大别造山带汞洞冲铅锌矿床矿物学特征和铅同位素研究

吴皓然, 谢玉玲, 王莹. 大别造山带汞洞冲铅锌矿床矿物学特征和铅同位素研究[J]. 地质通报, 2020, 39(2-3): 338-352.
引用本文: 吴皓然, 谢玉玲, 王莹. 大别造山带汞洞冲铅锌矿床矿物学特征和铅同位素研究[J]. 地质通报, 2020, 39(2-3): 338-352.
WU Haoran, XIE Yuling, WANG Ying. Mineralogical characteristics and Pb isotopes of Gongdongchong lead-zinc polymetallic deposit, Dabie orogenic belt[J]. Geological Bulletin of China, 2020, 39(2-3): 338-352.
Citation: WU Haoran, XIE Yuling, WANG Ying. Mineralogical characteristics and Pb isotopes of Gongdongchong lead-zinc polymetallic deposit, Dabie orogenic belt[J]. Geological Bulletin of China, 2020, 39(2-3): 338-352.

大别造山带汞洞冲铅锌矿床矿物学特征和铅同位素研究

  • 基金项目:
    中国地质调查局项目《安徽大别山成矿带钼矿成矿规律与成矿预测》(编号:2014-01-020-010)
详细信息
    作者简介: 吴皓然(1991-), 男, 在读博士生, 从事矿床学研究。E-mail:wuhaoran0033@126.com
    通讯作者: 谢玉玲(1963-), 女, 教授, 博士生导师, 从事金属矿床地质和成矿流体研究。E-mail:yulingxie63@hotmail.com
  • 中图分类号: P618.4;P597

Mineralogical characteristics and Pb isotopes of Gongdongchong lead-zinc polymetallic deposit, Dabie orogenic belt

More Information
  • 汞洞冲矿床位于大别造山带北麓,是以热液角砾岩型铅锌为主的多金属矿床。岩矿相显微鉴定、SEM/EDS及电子探针分析结果表明,矿床中Ag以独立银矿物相为主(硫锑铜银矿和含银黝铜矿),呈粒状、柱状、板状、不规则状等,以显微或亚显微状被包裹于先期形成的方铅矿中,金属硫化物中不可见银极少。结合矿床金属硫化物铅同位素结果表明,矿床的形成与燕山期岩浆活动密切相关,成矿物质具有壳幔混合的特征。自岩浆出溶的Pb、Zn、Ag等金属离子在成矿早期以氯络合物的形式迁移,随着成矿热液温度、盐度、fO2降低,以及pH值的升高,Pb、Zn氯络合物因稳定性降低而解体形成铅锌角砾型矿石,而Ag则形成硫氢络合物继续存在,当温度继续降低后发生分解沉淀,Ag+与Sb3+、As3+、Cu+结合形成大量独立银矿物。

  • 加载中
  • 图 1  大别造山带地质简图(据参考文献[13]修改)

    Figure 1. 

    图 2  汞洞冲铅锌多金属矿床地质简图(a)和矿床0勘探线剖面图(b)

    Figure 2. 

    图 图版Ⅰ   

    Figure 图版Ⅰ. 

    图 图版Ⅱ   

    Figure 图版Ⅱ. 

    图 3  汞洞冲矿床矿石矿物背散射图像

    Figure 3. 

    图 4  主要银矿物背散射图像和EDS能谱图

    Figure 4. 

    图 5  闪锌矿Cd-Zn/Cd图解

    Figure 5. 

    图 图版Ⅲ  a.方铅矿(白色)中的硫锑铜银矿(浅灰色)与银锑黝铜矿(深灰色)背散射图像;b~f.分别为Pb、S、Ag、Cu、Sb元素在银矿物中的富集情况。Gn—方铅矿;Aca—硫锑铜银矿;Ag-Tet—含银锑黝铜矿

    图 6  206Pb/204Pb-207Pb/204Pb增长曲线图(a, 底图据参考文献[51])和△β-△γ构造环境分类图(b,底图据参考文献[52])

    Figure 6. 

    表 1  汞洞冲铅锌矿床主要硫化物电子探针分析结果

    Table 1.  Electron microprobe analyses of major metal sulfides from the Gongdongchong Pb-Zn deposit%

    矿物 点号 As Se S Bi Ge Ag Te Sb Cd Au Pb Cu Ni Fe Mn Co Zn 总量
    化学式
    方铅矿 1043-5 / / 13.65 / / / / / 0.1 / 85.18 / / / / / / 98.93 Pb0.97S
    1065-5 / 0.04 13.66 1.14 / 0.31 0.13 0.05 / / 84.06 / / / / / / 99.39 Pb0.95S
    闪锌矿 1043-6(Ⅱ) / / 33.48 / / 0.02 / / 0.32 0.14 / / 0.02 0.44 / 0.04 65.5 99.96 (Zn0.96Fe0.01)0.97S
    1043-7(Ⅰ) / / 33.04 0.14 0.05 / / / 0.38 / / / / 4.52 0.07 0.04 61.03 99.27 (Zn0.91Fe0.08)0.98S
    1043-9(Ⅰ) / 0.09 34.14 0.18 / / / / 0.27 0.37 / / / 2.27 0.01 / 62.55 99.88 (Zn0.9Fe0.04)0.94S
    1043-10(Ⅱ) / / 33.23 0.19 / 0.03 / / 0.24 0.2 / / / 1.37 0.01 / 64.7 99.97 (Zn0.95Fe0.02)0.98S
    1065-3(Ⅰ) / / 33.39 0.26 / 0.02 / / 0.35 / / 0.09 / 4.14 0.13 / 61.05 99.43 (Zn0.9Fe0.07)0.97S
    1065-4(Ⅱ) / / 32.66 0.3 / / / / 0.37 / / / 0.03 0.35 / / 65.97 99.68 (Zn0.99Fe0.01)S
    1065-7(Ⅱ) 0.03 / 33.16 0.27 / / / 0.02 0.24 / / / / 1.27 0.07 / 63.8 98.86 (Zn0.94Fe0.02)0.97S
    1065-8(Ⅰ) 0.04 0.07 33.3 0.28 / / / / 0.32 0.48 / / / 3.52 0.15 / 61.57 99.73 (Zn0.91Fe0.06)0.97S
    1048-2(Ⅰ) 0.02 / 33.36 0.2 / / 0.04 / 0.31 0.26 / / / 6.22 0.1 / 59.68 100.19 (Zn0.88Fe0.11)0.98S
    1048-3(Ⅰ) / 0.03 33.38 0.13 / 0.04 / / 0.19 / / / / 6.33 0.08 / 59.91 100.09 (Zn0.88Fe0.11)0.99S
    1048-4(Ⅰ) 0.05 0.06 33.56 / / 0.03 / / 0.36 / / / 0.04 5.1 0.08 / 60.45 99.73 (Zn0.88Fe0.09)0.97S
    1048-5(Ⅱ) / / 33.36 0.18 / / / / 0.3 / / / / 1.7 0.07 / 64.62 100.23 (Zn0.95Fe0.03)0.98S
    1048-6(Ⅱ) / 0.03 33.25 0.12 / / 0.07 / 0.17 / / 0.2 / 1.35 0.05 / 64.11 99.35 (Zn0.95Fe0.02)0.97S
    黄铁矿 1065-6 / / 53.4 0.2 / / / / 0.06 / / / / 46.44 0.04 0.07 / 100.21 FeS2
    1065-9 / / 53.54 0.21 0.05 0.03 / / / / / / / 45.91 / 0.04 / 99.78 Fe0.98S2
    1065-10 / / 53.2 0.21 / / / / / 0.21 / / 0.04 45.88 / 0.03 / 99.57 Fe0.99S2
    黄铜矿 1043-8 / / 34.99 / / / / / / 0.28 / 34.6 / 29.8 / 0.04 0.04 99.75 CuFe0.98S2
    1043-11 / / 35.11 0.21 0.02 / 0.06 / / 0.23 / 34.35 / 29.64 / / 0.08 99.7 Cu0.99Fe0.97S2
    1048-1 0.07 / 34.96 0.34 / 0.04 / / / / / 33.99 / 30.14 / 0.08 0.11 99.73 Cu0.98Fe0.99S2
    含银锑黝铜矿 1043-1 0.09 0.09 24.12 0.17 / 9.33 / 26.78 0.32 / / 31.23 / 1.28 / / 5.38 98.79 (Cu8.49Ag1.49)9.99(Fe0.4Zn1.42Cd0.05)1.87
    (Sb3.8As0.02Bi0.01)3.84S13
    1043-2 0.06 0.05 24.79 / 0.04 8.4 / 27.11 0.48 / / 32.06 / 0.85 / / 5.4 99.24 (Cu8.48Ag1.31)9.79(Fe0.26Zn1.39Cd0.07)1.72
    (Sb3.74As0.01)3.76S13
    硫锑铜银矿 1043-3 / 0.07 14.76 / / 66.99 0.17 9.37 0.3 / 0.15 6.89 / / / 0.04 0.12 98.86 (Ag16.14Cu2.82)18.96Sb2(S11.96Te0.03)12
    1043-4 / / 15.15 0.13 0.02 66.87 0.05 9.59 0.15 / 0.39 7.72 / / 0.02 / 0.12 100.21 (Ag15.74Cu3.08)18.83Sb2(S12Te0.03)12.03
    注:“/”表示所测元素含量值低于其检测限
    下载: 导出CSV

    表 2  汞洞冲铅锌矿床硫化物铅同位素组成

    Table 2.  Pb isotopic composition of sulfides from the Gongdongchong Pb-Zn deposit

    样号编号 测试对象 206Pb/
    204Pb
    207Pb/
    204Pb
    208Pb/
    204Pb
    t/Ma μ ω Th/U V1 V2 △α △β △γ
    GDC1070-1 方铅矿 17.843 0.001 15.598 0.002 38.604 0.005 571 9.53 40.56 4.12 48.05 22.54 36.87 17.71 35.43
    GDC1070-2 17.838 0.002 15.591 0.002 38.581 0.006 566 9.52 40.41 4.11 47.37 22.39 36.58 17.25 34.81
    GDC1070-3 17.849 0.002 15.6 0.002 38.601 0.004 569 9.53 40.53 4.12 48.13 22.91 37.22 17.84 35.35
    GDC2008 17.868 0.004 15.621 0.005 38.669 0.015 579 9.57 40.92 4.14 50.26 23.56 38.33 19.21 37.17
    GDC2004 17.867 0.001 15.616 0.001 38.655 0.003 574 9.56 40.82 4.13 49.90 23.55 38.27 18.88 36.80
    GDC2008 闪锌矿 17.847 0.001 15.598 0.002 38.6 0.004 568 9.53 40.51 4.11 48.06 22.78 37.11 17.71 35.32
    GDC2004 17.828 0.001 15.581 0.002 38.534 0.003 562 9.50 40.17 4.09 45.98 22.19 36.00 16.60 33.55
    GDC2008 黄铜矿 17.824 0.002 15.567 0.002 38.496 0.005 549 9.47 39.88 4.08 44.97 22.10 35.77 15.69 32.53
    GDC2004 17.834 0.001 15.58 0.001 38.537 0.003 556.6 9.5 40.13 4.09 46.21 22.43 36.35 16.53 33.63
    GDC2008 黄铁矿 17.804 0.002 15.574 0.002 38.506 0.004 570.9 9.49 40.12 4.09 44.69 21.17 34.61 16.14 32.8
    GDC2004 17.847 0.004 15.588 0.003 38.555 0.008 556.5 9.51 40.21 4.09 46.98 23.05 37.11 17.06 34.12
    GDC1049 17.947 0.002 15.669 0.003 38.886 0.007 577.8 9.66 41.88 4.2 57.51 26.1 42.92 22.34 43
    GDC1056 17.911 0.006 15.629 0.007 38.673 0.023 558 9.58 40.75 4.12 51.46 25.8 40.82 19.73 37.28
    下载: 导出CSV
  • [1]

    Hacker B R, Ratschbacher L W, Ireland L, et al.U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China[J].Earth and Planetary Science Letters, 1998, 161(1/4):215-230. http://cn.bing.com/academic/profile?id=4892fa8688e56b79bc5bfab34752e83f&encoded=0&v=paper_preview&mkt=zh-cn

    [2]

    彭智, 陆三明, 徐晓春.北淮阳构造带东段金-多金属矿床区域成矿规律[J].合肥工业大学学报(自然科学版), 2005, 28(4):364-368. http://d.old.wanfangdata.com.cn/Periodical/hfgydxxb200504007

    [3]

    杨泽强, 万守全, 马宏卫, 等.河南商城县汤家坪钼矿床地球化学特征与成矿模式[J].地质学报, 2008, 82(6):788-794. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200806008

    [4]

    任志, 周涛发, 袁峰, 等.安徽沙坪沟钼矿区中酸性侵入岩期次研究——年代学及岩石化学约束[J].岩石学报, 2014, 30(4):1097-1116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201404016

    [5]

    Mi M, Chen Y J, Yang Y F, et al.Geochronology and geochemistry of the giant Qian'echong Mo deposit, Dabie Shan, eastern China:Implications for ore genesis and tectonic setting[J].Gondwana Research, 2015, 27:1217-1235. http://cn.bing.com/academic/profile?id=617ef32887d0620f4b6898ad8f61ce8c&encoded=0&v=paper_preview&mkt=zh-cn

    [6]

    谢玉玲, 李腊梅, 郭翔, 等.安徽西冲钼矿床细粒花岗岩的岩石定年、岩石化学及与成矿的关系研究[J].岩石学报, 2015, 31(7):1929-1942. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507011

    [7]

    Chen Y J, Wang P, Li N, et al.The collision-type porphyry Mo deposits in Dabie Shan, China[J].Ore Geology Reviews, 2017, 81:405-430. http://cn.bing.com/academic/profile?id=207026220cd33aa82addca1cf82e6667&encoded=0&v=paper_preview&mkt=zh-cn

    [8]

    吴皓然, 谢玉玲, 王爱国, 等.安徽汞洞冲角砾岩型铅锌矿床成矿作用过程:来自矿床地质、流体包裹体和C、H、O、S同位素的证据[J].中国有色金属学报, 2018, 28(7):1418-1441. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201807017

    [9]

    李曙光, 李秋立, 侯振辉, 等.大别山超高压变质岩的冷却史及折返机制[J].岩石学报, 2005, 21(4):1117-1124. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200504010

    [10]

    李厚民, 陈毓川, 叶会寿, 等.东秦岭-大别地区中生代与岩浆活动有关钼(钨)金银铅锌矿床成矿系列[J].地质学报, 2008, 82(11):1468-1477. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200811002

    [11]

    陈伟, 徐兆文, 李红超, 等.河南新县花岗岩岩基的岩石成因、来源及对西大别构造演化的启示[J].地质学报, 2013, 87(10):1510-1524. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201310003

    [12]

    Wu Y B, Zheng Y F.Tectonic Evolution of a Composite Collision Orogen:An Overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu Orogenic Belt in Central China[J].Gondwana Research, 2013, 23(4):1402-1428. http://cn.bing.com/academic/profile?id=d2df13749dd2de483673f3266eb84148&encoded=0&v=paper_preview&mkt=zh-cn

    [13]

    Wang P, Chen Y J, Fu B, et al.Fluid inclusion and H-O-C isotope geochemistry of the Yaochong porphyry Mo deposit in Dabie Shan, China:a case study of porphyry systems in continental collision orogens[J].International Journal of Earth Sciences, 2014, 103:77-97. http://cn.bing.com/academic/profile?id=ac24fcddfd14d34621348bf2b727717e&encoded=0&v=paper_preview&mkt=zh-cn

    [14]

    Wang Q, Wyman D A, Xu J, et al.Early Cretaceous adakitic granites in the Northern Dabie Complex, central China:implications for partial melting and delamination of thickened lower crust[J].Geochimica et Cosmochimica Acta, 2007, 71(10):2609-2636 http://cn.bing.com/academic/profile?id=0632f00e9799c6c0986d1a724a9f583b&encoded=0&v=paper_preview&mkt=zh-cn

    [15]

    Zhao Z F, Zheng Y F, Wei C S, et al.Zircon U-Pb ages, Hf and O isotopes constrain the crustal architecture of the ultrahigh-pressure Dabie orogen in China[J].Chemical Geology, 2008, 253:222-242. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=47c844e0a242952207e27383dd723e91

    [16]

    Xu H J, Ma C Q, Ye K.Early Cretaceous granitoids and their implications for Collapse of the Dabie orogen, eastern China:SHRIMP zircon U-Pb dating and geochemistry[J].Chemical Geology, 2007, 240(3/4):238-259. http://cn.bing.com/academic/profile?id=b63628b87cb6eebd99c9870d7443c184&encoded=0&v=paper_preview&mkt=zh-cn

    [17]

    Xu H J, Ma C Q, Zhang J F, et al.Early Cretaceous low-Mg adakitic granites from the Dabie orogen, eastern China:Petrogenesis and implications for destruction of the over-thickened lower continental crust[J].Gondwana Research, 2012, 23(1):190-207. http://cn.bing.com/academic/profile?id=68348c401c8e711899293efe5413859f&encoded=0&v=paper_preview&mkt=zh-cn

    [18]

    杜建国.大别造山带中生代岩浆作用与成矿地球化学研究[D].合肥工业大学博士学位论文, 2000: 14-36.http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y361205

    [19]

    李占轲, 李建威, 陈蕾, 等.河南洛宁沙沟Ag-Pb-Zn矿床银的赋存状态及成矿机理[J].地球科学, 2010, 35(4):621-636. http://d.old.wanfangdata.com.cn/Periodical/dqkx201004013

    [20]

    卢燃, 毛景文, 高建京, 等.江西冷水坑矿田下鲍Ag-Pb-Zn矿床地质特征及银的赋存状态研究[J].岩石学报, 2012, 28(1):105-121. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201201009

    [21]

    唐燕文, 谢玉玲, 李应栩, 等.浙江安吉多金属矿床金银赋存状态及银矿物特征研究[J].岩石矿物学杂志, 2012, 31(3):393-402. http://d.old.wanfangdata.com.cn/Periodical/yskwxzz201203009

    [22]

    Faure G, Mensing T M.Isotopes: Principles and Applications[M].John Wiley and Sons, New York, 2005: 256-283.

    [23]

    王静纯, 简晓忠.银的赋存特征研究[J].有色金属矿产与勘查, 1996, (2):89-93. http://d.old.wanfangdata.com.cn/Conference/356414

    [24]

    王璞, 潘兆橹, 翁玲宝.系统矿物学(下)[M].北京:地质出版社, 1982:1-200.

    [25]

    Lueth V W, Megaw P K M, Pingiore N E.Systematic Variation in Galena solid-Solution Compositions at Santa Eulalia, Chihuahua, Mexico[J].Economic Geology, 2000, 95(8):1673-1687. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=494dbe702249083f3a0518210a5f1e17

    [26]

    郑榕芬, 毛景文, 高建京.河南熊耳山沙沟银铅锌矿床中硫化物和银矿物的矿物学特征及其意义[J].矿床地质, 2006, 25(6):715-726. http://d.old.wanfangdata.com.cn/Periodical/kcdz200606008

    [27]

    Bouabdellah M, Beaudoin G, Leach D L, et al.Genesis of the Assif El Mal Zn-Pb(Cu, Ag)vein deposit.An extension-related Mesozoic vein system in the HighAtlas of Morocco.St ructural, mineralogical, and geochemical evidence[J].Miner Deposita, 2009, 44:489-704.

    [28]

    Chapman E P, Stevens R E.Silver-and bismuth-bearing galena from Leadville[J].Ecinomic Geology, 1933, 28(7):678-685.

    [29]

    Van H, Harry J.The ternary system Ag2S-Bi2S3-PbS[J].Economic Geology, 1960, 55(4):759-788.

    [30]

    Amcoff Ö.Distribution of silver in massive sulfide ores[J].Mineralium Deposita, 1984, 19(1):63-69. http://cn.bing.com/academic/profile?id=f4d36bb52d43a440a0f260c46c0e4ce5&encoded=0&v=paper_preview&mkt=zh-cn

    [31]

    Chang L, Wu D Q, Knowles C R.Phase relations in the system Ag2S-Cu2S-PbS-Bi2S3[J].Economic Geology, 1988, 83(2):405-418.

    [32]

    周卫宁.中国主要伴(共)生银矿床银的赋存状态研究[J].矿产与地质, 1994, 8(4):233-244. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=13911

    [33]

    何国锦, 杨晓春, 吴光明, 等.浙江西北银山银铅锌多金属矿床矿石矿物特征及成矿期次初步研究[J].地球学报, 2011, 32(3):304-312. http://d.old.wanfangdata.com.cn/Periodical/dqxb201103005

    [34]

    胡耀国, 李朝阳, 廖震文, 等.贵州银厂坡银矿床银矿物特征及其赋存状态.矿物学报, 2000, 20(2):150-159. http://d.old.wanfangdata.com.cn/Periodical/kwxb200002009

    [35]

    Costagliola P, Benedetto F D, Benvenuty M, et al.Chemical speciation of Ag in galena by EPR spectroscopy[J].Mineralogical Society of America, 2003, 88(8/9):1345-1350. http://cn.bing.com/academic/profile?id=06f57c6702a54bfc4c4517a7f653da49&encoded=0&v=paper_preview&mkt=zh-cn

    [36]

    卢焕章.闪锌矿地质温度计和压力计[J].地质地球化学, 1975, (2):6-9. http://www.cnki.com.cn/Article/CJFDTotal-DZDQ197502001.htm

    [37]

    Scott S D, Barnes H L.Sphalerite geothermometry and geobarometry[J].Economic Geology, 1971, 66:653-669. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ026231634/

    [38]

    Lusk J, Calder B O E, The composition of sphalerite and associated sulfides in reactions of the Cu-Fe-Zn-S, Fe-Zn-S and Cu-Fe-S systems at 1 bar and temperatures between 250 and 535℃[J].Chemical Geology, 2004, 203: 319-345.

    [39]

    Viets J G, Hopkins R T, Miller B M.Variations in minor and trace metals in sphalerite from Mississippi Valley Type deposits of the Ozark region:genetic implications[J].Economic Geology, 1992, 87:1897-1905. http://cn.bing.com/academic/profile?id=1aae423caaf8670335f8239c636b0768&encoded=0&v=paper_preview&mkt=zh-cn

    [40]

    Zhang Q.Trace elements in galena and sphalerite and their geochemical significance in distinguishing the genetic types of Pb-Zn ore deposits[J].Chinese Journal of Geochemistry, 1987, 6(2):177-190. http://cn.bing.com/academic/profile?id=14839f09ea3593691f4fa76ac5939a85&encoded=0&v=paper_preview&mkt=zh-cn

    [41]

    Huston D L, Sie S H, Suter G F, et al.Trace elements in sulfide minerals from eastern Australian volcanic hosted massive sulfide deposits.Part I.Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite.Part II.Selenium levels in pyrite comparison with δ34S values and implication for the source of sulfur in volcanogenic hydrothermal systems[J].Economic Geology, 1995, 90: 1167-1196.

    [42]

    Simon G, Essene E J.Phase relations among selenides, sulfides, tellurides, and oxides:I:Thermodynamic properties and calculated equilibria[J].Economic Geology, 1996, 91:1183-1208. http://cn.bing.com/academic/profile?id=13081bf22f171c7c4a5d25ccec9439c2&encoded=0&v=paper_preview&mkt=zh-cn

    [43]

    Yamamoto M.Relationship between Se/S and sulfur isotope ratios of hydrothermal sulfide minerals[J].Mineralium Deposita, 1976, 11:197-209. http://cn.bing.com/academic/profile?id=4005e6f417b903066e063abdc22c0f90&encoded=0&v=paper_preview&mkt=zh-cn

    [44]

    Zhou J X, Huang Z L, Zhou M F, et al.Constraints of C-O-S-Pb isotope compositions andRb-Sr isotopic age on the origin of the Tianqiao carbonate-hosted Pb-Zn deposit, SW China[J].Ore Geology Reviews, 2013, 53:77-92. https://www.researchgate.net/publication/257026524_Constraints_of_C-O-S-Pb_isotope_compositions_and_Rb-Sr_isotopic_age_on_the_origin_of_the_Tianqiao_carbonate-hosted_Pb-Zn_deposit_SW_China

    [45]

    蔡应雄, 谭娟娟, 杨红梅, 等.湘南铜山岭铜多金属矿床成矿物质来源的S、Pb、C同位素约束[J].地质学报, 2015, 89(10):1792-1803. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201510007

    [46]

    冯海滨, 张达, 狄永军, 等.闽西南大排铁铅锌多金属矿床O、S、Pb同位素组成及其成因意义[J].地质通报, 2015, 34(5):930-943. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201505013

    [47]

    Andrew A, Godwin C I, Sinclair A J.Mixing line isochrones:A new interpretation of galena lead isotope data from southeastern British Columbia[J].Economic Geology, 1984, 79:919-932. http://d.old.wanfangdata.com.cn/NSTLQK/10.2113-gsecongeo.79.5.919/

    [48]

    李龙, 郑永飞, 周建波.中国大陆地壳铅同位素演化的动力学模型[J].岩石学报, 2001, 17(1):61-68. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200101008

    [49]

    Stacey J S, Kramers J D.Approximation of terrestrial lead isotope evolution by a two-stage model[J].Earth and Planetary Science Letters, 1975, 26(2):207-221. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0012-821X(75)90088-6/

    [50]

    Doe B R, Zartman R E.Plumbotectonics: the Phanerozoic[C]//Barnes H L.Geochemistry of Hydrothermal Ore Deposits.New York: John Wiley and Sons, 1979: 22-70.

    [51]

    Zartman R E, Haines S M.The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs-a case for bi-directional transport[J].Geochimica et Cosmochimica Acta, 1988, 52(6):1327-1339.

    [52]

    朱炳泉, 李献华, 戴橦谟.地球科学中同位素体系理论与应用——兼论中国大陆地壳演化[M].北京:科学出版社, 1998:216-230.

    [53]

    Seward T M.The formation of lead(Ⅱ)chloride complexes to 300℃:a spectrophotometric study[J].Geochimica et Cosmochimica Acta, 1984, 48:121-134. https://www.researchgate.net/publication/244738075_Study_of_the_Sorption_of_Divalent_Metal_Ions_on_to_Peat

    [54]

    Ruaya J R, Seward T M.The stability of chloro zinc(Ⅱ)Complexes in Hydrothermal Solutions up to 350℃[J].Geochimica et Cosmochimica Acta, 1986, 50(5):651-661.

    [55]

    Bourcier W L, Barnes H L.Ore solution chemistry-Ⅶ.Stability of chloride and bisulfide complexes of zinc to 350℃[J].Economic Geology, 1987, 82:1839-1863.

    [56]

    Seward T M.The Stability of Chloride Complexes of Silver in Hydrothermal Solutions up to 350℃[J].Geochimica et Cosmochimica Acta, 1976, 40(11):1329-1341.

    [57]

    Hayashi K, Sugaki A, Kitakaze A.Solubility of Sphalerite in Aqueous Sulfide Solutions at Temperatures Between 25 and 240℃[J].Geochimica et Cosmochimica Acta, 1990, 54(3):715-725. http://adsabs.harvard.edu/abs/1990GeCoA..54..715H

    [58]

    Stefánsson A, Seward T M.Experimental determination of the Stability and Stoichiometry of Sulphide Complexes of Silver(Ⅰ)in Hydrothermal Solutions to 400℃[J].Geochimica et Cosmochimica Acta, 2003, 67(7):1395-1413. https://www.sciencedirect.com/science/article/abs/pii/S0016703702010931

    [59]

    尚林波, 樊文苓, 邓海琳.热液中银、铅、锌共生分异的实验研究[J].矿物学报, 2003, 23(1):31-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb200301006

    [60]

    尚林波, 樊文苓, 胡瑞忠, 等.热液中铅-锌-银共生分异的热力学探讨[J].矿物学报, 2004, 24(1):81-86.

    安徽省地质矿产局313地质队.安徽省金寨县汞洞冲铅锌矿普查地质报告.1993 1-81.

  • 加载中

(9)

(2)

计量
  • 文章访问数:  688
  • PDF下载数:  12
  • 施引文献:  0
出版历程
收稿日期:  2019-07-12
修回日期:  2019-09-27
刊出日期:  2020-03-15

目录