大兴安岭嘎仙蛇绿混杂岩中超镁铁质岩地球化学、年代学特征及其地质意义

郑吉林, 刘涛, 徐立明, 梁中恺, 郭晓宇, 王大可, 孙靖尧. 大兴安岭嘎仙蛇绿混杂岩中超镁铁质岩地球化学、年代学特征及其地质意义[J]. 地质通报, 2020, 39(4): 480-490.
引用本文: 郑吉林, 刘涛, 徐立明, 梁中恺, 郭晓宇, 王大可, 孙靖尧. 大兴安岭嘎仙蛇绿混杂岩中超镁铁质岩地球化学、年代学特征及其地质意义[J]. 地质通报, 2020, 39(4): 480-490.
ZHENG Jilin, LIU Tao, XU Liming, LIANG Zhongkai, GUO Xiaoyu, WANG Dake, SUN Jingyao. Geochemical and chronologic characteristics of ultramafic rocks in Gaxian ophiolitic mélange of the Da Hinggan Mountains and their geological significance[J]. Geological Bulletin of China, 2020, 39(4): 480-490.
Citation: ZHENG Jilin, LIU Tao, XU Liming, LIANG Zhongkai, GUO Xiaoyu, WANG Dake, SUN Jingyao. Geochemical and chronologic characteristics of ultramafic rocks in Gaxian ophiolitic mélange of the Da Hinggan Mountains and their geological significance[J]. Geological Bulletin of China, 2020, 39(4): 480-490.

大兴安岭嘎仙蛇绿混杂岩中超镁铁质岩地球化学、年代学特征及其地质意义

  • 基金项目:
    中国地质调查局项目《黑龙江省大兴安岭鄂伦春自治旗、齐奇岭幅1:5万区域地质矿产调查》(编号:DD2016007807)和《太行山区山西段生态修复支撑调查》(编号:DD20208069)
详细信息
    作者简介: 郑吉林(1985-), 男, 硕士, 工程师, 从事区域地质调查工作。E-mail:123982315@qq.com
  • 中图分类号: P588.12+5;P597

Geochemical and chronologic characteristics of ultramafic rocks in Gaxian ophiolitic mélange of the Da Hinggan Mountains and their geological significance

  • 嘎仙蛇绿混杂岩位于新林-嘎仙-吉峰蛇绿混杂岩带中段。岩石主要由镁铁-超镁铁质岩石组成,呈构造岩块的形式与变质细碎屑岩基质混杂产出。对超镁铁质岩系统的岩石学、地球化学和年代学研究结果表明,超镁铁质岩石SiO2含量平均值为44.87%,Mg#平均值为87.06,锆石U-Pb同位素年龄为649.6±4.2 Ma,时代为新元古代。稀土元素配分曲线总体呈平坦型,具有富集型洋脊玄武岩(E-MORB)向洋岛玄武岩(OIB)过渡的趋势。样品亏损Nb、Ta、Ti元素,相对富集Th、U、Zr、Hf元素,具有岛弧岩浆岩的特征。在Nb/Yb-Th/Yb构造环境判别图解中,样品点落入E-MORB和OIB交汇部位。通过与区域构造带岩石组合和地球化学特征对比,认为嘎仙超镁铁岩岩浆源区可能为受俯冲流体交代的富集地幔,属俯冲型(SSZ)蛇绿岩,其就位机制与持续洋内俯冲有关。

  • 加载中
  • 图 1  嘎仙蛇绿混杂岩分布区地质简图(图b据参考文献[2]修改)

    Figure 1. 

    图 图版Ⅰ   

    Figure 图版Ⅰ. 

    图 2  嘎仙超镁铁质岩部分锆石阴极发光(CL)图像

    Figure 2. 

    图 3  嘎仙超镁铁质岩锆石U-Pb谐和图

    Figure 3. 

    图 4  嘎仙超镁铁质岩TAS图解(a)和Nb/Y-Zr/TiO2岩石分类图解(b)(a、b底图据参考文献[11])

    Figure 4. 

    图 5  嘎仙超镁铁质岩稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)

    Figure 5. 

    图 6  嘎仙超镁铁质岩Sm-Sm/Yb相关图[24-25]

    Figure 6. 

    图 7  嘎仙超镁铁质岩Hf/3-Th-Nb/16[29]与Y/15-La/10-Nb/8[30]构造环境判别图解

    Figure 7. 

    图 8  嘎仙超镁铁质岩Nb/Yb-Th/Yb构造环境判别图解[31]

    Figure 8. 

    表 1  嘎仙超镁铁质岩(WJE032)锆石U-Th-Pb同位素分析结果

    Table 1.  The zircon U-Th-Pb isotope analyses of Gaxian ultramafic rocks(WJE032)

    测点号 含量/10-6 Th/U 同位素比值 年龄/Ma
    Pb U Th 206Pb/238U ±1σ 207Pb/235U ±1σ 207Pb/206Pb ±1σ 206Pb/238U ±1σ 207Pb/235U ±1σ
    1 17 148 83 0.5564 0.1068 0.0011 0.9187 0.013 0.0624 0.0008 654 7 662 9
    2 22 170 173 1.0193 0.1071 0.0011 0.9159 0.0223 0.062 0.0016 656 7 660 16
    3 19 156 114 0.7287 0.1054 0.0011 0.8882 0.0144 0.0611 0.0009 646 7 645 10
    4 62 481 507 1.0539 0.1054 0.0011 0.8967 0.012 0.0617 0.0007 646 7 650 9
    5 33 285 152 0.5341 0.1067 0.0011 0.8974 0.0119 0.061 0.0007 654 7 650 9
    6 4 38 18 0.4618 0.105 0.0011 0.9108 0.0198 0.0629 0.0013 644 7 657 14
    7 10 88 58 0.6582 0.105 0.0011 0.9297 0.0166 0.0642 0.0011 643 7 667 12
    8 2 21 10 0.461 0.1078 0.0012 0.9395 0.0437 0.0632 0.0029 660 8 673 31
    9 8 61 67 1.102 0.1052 0.0011 0.915 0.0471 0.0631 0.0032 645 7 660 34
    11 14 120 77 0.6444 0.1062 0.0011 0.9249 0.0137 0.0632 0.0008 651 7 665 10
    12 13 106 81 0.7668 0.1066 0.0011 0.9246 0.0141 0.0629 0.0008 653 7 665 10
    13 10 212 171 0.4889 0.1054 0.0011 0.91 0.0208 0.0626 0.0014 646 6 657 15
    14 4 39 19 0.4356 0.1056 0.0011 0.8981 0.0118 0.0617 0.0007 647 6 651 9
    15 4 40 18 0.5169 0.1052 0.0011 0.9147 0.0266 0.063 0.0018 645 7 660 19
    16 25 225 98 0.6328 0.1042 0.0011 0.9139 0.031 0.0636 0.0021 639 7 659 22
    17 3 26 13 0.6353 0.1033 0.0011 0.8867 0.0493 0.0623 0.0034 634 7 645 36
    18 3 24 15 0.5307 0.1051 0.0011 0.8927 0.0137 0.0616 0.0008 644 7 648 10
    19 2 19 12 0.5976 0.1012 0.001 0.8907 0.0172 0.0638 0.0012 621 6 647 12
    20 17 154 82 0.3979 0.1067 0.0011 0.9143 0.0146 0.0622 0.0009 653 7 659 11
    21 14 128 76 0.5901 0.1004 0.0011 0.8836 0.0295 0.0639 0.002 617 7 643 21
    22 11 96 38 0.7213 0.1078 0.0011 0.9212 0.0133 0.062 0.0008 660 7 663 10
    23 6 57 31 0.528 0.1073 0.0011 0.9069 0.0126 0.0613 0.0008 657 7 655 9
    24 8 77 45 0.7996 0.1064 0.0011 0.908 0.0229 0.0619 0.0015 652 7 656 17
    25 17 145 105 0.3972 0.1068 0.0011 0.9249 0.0363 0.0628 0.0024 654 7 665 26
    26 26 232 123 0.6243 0.1065 0.0011 0.9028 0.0469 0.0615 0.0032 652 7 653 34
    27 10 87 73 0.5056 0.1084 0.0011 0.909 0.0133 0.0608 0.0008 664 7 657 10
    28 14 120 77 1.125 0.1077 0.0011 0.9173 0.0345 0.0618 0.0023 659 7 661 25
    29 13 106 81 1.4355 0.1241 0.0015 1.1738 0.0231 0.0686 0.0012 754 9 788 16
    30 10 212 171 0.6178 0.109 0.0011 0.9382 0.0129 0.0624 0.0008 667 7 672 9
    下载: 导出CSV

    表 2  嘎仙超镁铁质岩岩石地球化学特征

    Table 2.  Major, trace and rare earth element characteristics of Gaxian ultramafic rocks

    样品编号 WJE032 WJE059 WJE065 WJE070 WJE071
    名称 蛇纹石化橄榄岩 蛇纹石化橄榄辉石岩 蛇纹石化橄榄岩 蛇纹石化橄榄辉石岩 蛇纹石化橄榄辉石岩
    SiO2 43.80 45.47 45.44 44.64 45.01
    Al2O3 8.65 3.54 5.93 8.90 2.65
    TiO2 0.81 0.27 0.61 1.12 0.10
    Fe2O3 1.18 0.98 1.21 1.59 2.00
    FeO 8.90 8.11 6.41 7.66 5.80
    CaO 6.59 5.85 7.12 6.45 4.51
    MgO 23.21 30.47 26.97 26.37 34.19
    K2O 0.08 0.01 0.02 0.03 0.01
    Na2O 0.13 0.04 0.13 0.22 0.05
    MnO 0.18 0.13 0.19 0.18 0.10
    P2O5 0.12 0.05 0.10 0.16 0.16
    TFeO 9.96 9.00 7.50 9.10 7.61
    Mg# 83.0 87.7 88.3 85.9 90.4
    灼失量 6.00 4.55 5.48 2.22 4.85
    总和 99.67 99.47 99.61 99.53 99.45
    K2O/Na2O 0.62 0.16 0.12 0.12 0.23
    K2O+Na2O 0.22 0.05 0.15 0.24 0.06
    Y 19.0 9.30 8.44 19.6 5.72
    La 11.0 5.21 7.90 20.7 5.36
    Ce 23.3 13.0 14.9 42.2 9.31
    Pr 3.40 1.82 1.80 5.29 1.15
    Nd 15.4 7.77 6.83 21.0 4.66
    Sm 3.89 1.90 1.52 4.18 0.98
    Eu 0.90 0.31 0.51 0.95 0.32
    Gd 2.96 1.62 1.37 3.84 1.06
    Tb 0.57 0.30 0.25 0.66 0.19
    Dy 3.44 1.74 1.55 4.12 1.18
    Ho 0.65 0.32 0.29 0.78 0.22
    Er 1.78 0.91 0.84 2.29 0.58
    Tm 0.30 0.15 0.14 0.41 0.09
    Yb 1.75 0.90 0.84 2.67 0.56
    Lu 0.25 0.14 0.13 0.35 0.08
    Li 14.8 8.97 7.27 7.16 9.31
    Be 0.63 0.44 0.64 1.04 0.16
    Sc 26.6 17.6 22.4 23.8 14.0
    V 117 80.7 95.5 171 56.0
    Cr 1224 1542 1908 2152 2463
    Co 93.6 166 75.4 68.4 82.9
    Ni 1171 2897 1187 965 1330
    Cu 55.3 33.0 15.1 12.6 16.9
    Zn 73.8 58.6 58.0 76.9 61.8
    Ga 8.87 4.40 7.20 13.1 2.95
    Rb 8.42 1.60 6.80 6.39 2.4
    Sr 98.8 190 366 57.7 243
    Zr 76.6 27.0 55.8 105 8.6
    Nb 15.4 4.97 8.10 23.8 1.04
    Mo 1.27 0.44 0.10 1.16 0.23
    Cs 2.44 0.37 0.53 1.02 0.21
    Ba 24.2 6.52 41.7 39.9 61.6
    Hf 2.05 0.76 1.63 2.96 0.34
    Ta 0.78 0.28 0.38 1.77 0.10
    W 2.29 0.61 0.86 0.57 1.38
    Tl 0.19 0.03 0.05 0.03 0.04
    Pb 12.4 0.11 1.99 1.11 4.93
    Bi 0.13 0.15 0.13 0.14 0.08
    Th 2.74 0.95 0.97 2.39 0.39
    U 0.87 0.26 0.47 0.99 0.15
    Nb/Ta 19.7 18.0 21.4 13.4 10.8
    (La/Yb)N 4.53 4.16 6.71 5.58 6.85
    (La/Sm)N 1.84 1.77 3.36 3.21 3.54
    (Gd/ Yb)N' 1.40 1.50 1.34 1.19 1.56
    δEu 0.27 0.17 0.35 0.24 0.31
    δCe 3.81 4.22 3.95 4.03 3.75
    ΣREE 88.6 45.4 47.3 129.0 31.5
    注:σ=(Na2O+ K2O)2/(SiO2-43)(wt%);TFeO=FeO+0.8998Fe2O3;Mg#={100× n(Mg2+)/[(n(Mg2+)+ n(Fe2+)]};主量元素含量单位为%,微量和微土元素含量单位为10-6
    下载: 导出CSV
  • [1]

    刘永江, 张兴洲, 金巍, 等.东北地区晚古生代区域构造演化[J].中国地质, 2010, 37(4):943-951. doi: 10.3969/j.issn.1000-3657.2010.04.010

    [2]

    叶慧文, 张兴洲, 周裕文.牡丹江地区蓝片岩中脉状青铝闪石40Ar-39Ar年龄及其地质意义[J].长春地质学院学报, 1994, 24(4):369-372.

    [3]

    李瑞山.新林蛇绿岩[J].黑龙江地质, 1991, 2(1):19-31. http://d.old.wanfangdata.com.cn/Periodical/hljkjxx201303041

    [4]

    周建波, 曾维顺, 曹嘉麟, 等.中国东北地区的构造格局与演化:从500 Ma到180Ma[J].吉林大学学报(地球科学版), 2012, 45(5):1299-1329. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz200905002

    [5]

    葛文春, 吴福元, 周长勇, 等.大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J].科学通报, 2005, 50(12):1239-1247. doi: 10.3321/j.issn:0023-074X.2005.12.015

    [6]

    胡道功, 谭成轩, 张海.内蒙古阿里河地区中元古代蛇绿岩[J].中国区域地质, 1995, 4:334-343. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500669412

    [7]

    佘宏全, 李进文, 向安平, 等.大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J].岩石学报, 2012, 28(2):571-594. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202018

    [8]

    冯志强.大兴安岭北段古生代构造-岩浆演化[D].吉林大学博士学位论文, 2015.

    [9]

    王玉往, 陈伟民, 李德东, 等.内蒙古嘎仙钴镍硫化物矿床的地质特征及成因探讨[J].矿产勘查, 2016, 7(1):72-81. doi: 10.3969/j.issn.1674-7801.2016.01.009

    [10]

    Liu Y S, Hu Z C, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257(s1/2):34-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=babd721ac13e2675d9485b52683be64c

    [11]

    Winchester J A, Floyd P A.Geochemical magma type discrimination:application to altered and metamorphosed basic igneous rocks[J].Earth & Planetary Science Letters, 1976, 28(3):459-469.

    [12]

    Boynton W V.Geochemistry of the rare earth elements: Meteorite studies[C]//Henderson P.Rare Earth Element Geochemistry.Elsevier, 1984: 63-114.

    [13]

    Sun S S, McDonough W F.Chemical and isotopic systematics of ocean basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J.Magmatism in Oceanic Basins.Geological Society, London, Special Publications, 1989, 42: 313-345.

    [14]

    Volpe A M, Macdougall J D, Hawkins J W. Lau Basinbasalts (LBB):trace element and Sr-Nd isotopic evidence for heterogeneity in back arc basin mantle[J].Earth and Planetary Science Letters, 1988, 90(2):174-186.

    [15]

    何琦, 肖龙, 魏启荣, 等.滇西吉义独蛇绿混杂岩的岩石地球化学特征、成因和构造环境探讨[J].岩石学报, 2009, 25(12):3229-40. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200912011

    [16]

    Mohr P A.Crustal contamination in mafic sheets: a summary[C]//Halls H, Fahrig W F.Mafic DykeSwarms.Geological Association of Canada Special Paper, 1987, 34: 75-80.

    [17]

    Robinson P T, Zhou M F, Hu X F, et al.Geochemical constraints on the origin of the Hegenshan ophiolite, Inner Mongolia, China[J].Journal of Asian Earth Sciences, 1999, 17:423-442. doi: 10.1016/S1367-9120(99)00016-4

    [18]

    Barth M G, McDonough W F, Rudnick R L.Tracking the budget of Nb and Ta in the continental crust[J].Chemical Geology, 2000, 165(3):197-213. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-S0009-2541(99)00173-4/

    [19]

    李昌年.火成岩微量元素岩石学[M].武汉:中国地质大学出版社, 1992:1-195.

    [20]

    Le Roex A P L, Dick H J B, Erlank A J, et al.Geochemistry, mineralogy and petrogenesis of lavas erupted along the southwest Indian Ridge between the Bouvet triple Junction and 11 degree east[J].J.Petrol., 1983, 24(3):267-318. doi: 10.1093/petrology/24.3.267

    [21]

    Fitton J G, James D, Kempton P D, et al.The role of lithosphere mantle in the generation of Late Cenozoicbasic magmas in the western United States[J].J.Petrol., 1988, (Suppl.1):331-349.

    [22]

    Johnaon K T M.Experimental determination of partition coefficients for rare earth and high-field-strength elements betweenclinopyroxene, garnet, and basaltic melt at high pressures[J].Contributions to Mineralogy and Petrology, 1998, 133:60-68. doi: 10.1007/s004100050437

    [23]

    Munker C.The isotope and trace element budgel of the Cambrian Devil River Are System, New Zealand:lentification of four source components[J].J.Petrol., 2000, 41:759-788. doi: 10.1093/petrology/41.6.759

    [24]

    Kinzler R J.Melting of mantle peridotite at pressures approaching the spinel to garnet transition:Application to mid-ocean ridge basalt petrogenesis[J]. J.Geophys.Res., 1997, 102:853-874. doi: 10.1029/96JB00988

    [25]

    Walter M J.Melting of garnet peridotite and the origin of komatiite and depleted lithosphere[J].J.Petrol., 1998, 39:29-60. doi: 10.1093/petroj/39.1.29

    [26]

    Miyashiro A.The Troodos ophiolite complex was probably formed in and island arc setting[J].Earth and Planetary Science Letters, 1973, 19:218-224. doi: 10.1016/0012-821X(73)90118-0

    [27]

    Pearce J A, Lippard S J, Roberts S.Charactesitcs and tectonic significance of supra subducion zone ophiolites[C]//Marginal basin geology.London: Blackwell Scientific Publications, 1984: 7-94.

    [28]

    张旗, 周国庆.中国蛇绿岩[M].北京:科学出版社, 2001:1-180.

    [29]

    Wood D A.The application of a Th-Hf-Ta diagram toproblems of tectonmagmatic classification and to establis-hing the nature of crustal contanmination of basaltic lavas of the British Tertiary volcanic province[J].Earth and Planetary Science Letters, 1980, 50:11-30. doi: 10.1016/0012-821X(80)90116-8

    [30]

    Cabanis B, Lecolle M.The La/10-Y/15-Nb/8 diagram; a tool for distinguishing volcanic series and discovering crustal mixing and/or contamination[M].Compte Rendus de I'Académie des Sciences Series Ⅱ, 1989: 2023-2029.

    [31]

    Pearce J A.Trace element characteristics of lavas from destructive plate boundaries[C]//Orogenic Andesites & Related Rocks.Chichester, Wiley, 1982: 528-548.

    黑龙江省区域地质调查所.内蒙古1: 25万加格达奇、新林镇幅区域地质调查修测报告.2016.

    北京矿产地质研究院.内蒙古自治区鄂伦春自治旗嘎仙地区镍钴铅锌矿普查报告.2009.

    中国地质科学院矿产资源研究所.大兴安岭关键构造-岩浆-成矿时间研究报告.2014.

  • 加载中

(9)

(2)

计量
  • 文章访问数:  870
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2019-01-19
修回日期:  2019-02-27
刊出日期:  2020-04-15

目录