东昆仑祁漫塔格乌兰拜兴地区中泥盆世花岗岩年龄、地球化学特征及其地质意义

王盘喜, 郭峰, 王振宁. 东昆仑祁漫塔格乌兰拜兴地区中泥盆世花岗岩年龄、地球化学特征及其地质意义[J]. 地质通报, 2020, 39(2-3): 194-205.
引用本文: 王盘喜, 郭峰, 王振宁. 东昆仑祁漫塔格乌兰拜兴地区中泥盆世花岗岩年龄、地球化学特征及其地质意义[J]. 地质通报, 2020, 39(2-3): 194-205.
WANG Panxi, GUO Feng, WANG Zhenning. Zircon U-Pb ages, geochemical features and geological implications of Middle Devonian granite in Wulanbaixing area, Qimantag area of East Kunlun Mountains[J]. Geological Bulletin of China, 2020, 39(2-3): 194-205.
Citation: WANG Panxi, GUO Feng, WANG Zhenning. Zircon U-Pb ages, geochemical features and geological implications of Middle Devonian granite in Wulanbaixing area, Qimantag area of East Kunlun Mountains[J]. Geological Bulletin of China, 2020, 39(2-3): 194-205.

东昆仑祁漫塔格乌兰拜兴地区中泥盆世花岗岩年龄、地球化学特征及其地质意义

  • 基金项目:
    中国地质调查局项目《长江中游黄石-萍乡-德兴矿山集中区综合地质调查》(编号:DD20190269)和《青海祁漫塔格金属矿集区综合地质调查》(编号:DD20160073)
详细信息
    作者简介: 王盘喜(1986-), 男, 硕士, 高级工程师, 从事地质矿产及综合地质调查研究。E-mail:4814053@qq.com
  • 中图分类号: P534.44;P588.12+1

Zircon U-Pb ages, geochemical features and geological implications of Middle Devonian granite in Wulanbaixing area, Qimantag area of East Kunlun Mountains

  • 东昆仑祁漫塔格乌兰拜兴地区花岗岩体由二长花岗岩和花岗闪长岩组成,SiO2含量为67.47%~73.63%,全碱(Na2O+K2O)含量为6.74%~7.89%,K2O/Na2O=0.59~1.30,A/CNK=0.91~1.08,属高钾钙碱性系列和钙碱性系列,准铝质-过铝质岩石。稀土元素总量平均为137.28×10-6,δEu值为0.37~0.89,平均为0.57,(La/Yb)N值为6.72~19.36,平均为10.75。稀土元素球粒陨石标准化配分曲线呈负Eu异常明显的右倾型;岩体明显富集大离子亲石元素Rb、K,不相容元素U和Th,轻稀土元素和Pb;相对亏损高场强元素Nb、Ta、P、Ti,以及大离子亲石元素Ba;岩石Rb/Sr值为0.45~1.17,平均为0.72,介于上地幔值和地壳值之间;Nb/Ta值为5.36~13.90,平均为10.93,比值总体低于地幔平均值,显示壳幔混合的特点。采用锆石U-Pb定年的方法,获得乌兰拜兴花岗闪长岩的206Pb/238U年龄为384.1±2.4Ma,代表该岩体的形成年龄。结合岩石地球化学、构造特征和区域地质背景,认为该岩体形成于中泥盆世晚期后碰撞陆内伸展阶段,并与铁多金属矿成矿密切相关,在矿产勘查中应引起重视。

  • 加载中
  • 图 1  东昆仑乌兰拜兴地区地质简图

    Figure 1. 

    图 2  乌兰拜兴花岗岩TAS图解(a)[13]和A/CNK-A/NK图解(b)[14]

    Figure 2. 

    图 3  乌兰拜兴花岗岩SiO2-K2O图解

    Figure 3. 

    图 4  乌兰拜兴花岗岩稀土元素球粒陨石标准化配分图解(a)和微量元素原始地幔标准化蛛网图(b)

    Figure 4. 

    图 5  乌兰拜兴地区花岗闪长岩阴极发光(CL)图像

    Figure 5. 

    图 6  乌兰拜兴地区花岗闪长岩锆石U-Pb谐和图

    Figure 6. 

    图 7  乌兰拜兴花岗岩(Y+Nb)-Rb(a)和(Yb+Ta)-Rb(b)构造环境判别图解

    Figure 7. 

    图 8  乌兰拜兴花岗岩Rb/30-Hf-3Ta构造环境判别图解

    Figure 8. 

    表 1  花岗岩主量、微量和稀土元素分析结果

    Table 1.  Analyses of major, trace and rare earth elements for granites

    岩石
    名称
    样品
    主量元素含量/%总量
    /%
    K2O/
    Na2O
    A/
    NK
    A/CNKK2O+
    Na2O/%
    微量元素含量/10-6
    SiO2Al2O3TFe2O3FeOMgOCaONa2OK2OMnOP2O5TiO2烧失量ScCr
    花岗闪
    长岩
    B172.2213.392.552.010.521.384.952.940.0300.0560.2591.6799.960.591.180.977.893.15410
    B273.6312.982.561.510.481.543.993.450.0280.0620.2950.98100.00.861.260.997.444.40373
    B567.4715.013.742.271.343.863.353.390.0770.1040.3941.2399.971.011.630.936.747.03391
    B672.5113.602.461.690.531.774.403.240.0230.0570.2661.0199.870.741.270.977.643.37588
    B773.4013.322.491.230.601.134.223.300.0230.0620.2941.1399.970.781.271.067.523.88415
    B973.4913.332.221.290.471.324.173.350.0210.0570.2751.2799.970.801.271.037.524.18491
    二长花
    岗岩
    B373.1614.081.791.500.392.223.274.050.0320.0420.1690.79100.01.241.441.027.322.31485
    B473.4013.582.381.930.601.952.963.860.0400.0790.3230.7899.961.301.501.086.822.78546
    B873.3012.942.261.510.411.963.844.000.0390.0540.2550.9299.981.041.220.917.842.07375
    岩石
    名称
    样品
    微量元素含量/10-6
    GaRbSrYCsBaLaCePrNdSmEuGdTbDyHoErTmYb
    花岗闪
    长岩
    B116.793.410625.11.6048344.287.09.8435.65.730.6675.180.8284.280.8632.500.4002.68
    B215.410113921.62.6246828.655.76.3423.54.150.5513.770.6923.720.7702.250.3642.51
    B515.712527815.25.8848034.759.76.1521.73.530.8563.280.5232.670.5311.610.2611.72
    B616.490.115026.21.1449338.775.98.6331.45.420.6314.700.8144.550.8702.600.4613.07
    B716.490.715423.92.3150532.261.97.2126.14.630.6414.230.7334.210.8502.530.4252.88
    B917.999.814923.72.3449436.971.58.0229.15.180.6284.570.7754.280.8362.460.4132.65
    二长花
    岗岩
    B314.022419211.511.525816.330.43.1211.42.080.5261.790.3061.670.3521.090.2201.74
    B415.81392038.578.8245530.552.75.3318.42.760.6042.380.3311.620.2870.9220.1611.13
    B815.310714512.41.0771618.533.93.8413.92.340.6572.220.3781.990.3861.200.2031.45
    岩石
    名称
    样品
    微量元素含量/10-6LREE/
    HREE
    (La/Yb)NδEuδCeNb/TaRb/SrLa/NbBa/Nb
    LuPbThUNbTaZrHfΣREELREE
    花岗闪
    长岩
    B10.39111.112.81.347.490.66372.42.67200.16183.0410.6911.830.370.9811.300.885.9064.49
    B20.35513.113.01.577.710.64479.02.70133.27118.848.248.170.420.9711.970.733.7160.70
    B50.25219.725.72.637.300.76776.02.28137.48126.6411.6714.470.760.929.520.454.7565.75
    B60.4539.1312.71.747.250.65674.32.55178.20160.689.179.040.370.9811.050.605.3468.00
    B70.40511.611.81.787.950.65573.42.64148.94132.688.168.020.430.9612.140.594.0563.52
    B90.38213.312.61.447.880.65277.92.69167.69151.339.259.990.390.9712.090.674.6862.69
    二长花
    岗岩
    B30.30127.626.13.157.721.4464.02.5671.3063.838.556.720.810.985.361.172.1133.42
    B40.18924.728.32.649.440.85694.53.00117.31110.2915.7119.360.700.9311.030.683.2348.20
    B80.20416.75.390.9344.560.32891.82.4581.1773.149.119.150.870.9413.900.744.06157.02
    下载: 导出CSV

    表 2  乌兰拜兴地区花岗闪长岩锆石U-Th-Pb分析结果

    Table 2.  U-Th-Pb isotopic data of zircons of granodiorite in Wulanbaixing area

    样品号含量/10-6Th/
    U
    同位素比值年龄/Ma
    ThU207Pb/206Pb207Pb/235U206Pb/238U206Pb/238U
    B1-013656210.5870.05342.90.4573.20.06211.43885
    B1-023144840.6490.05511.70.4652.30.06121.73836
    B1-033494960.7030.05311.70.4622.30.06311.63946
    B1-044996420.7770.05361.60.4572.20.06181.43875
    B1-053617700.4680.05481.40.4622.00.06121.43835
    B1-061694780.3540.05581.70.4662.30.06051.53795
    B1-071994460.4450.05181.90.4342.40.06071.53806
    B1-083877270.5320.05411.50.4592.10.06151.53855
    B1-092646250.4230.05361.80.4512.30.06101.53825
    B1-101494450.3350.05461.90.4592.50.06101.63826
    B1-113075640.5440.05291.70.4552.30.06241.53906
    B1-123766800.5540.05581.60.4732.20.06141.63846
    B1-131654620.3580.05302.00.4462.60.06111.73826
    B1-142764840.5710.05794.50.4574.70.05721.63585
    B1-152605160.5050.05292.70.4443.10.06081.53806
    B1-164947970.6190.05441.50.4602.10.06131.43835
    B1-173484960.7020.05372.00.4542.50.06131.63846
    B1-182214540.4870.05566.00.4666.20.06091.63816
    B1-195308100.6540.05391.60.4602.30.06191.73876
    B1-201584070.3880.05572.20.4682.70.06091.73816
    B1-213156970.4520.05581.70.4752.30.06171.63866
    B1-221823810.4780.05482.30.4682.90.06201.83887
    B1-234756430.7380.05651.70.4782.30.06141.53846
    下载: 导出CSV
  • [1]

    李侃, 高永宝, 钱兵, 等.东昆仑祁漫塔格虎头崖铅锌多金属矿区花岗岩年代学、地球化学及Hf同位素特征[J].中国地质, 2015, 42(3):630-645. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201503017

    [2]

    王松, 丰成友, 李世金, 等.青海祁漫塔格卡尔却卡铜多金属矿区花岗闪长岩锆石SHRIMP U-Pb测年及其地质意义[J].中国地质, 2009, 36(1):74-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200901005

    [3]

    丰成友, 王雪萍, 舒晓峰, 等.青海祁漫塔格虎头崖铅锌多金属矿区年代学研究及地质意义[J].吉林大学学报, 2011, 41(6):1806-1817. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201106015

    [4]

    高永宝, 李文渊, 钱兵, 等.东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J].岩石学报, 2014, 30(6):1647-1665. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201406009

    [5]

    赵一鸣, 丰成友, 李大新, 等.青华力西部祁漫塔格地区主要矽卡岩铁多金属矿床成矿地质背景和矿化蚀变特征[J].矿床地质, 2013, 32(1):1-19. http://d.wanfangdata.com.cn/Periodical_kcdz201301001.aspx

    [6]

    高永宝, 李文渊, 马晓光, 等.东昆仑尕林格铁矿床成因年代学及Hf同位素制约[J].兰州大学学报(自然科学版), 2012, 48(2):36-47. http://d.old.wanfangdata.com.cn/Periodical/lzdxxb201202006

    [7]

    姚磊, 吕志成, 赵财胜, 等.青海祁漫塔格地区牛苦头矿床和卡而却卡矿床B区花岗质岩石LA-ICP-MS锆石U-Pb年龄——对泥盆纪成岩成矿作用的指示[J].地质通报, 2016, 35(7):1158-1168. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20160712&flag=1

    [8]

    赵洪菊, 陈静, 王秉璋, 等.祁漫塔格东段晚三叠世-早侏罗世花岗岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J].地质通报, 2017, 36(6):1001-1009. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20170612&flag=1

    [9]

    郭通珍, 刘荣, 陈发彬, 等.青海乌兰乌珠尔斑状正长花岗岩LA-MC-ICPMS锆石U-Pb定年及其地质意义[J].地质通报, 2011, 30(8):1203-1211. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20110804&flag=1

    [10]

    GB/T 14506, 硅酸盐岩石化学分析方法[M].北京:科学出版社, 2010.

    [11]

    尹明, 李家熙, 等.岩石矿物分析第四版[M].北京:地质出版社, 2011.

    [12]

    Li X H, Tang G Q, Gong B, et al.Qinghu zircon:A working reference for microbeam analysis of U-Pb age and Hf and O isotopes[J].Chinese Science Bulletin, 2013, 58(36):4647-4654. https://link.springer.com/10.1007/s11434-013-5932-x

    [13]

    Middlemost EAK. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews, 1994, 37(34):215-224. https://www.sciencedirect.com/science/article/pii/0012825294900299

    [14]

    Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J].Geol. Soc. Am. Bull., 1989, 101(5):635-643. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_f3a2707d47b158c5d38108d58f763058

    [15]

    peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanicrocks from the kastamonuarea, Northern Turkey[J].Contributions to Mineralogy and Petrology, 1976, 58(1):63-81. https://link.springer.com/10.1007/BF00384745

    [16]

    Middlemost E A K. Magmas and Magmatic Rocks[M].London:Longman, 1985:1-266.

    [17]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalt: implications for mantle composition and process[C]//Saunders A D, Norry M J. Magmatism in the ocean basins.GeologicalSociety, London, Special Publication, 1989, 42(1): 313-345.

    [18]

    吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. http://d.old.wanfangdata.com.cn/Periodical/kxtb200416002

    [19]

    Mckenzie D P. Some remarks on the movement of small melt fractions in the mantle[J]. Earth and Planetary Science Letters, 1989, 95:53-72. http://www.sciencedirect.com/science/article/pii/0012821X89901672

    [20]

    Taylor S R, McLennan S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2):241-165. http://d.old.wanfangdata.com.cn/Periodical/dqkx201901011

    [21]

    Rudnick L R, Fountain M D. Nature and composition of the continental crust:A lower crustal perspective[J]. Reviews of Geophysics, 1995, 33:267-309.

    [22]

    肖庆辉, 邓晋福, 马大铨, 等.花岗岩研究思维与方法[M].北京:地质出版社, 2002:1-294.

    [23]

    丰成友, 王松, 李国臣, 等.青海祁漫塔格中晚三叠世花岗岩:年代学、地球化学及成矿意义[J].岩石学报, 2012, 28(2):665-678. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202024

    [24]

    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25:956-983. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000005685327

    [25]

    祁生胜, 邓晋福, 叶占福, 等.青海祁漫塔格地区晚泥盆世辉绿岩墙群LA-ICP-MS锆石U-Pb年龄及其构造意义[J].地质通报, 2013, 32(9):1385-1393. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20130907&flag=1

    [26]

    陈静, 谢智勇, 李彬, 等.东昆仑拉陵灶火地区泥盆纪侵入岩成因及其地质意义[J].矿物岩石, 2013, 33(6):26-33. http://d.old.wanfangdata.com.cn/Periodical/kwys201302005

    [27]

    王冠, 孙丰月, 李碧乐, 等.东昆仑夏日哈木矿区早泥盆世正长花岗岩锆石U-Pb年代学、地球化学及其动力学意义[J].大地构造与成矿学, 2013, 37(4):685-697. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201304013

    [28]

    李世金, 孙丰月, 高永旺, 等.小岩体成大矿理论指导与实践-青海东昆仑夏日哈木铜镍矿找矿突破的启示及意义[J].西北地质, 2012, 45(4):185-191. http://www.cnki.com.cn/Article/CJFDTotal-XBDI201204021.htm

    [29]

    奥琮, 孙丰月, 李碧乐, 等.青海夏日哈木矿区中泥盆世闪长玢岩锆石U-Pb年代学、地球化学及其地质意义[J].西北地质, 2014, 47(1):96-106. http://d.old.wanfangdata.com.cn/Periodical/xbdz201401007

    [30]

    许庆林.青海东昆仑造山带斑岩型矿床成矿作用研究[D].吉林大学博士学位论文, 2014.http://cdmd.cnki.com.cn/Article/CDMD-10183-1014267862.htm

    [31]

    刘栋梁, 李海兵, 孙知明, 等.青藏高原祁漫塔格古生代以来主要岩浆活动及其意义[J], 地质通报, 2016, 35(12):2014-2026. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20161209&flag=1

    刘永成, 曹世泰, 马永胜, 等.青海省东昆仑祁漫塔格地区铜多金属地质矿产调查报告.青海省第四地质矿产勘查院, 2012.

  • 加载中

(8)

(2)

计量
  • 文章访问数:  509
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2018-11-09
修回日期:  2019-01-15
刊出日期:  2020-03-15

目录