.41 1.43 PM06-52 0.12117996 0.512373 2 99 -5.2 -4.22 0.512294 -0.38 1.24 PM06-56 0.12257835 0.512221 4 99 -8.1 -7.2 0.512141 -0.38 1.49 PM06-60 0.114664811 0.512316 4 99 -6.3 -5.25 0.512241 -0.42 1.32 晚期中细粒斑状黑云二长花岗岩 PM06-54 0.111694587 0.512237 6 100 -7.8 -6.73 0.512164 -0.43 1.44 PM06-55 0.119024119 0.512342 9 100 -5.8 -4.78 0.512264 -0.39 1.29 PM06-53 0.100783333 0.512262 8 98 -7.3 -6.14 0.512197 -0.49 1.39 PM06-40 0.109005132 0.512201 2 100 -8.5 -7.4 0.51213 -0.45 1.50 PM06-41 0.119560456 0.512202 2 100 -8.5 -7.52 0.512124 -0.39 1.51 PM06-43 0.115225253 0.512225 3 100 -8.1 -7.01 0.51215 -0.41 1.47 PM06-44 0.121732183 0.51221 3 100 -8.3 -7.4 0.51213 -0.38 1.50 -
[1] 马星华, 陈斌, 王志强, 等.南岭连阳复式岩体成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素约束[J].地学前缘, 2014, 21(6):264-280.
[2] 陈毓川.中国主要成矿区带矿产资源远景评价[M].北京:地质出版社, 1999.
[3] 朱金初, 张佩华, 谢才富, 等.南岭西段花山-姑婆山侵入岩带锆石U-Pb年龄格架及其地质意义[J].岩石学报, 2006, (9):2270-2278. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200609002
[4] 毛景文, 谢桂青, 郭春丽, 等.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景[J].岩石学报, 2008, (10):2329-2338. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200710003.htm
[5] 华仁民, 李光来, 张文兰, 等.华南钨和锡大规模成矿作用的差异及其原因初探[J].矿床地质, 2010, (1):9-23. doi: 10.3969/j.issn.0258-7106.2010.01.003
[6] 王锦荣, 张哲坤, 凌明星, 等.南岭早侏罗世稀有金属成矿作用研究——以闽西南大坪花岗斑岩为例[J].岩石学报, 2020, 36(1):125-140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98202001013
[7] 赵如意, 王登红, 陈毓川, 等.南岭成矿带铀矿地质特征、成矿规律与全位成矿模式[J].地质学报, 2020, 94(1):149-160. http://d.old.wanfangdata.com.cn/Periodical/dizhixb202001011
[8] 李建康, 李鹏, 王登红, 等.中国铌钽矿成矿规律[J].科学通报, 2019, 64(15):1545-1566.
[9] Black L P, Gulson B L.The age of the Mud Tank carbonatite, Strangways Range, Northern Territory[J].BMR J.Aust.Geol.Geophys., 1978, 3:227-232. http://www.researchgate.net/publication/301347326_The_age_of_the_Mud_Tank_carbonatite_Strangways_range_Northern_Territory
[10] Jackson S E, Pearson N J, Griffin WL, et al.The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J].Chem.Geol., 2004, 211:47-69. doi: 10.1016/j.chemgeo.2004.06.017
[11] Griffin W L, Belousova E A, Shee S R, et al.Archean crustal evolution in the northern Yilgarn Craton:U-Pb and Hf-isotope evidence from detrital zircons[J].Precambrian Res., 2004, 131:231-282. doi: 10.1016/j.precamres.2003.12.011
[12] Gao S, Rudnick R L, Yuan H L, et al.Recycling lower continental crust in the North China craton[J].Nature, 2004, 432(7019):892-897. doi: 10.1038/nature03162
[13] 全国同位素地质年龄数据汇编小组.全国同位素地质年龄数据汇编(第四集)[M].北京:地质出版社, 1986
[14] 高剑峰, 凌洪飞, 沈渭洲.粤西连阳复式岩体的地球化学特征及其成因研究[J].岩石学报, 2005, 21(6):1645-1656. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200506012
[15] Sun S S, Mc Donough W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J].Geological Society, London, Special Publications, 1989, 42:313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[16] 李献华, 李武显, 李正祥.再论南岭燕山早期花岗岩的成因类型与构造意义[J].科学通报, 2007, 52(9):981-991. doi: 10.3321/j.issn:0023-074X.2007.09.001
[17] Whalen J J B, Currie K L, Chappell B W.A-type granites:geochemical characteristics, discrimin atuon and petrogenesis[J].Contributions to Mineralogy and Petrology, 1987, 95:407-419. doi: 10.1007/BF00402202
[18] 王新光.华南加里东期花岗岩研究及其形成的构造地质背景分析[D].南京大学博士学位论文, 1991.
[19] 陈小明, 王汝成, 刘昌实, 等.广东从化佛冈(主体)黑云母花岗岩定年和成因[J].高校地质学报, 2002, 8(3):293-307. doi: 10.3969/j.issn.1006-7493.2002.03.006
[20] 朱炳泉, 地球科学中同位素体系理论与应用:兼论中国大陆壳幔演化[M].北京:科学出版社, 1998.
[21] Gilder S A, Uill J, Coe R S, et al.Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China[J].Journal of Geophysical Research, 1996, 101(B7):16137-16154. doi: 10.1029/96JB00662
[22] Li X H, Chung S L, ·Zhou H W, et al.Jurassic intraplate magmatism in southern Hunan-eastern Guangxi:40Ar/39Ar dating, geochemistry, Sr-Nd isotopes and implications for the tectonic evolution of SE China[J].Geological Society, London, Special Publications, 2004, 226(1):193-215. doi: 10.1144/GSL.SP.2004.226.01.11
[23] Zhao Z H, Bao Z W, Zhang B Y.Geochemistry of the Mesozoic basaltic rocks in southern Hunan Province[J].Science in China:Series D, 1998, 41:102-112. doi: 10.1007/BF02875640
[24] Wang Y J, Fan W M, Guo F, et al.Geochemistry of Mesozoic mafic rocks adjacent to the Chenzhou-Linwu fault, South China:Implications for the lithospheric boundary between the Yangtze and Cathaysia blocks[J].International Geology Review, 2003, 45(3):263-286. doi: 10.2747/0020-6814.45.3.263
[25] Zhou X M, Li W X.Origin of Late Mesozoic igneous rocks in Southeastern China:Implications for lithosphere subduction and under plating of mafic magmas[J].Tectonophysics, 2000, 326(3/4):269-287. doi: 10.1016/S0040-1951(00)00120-7
[26] 李武显, 周新民.中国东南部晚中生代俯冲带探索[J].高校地质学报, 1999, 2:45-50. http://www.cnki.com.cn/article/cjfd1999-gxdx902.004.htm
[27] 张旗, 赵太平, 王焰, 等.中国东部燕山期岩浆活动的几个问题[J].岩石矿物学杂志, 2001, 3:273-280, 292. doi: 10.3969/j.issn.1000-6524.2001.03.009
[28] 陈培荣, 华仁民, 章邦桐, 等.南岭燕山早期后造山花岗岩类:岩石学制约和地球动力学背景[J].中国科学(D辑), 2002, 32(4):279-289. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200204003
[29] 孙涛, 周新民, 陈培荣, 等.南岭东段中生代强过铝花岗岩成因及其大地构造意义[J].中国科学(D辑), 2003, 33(12):1209-1218 http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200312010
[30] 李剑锋, 付建明, 马昌前, 等.南岭九嶷山地区砂子岭岩体成因与构造属性:来自锆石U-Pb年代学、岩石地球化学及Sr、Nd、Hf同位素证据[J].地球科学, 2020, 45(2):374-388. http://d.old.wanfangdata.com.cn/Periodical/dqkx202002003
[31] Li Z X, Li X H.Formation of the 1300-km-wide intracontinental orogeny and postorogenic magmatic province in Mesozoic South China:Aflat-slabsubductionmodel[J].Geology, 2007, 35(2):179-182. doi: 10.1130/G23193A.1
[32] 邓晋福, 赵国春, 赵海玲, 等.中国东部燕山期火成岩构造组合与造山-深部过程[J].地质论评, 2000, 46:41-47. doi: 10.3321/j.issn:0371-5736.2000.01.006
[33] Hollway N H.North Palawan Block, Philippines-Its relation to Asian Mainland and Role in evolution of South China Sea[J].American Association Petroleum Geologists Bulletin, 1982, 66:1355-1383. http://cn.bing.com/academic/profile?id=e93b7766a0ed9db1228b218c7a70a25f&encoded=0&v=paper_preview&mkt=zh-cn
[34] 孙卫东, 凌明星, 汪方跃, 等.太平洋板块俯冲与中国东部中生代地质事件[J].矿物岩石地球化学通报, 2008, 27(3):218-225. doi: 10.3969/j.issn.1007-2802.2008.03.002
[35] Chen P R, Hua R M, Zhang B T, et al.Early Yanshanian post-orogenic granitoids in the Nanling region-petrological constraints and geodynamic setting[J].Science in China (Series D), 2002, 45(8):755-768. doi: 10.1007/BF02878432