内蒙古阿尔塔拉中三叠世A型花岗岩锆石U-Pb年龄、地球化学特征及构造意义

王金芳, 李英杰, 李红阳, 董培培. 内蒙古阿尔塔拉中三叠世A型花岗岩锆石U-Pb年龄、地球化学特征及构造意义[J]. 地质通报, 2020, 39(1): 51-61.
引用本文: 王金芳, 李英杰, 李红阳, 董培培. 内蒙古阿尔塔拉中三叠世A型花岗岩锆石U-Pb年龄、地球化学特征及构造意义[J]. 地质通报, 2020, 39(1): 51-61.
WANG Jinfang, LI Yingjie, LI Hongyang, DONG Peipei. Zircon U-Pb dating, geochemistry and tectonic implications of the Artala Middle Triassic A-type granite in Inner Mongolia[J]. Geological Bulletin of China, 2020, 39(1): 51-61.
Citation: WANG Jinfang, LI Yingjie, LI Hongyang, DONG Peipei. Zircon U-Pb dating, geochemistry and tectonic implications of the Artala Middle Triassic A-type granite in Inner Mongolia[J]. Geological Bulletin of China, 2020, 39(1): 51-61.

内蒙古阿尔塔拉中三叠世A型花岗岩锆石U-Pb年龄、地球化学特征及构造意义

  • 基金项目:
    国家自然科学基金项目《内蒙古西乌旗迪彦庙蛇绿岩年代学、地球化学及大地构造意义》(批准号:41502211),中国地质调查局项目《内蒙古1:5万沙日勒昭等四幅区域地质矿产调查》(编号:1212011120701)、《内蒙古1:5万高力罕牧场三连等四幅区域地质矿产调查》(编号:121011071)、河北省教育厅项目《白音布拉格蛇绿岩岩石学和地球化学研究》(编号:ZC20165013)
详细信息
    作者简介: 王金芳(1983-), 女, 硕士, 副教授, 从事岩石学研究工作。E-mail:wjfb1983@163.com
  • 中图分类号: P597+.3;P534.51

Zircon U-Pb dating, geochemistry and tectonic implications of the Artala Middle Triassic A-type granite in Inner Mongolia

  • 在内蒙古二连-贺根山缝合带新发现西乌旗阿尔塔拉A型花岗岩,岩性为二长花岗岩。锆石LA-ICP-MS U-Pb测年结果显示,该二长花岗岩的侵位年龄为242.9±1.5Ma,形成时代为中三叠世。阿尔塔拉A型花岗岩地球化学特征为高钾钙碱性系列,具有较高的SiO2(75.89%~76.79%)、K2O(4.18%~4.30%)和Na2O+K2O(8.23%~8.57%),贫CaO、MgO、Sr、Ba、Eu、Ti和P,相对富集Ga、Rb和Th。该岩石稀土元素配分曲线为海鸥式,具有显著的负Eu异常(δEu=0.11~0.14)。在地球化学判别图解上,阿尔塔拉A型花岗岩显示A2型后造山花岗岩特征,其形成于后造山伸展环境。结合二连-贺根山缝合带蛇绿岩、岛弧型-后造山型岩浆岩的时空演化关系,古亚洲洋二连-贺根山洋盆可能在二叠纪晚期闭合,并在三叠纪进入后造山伸展构造演化时期。

  • 加载中
  • 图 1  内蒙古西乌旗阿尔塔拉A型花岗岩区域构造(a, 据参考文献[7]修改)和地质简图(b)

    Figure 1. 

    图 2  阿尔塔拉A型花岗岩野外(a)和显微照片(b)

    Figure 2. 

    图 3  阿尔塔拉A型花岗岩(AP07)锆石阴极发光图像及其206Pb/238U年龄

    Figure 3. 

    图 4  阿尔塔拉A型花岗岩(AP07)锆石LA-ICP-MS U-Pb年龄谐和图(a)和206Pb/238U年龄直方图(b)

    Figure 4. 

    图 5  阿尔塔拉A型花岗岩铝饱和指数(A/NK-A/CNK)图解[36]

    Figure 5. 

    图 6  阿尔塔拉A型花岗岩SiO2-K2O分类图解[37]

    Figure 6. 

    图 7  阿尔塔拉A型花岗岩稀土元素球粒陨石标准化配分模式[39]

    Figure 7. 

    图 8  阿尔塔拉A型花岗岩微量元素原始地幔标准化蛛网图[40]

    Figure 8. 

    图 9  阿尔塔拉A型花岗岩10000×Ga/Al对(K2O+Na2O)/CaO(a)、TFeO/MgO(b)、K2O/MgO(c)和Nb(d)判别图解[42]

    Figure 9. 

    图 10  阿尔塔拉A型花岗岩A1和A2型花岗岩类Y-Nb-3Ga(a)和Y-Nb-Ce(b)三角形判别图解[38]

    Figure 10. 

    图 11  阿尔塔拉A型花岗岩R1-R2构造环境判别图解

    Figure 11. 

    图 12  阿尔塔拉A型花岗岩SiO2-TFeO/(TFeO+MgO)(a)和SiO2-Al2O3(b)构造环境判别图解

    Figure 12. 

    表 1  阿尔塔拉A型花岗岩(AP07)LA-ICP-MS锆石U-Th-Pb同位素分析结果

    Table 1.  LA-ICP-MS U-Th-Pb dating of zircons from the Artala A-type granite

    点号 元素/10-6 Th/U 同位素原子比率 表面年龄/Ma
    Pb U 207Pb*/206Pb* ±% 207Pb*/235U ±% 206Pb*/238U ±% 206Pb/238U
    1.1 18 444 0.49 0.0518 1.8 0.281 1.8 0.0393 1.3 248 ±3
    2.1 14 369 0.25 0.0521 1.3 0.279 1.4 0.0388 0.97 246 ±2
    3.1 28 704 0.37 0.0513 0.79 0.277 0.90 0.0391 0.87 247 ±2
    4.1 29 700 0.61 0.0511 0.67 0.273 0.72 0.0387 1.1 245 ±3
    5.1 18 417 0.59 0.0527 1.6 0.279 1.8 0.0383 1.1 242 ±3
    6.1 35 831 0.37 0.0535 2.5 0.277 2.4 0.0375 1.2 237 ±3
    7.1 25 643 0.23 0.0516 1.5 0.273 1.3 0.0384 1.4 243 ±3
    8.1 37 739 0.67 0.0578 9.8 0.301 5.8 0.0378 1.2 239 ±3
    9.1 17 354 0.57 0.0574 4.3 0.302 5.2 0.0382 1.4 241 ±3
    10.1 67 1598 0.38 0.0524 2.3 0.279 1.8 0.0386 1.0 244 ±2
    11.1 74 1562 0.72 0.0519 2.8 0.273 3.2 0.0381 1.1 241 ±3
    12.1 57 1451 0.48 0.0535 1.4 0.277 1.3 0.0376 1.3 238 ±3
    13.1 35 803 0.45 0.0531 7.2 0.281 6.6 0.0384 1.0 243 ±2
    14.1 13 339 0.40 0.0534 1.7 0.276 1.7 0.0374 1.0 237 ±2
    15.1 22 547 0.36 0.0517 1.5 0.279 1.6 0.0391 1.2 247 ±3
    16.1 39 1010 0.26 0.0518 1.2 0.278 1.5 0.0389 0.99 246 ±2
    17.1 26 647 0.53 0.0527 1.6 0.277 1.7 0.0381 1.1 241 ±3
    18.1 18 489 0.27 0.0527 1.1 0.276 1.1 0.0381 1.3 241 ±3
    19.1 15 396 0.43 0.0532 1.6 0.278 1.7 0.0379 1.3 240 ±3
    20.1 24 546 0.60 0.0537 2.7 0.286 2.4 0.0387 1.1 245 ±3
    21.1 17 459 0.25 0.0550 1.0 0.292 1.2 0.0385 1.0 243 ±3
    22.1 15 340 0.49 0.0559 8.6 0.298 8.4 0.0387 1.1 245 ±3
    注:误差为1σ;Pb*指示放射成因铅。实验测试在天津地质调查中心完成
    下载: 导出CSV

    表 2  阿尔塔拉A型花岗岩的主量、微量和稀土元素分析结果

    Table 2.  Major elements, trace elements and REE analyses of the Artala A-type granite

    元素 AP05
    二长花岗岩
    AP06
    二长花岗岩
    AP07
    二长花岗岩
    AP08
    二长花岗岩
    AP09
    二长花岗岩
    SiO2 76.43 75.89 76.76 76.79 76.51
    TiO2 0.021 0.040 0.040 0.039 0.030
    Al2O3 13.34 13.82 13.19 13.17 13.29
    Fe2O3 0.41 0.24 0.37 0.36 0.37
    FeO 0.14 0.10 0.15 0.18 0.16
    MnO 0.040 0.033 0.024 0.035 0.041
    MgO 0.041 0.081 0.020 0.020 0.05
    CaO 0.57 0.56 0.60 0.59 0.53
    Na2O 4.32 4.23 4.05 4.03 4.21
    K2O 4.25 4.30 4.18 4.21 4.24
    P2O5 0.010 0.011 0.011 0.010 0.011
    烧失量 0.43 0.67 0.60 0.55 0.51
    总计 100 99.97 99.98 99.98 99.95
    Ba 24.7 66.1 59.6 67.3 44.57
    Rb 221.0 211.4 214.0 207.0 214.5
    Sr 11.97 20.60 18.40 19.10 17.27
    Zr 53.60 58.50 58.00 57.40 59.24
    Pb 35.42 27.00 32.00 31.40 31.70
    Zn 22.77 16.80 16.40 16.80 18.61
    Cu 9.56 6.39 2.41 3.53 6.32
    Ni 2.84 7.89 1.19 1.77 4.52
    V 5.03 10.20 26.71 20.30 16.35
    Hf 2.66 3.68 3.08 3.01 3.19
    Sc 3.12 3.18 4.41 3.99 3.71
    Ta 2.26 3.60 2.64 2.59 3.23
    Nb 10.51 15.30 10.20 10.10 11.57
    U 5.02 1.94 2.93 2.76 3.46
    Th 10.43 14.21 16.00 14.50 10.38
    Ga 20.67 20.01 19.20 19.70 24.98
    Cs 4.29 4.51 5.52 5.53 6.43
    Y 33.87 27.41 22.20 21.70 49.85
    La 5.56 6.37 4.46 4.62 5.29
    Ce 12.89 14.57 10.10 10.90 12.97
    Pr 1.85 2.07 1.36 1.34 1.69
    Nd 7.70 9.04 5.99 5.75 7.45
    Sm 2.84 3.27 2.12 2.14 3.14
    Eu 0.10 0.13 0.10 0.10 0.12
    Gd 2.86 3.46 2.35 2.15 3.47
    Tb 0.73 0.86 0.60 0.59 0.83
    Dy 5.05 5.39 3.78 3.93 6.07
    Ho 1.08 1.09 0.73 0.72 1.12
    Er 3.05 3.47 2.14 2.07 3.21
    Tm 0.56 0.62 0.39 0.41 0.65
    Yb 3.33 4.32 2.59 2.85 4.27
    Lu 0.54 0.81 0.37 0.41 0.69
    ΣREE 48.14 55.47 37.09 38.03 47.83
    δEu 0.11 0.12 0.14 0.14 0.11
    (La/Yb)N 1.13 0.99 1.16 1.09 0.84
    注:主量元素含量单位为%,稀土、微量元素含量单位为10-6
    下载: 导出CSV
  • [1]

    Sengor A M C, Natalin B A, Burtman U A.Evolution of the Altaid tectonic college and Paleozoic crustal growth in Eurasia[J]. Nature, 1993, 364:299-307. doi: 10.1038/364299a0

    [2]

    梁日暄.内蒙古中段蛇绿岩特征及地质意义[J].中国区域地质, 1994, (1):37-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400629562

    [3]

    陈斌, 赵国春, Wilde S.内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义[J].地质论评, 2001, 47(4):361-367. doi: 10.3321/j.issn:0371-5736.2001.04.005

    [4]

    Xiao W J, Windley B F, Hao J.Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22(6):1069-1089.

    [5]

    Windley B F, Alexeiev D, Xiao W J, et al.Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1):31-47. doi: 10.1144/0016-76492006-022

    [6]

    石玉若, 刘敦一, 张旗, 等.内蒙古中部苏尼特左旗地区三叠纪A型花岗岩锆石SHRIMP U-Pb年龄及其区域构造意义[J].地质通报, 2007, 26(2):183-189. doi: 10.3969/j.issn.1671-2552.2007.02.009 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20070231&flag=1

    [7]

    Miao L C, Fan W M, Liu D Y, et al.Geochronology and geochemistry of the Hegenshan ophiolitic complex:Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China[J]. Journal of Asian Earth Sciences, 2008, 32(4):404-415.

    [8]

    Xiao W J, Windley B F, Huang B C.End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids, implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia[J]. Int.J.Earth Sci., 2009, 98:1189-1217. doi: 10.1007/s00531-008-0407-z

    [9]

    Jian P, Liu D Y, Kroner A, et al.Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian orogenic Belt, China and Mongolia[J]. Lithos, 2010, 118:169-190. doi: 10.1016/j.lithos.2010.04.014

    [10]

    Chen B, Jahn B M, Tian W.Evolution of the Solonker suture zone constraints from U-Pb ages, Hf isotopic ratios and zircon whol-rock Nd, Sr isotope compositions of subduction-and collision-related magmas and forearc sediments[J]. Journal of Asian Earth Sciences, 2009, 34:245-257. doi: 10.1016/j.jseaes.2008.05.007

    [11]

    Liu J F, Li J Y, Chi X G, et al.A late-Carboniferous to early early-Permian subduction-accretion complex in Daqing pasture, southeastern Inner Mongolia:Evidence of northward subduction beneath the Siberian paleoplate southern margin[J]. Lithos, 2013, 177(2):285-296.

    [12]

    邵济安, 田伟, 唐克东, 等.内蒙古晚石炭世高镁玄武岩的成因和构造背景[J].地学前缘, 2015, 22(5):171-181. http://d.old.wanfangdata.com.cn/Periodical/dxqy201505014

    [13]

    Zhang Z C, Li K, Li JF, et al.Geochronology and geochemistry of the eastern Erenhot ophiolitic complex:Implications for the tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt[J]. Journal of Asian Earth Sciences, 2015, 97(Part B):279-293.

    [14]

    田树刚, 李子舜, 张永生, 等.内蒙东部及邻区晚石炭世—二叠纪构造古地理环境及演变[J].地质学报, 2016, 90(4):688-707. doi: 10.3969/j.issn.0001-5717.2016.04.007

    [15]

    李钢柱, 王玉净, 李成元.内蒙古索伦山蛇绿岩带早二叠世放射虫动物群的发现及其地质意义[J].科学通报, 2017, 62(5):400-406. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201705007

    [16]

    张晓晖, 张宏福, 汤艳杰, 等.内蒙古中部锡林浩特-西乌旗早三叠世A型酸性火山岩的地球化学特征及其地质意义[J].岩石学报, 2006, 22(11):2769-2780. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200611015

    [17]

    刘建峰, 迟效国, 张兴洲, 等.内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义[J].地质学报, 2009, 83(3):365-376. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200903006

    [18]

    刘建峰, 李锦轶, 迟效国, 等.内蒙古东南部早三叠世花岗岩带岩石地球化学特征及其构造环境[J].地质学报, 2014, 88(9):1677-1690. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201409005

    [19]

    李英杰, 王金芳, 李红阳, 等.内蒙古西乌旗迪彦庙蛇绿岩的识别[J].岩石学报, 2012, 28(4):1282-1290.

    [20]

    李英杰, 王金芳, 李红阳, 等.内蒙西乌旗白音布拉格蛇绿岩地球化学特征[J].岩石学报, 2013, 29(8):2719-2730. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201308009

    [21]

    李英杰, 王金芳, 李红阳, 等.内蒙古西乌旗梅劳特乌拉蛇绿岩的识别[J].岩石学报, 2015, 31(5):1461-1470. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201505020

    [22]

    李英杰, 王金芳, 王根厚, 等.内蒙古迪彦庙蛇绿岩带达哈特前弧玄武岩的发现及其地质意义[J].岩石学报, 2018, 34(2):469-482. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201802019

    [23]

    康健丽, 肖志斌, 王惠初.内蒙古锡林浩特早石炭世构造环境:来自变质基性火山岩的年代学和地球化学证据[J].地质学报, 2016, 90(2):383-397. doi: 10.3969/j.issn.0001-5717.2016.02.014

    [24]

    张树栋, 龙舟, 张明洋, 等.中蒙边境额仁淖尔地区包饶勒敖包石英闪长岩锆石U-Pb年龄及构造意义[J].地质科技情报, 2017, 36(3):92-102. doi: 10.3969/j.issn.1009-6248.2017.03.011

    [25]

    王金芳, 李英杰, 李红阳, 等.内蒙古梅劳特乌拉蛇绿岩中埃达克岩的发现及其演化模式[J].地质学报, 2017, 91(8):1776-1795. doi: 10.3969/j.issn.0001-5717.2017.08.009

    [26]

    Wang J F, Li Y J, Li H Y.Zircon LA-ICP-MS U-Pb Age and Island-Arc Origin of the Bayanhua Gabbro in the Hegenshan Suture Zone, Inner Mongolia[J]. Acta Geologica Sinica, 2017, 91(6):2316-2317. doi: 10.1111/1755-6724.13470

    [27]

    王金芳, 李英杰, 李红阳, 等.内蒙古西乌旗努和特早白垩世A型花岗岩LA-ICPMS锆石U-Pb年龄及其地质意义[J].地质通报, 2017, 36(8):1343-1358. doi: 10.3969/j.issn.1671-2552.2017.08.005 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20170805&flag=1

    [28]

    王金芳, 李英杰, 李红阳, 等.内蒙古西乌旗石匠山晚侏罗世—早白垩世A型花岗岩锆石U-Pb年龄及构造环境[J].地质通报, 2018, 37(2/3):382-396. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2018020317&flag=1

    [29]

    王金芳, 李英杰, 李红阳, 等.内蒙古西乌旗德勒哈达早白垩世A型花岗岩形成时代:锆石U-Pb定年证据[J].中国地质, 2018, 45(1):197-198. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201801018

    [30]

    张维, 简平, 刘敦一, 等.内蒙古中部达茂旗地区三叠纪花岗岩和钾玄岩的地球化学、年代学和Hf同位素特征[J].地质通报, 2010, 29(7):821-832. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201006004

    [31]

    程天赦, 杨文静, 王登红.内蒙古西乌旗阿鲁包格山A型花岗岩锆石U-Pb年龄、地球化学特征及地质意义[J].大地构造与成矿学, 2014, 38(3):718-728. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201403024

    [32]

    吴荣泽, 张树栋, 来林.内蒙古乌兰五台地区三叠纪铝质A型花岗岩年代学及地球化学特征[J].地球科学与环境学报, 2015, 37(6):47-58. doi: 10.3969/j.issn.1672-6561.2015.06.005

    [33]

    李红英, 周志广, 张达, 等.内蒙古西乌旗格尔楚鲁晚三叠世流纹岩年代学、地球化学特征及其地质意义[J].矿物岩石地球化学通报, 2015, 34(3):546-555. doi: 10.3969/j.issn.1007-2802.2015.03.011

    [34]

    Anderson T.Correction of commen lead U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192:59-79. doi: 10.1016/S0009-2541(02)00195-X

    [35]

    Corfu F, Hanchar J M, Hoskin P W O.Atlas of Zircon Textures[J]. Reviews in Mineralogy & Geochemistry, 2003, 53(1):469-500. http://d.old.wanfangdata.com.cn/NSTLQK/10.2113-0530469/

    [36]

    Maniar P D, Piccoli P M.Tectonic discrimination of granitoids[J]. Bulletin of the Geological Society of America, 1989, 101:635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    [37]

    Peccerillo A, Taylor S R.Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu Area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58:63-81. doi: 10.1007/BF00384745

    [38]

    Boynton W V.Geochemistry of the rare earth elements: meteorite studies/Henderson P.Rare earth element geochemistry[M]. Elsevier, 1984: 63-114.

    [39]

    Eby G N.Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J]. Geology, 1992, 20:641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    [40]

    Sun S S, McDonough W F.Chemical and isotope systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society of London, Special Publication, 1989, 42:313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [41]

    Whalen J B, Currie K, Chappel B W.A-type granite:geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95:407-419. doi: 10.1007/BF00402202

    [42]

    Collins W J, Beams S D, White A J R, et al.Nature and origin of A-type granites with particular reference to Southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80:189-200. doi: 10.1007/BF00374895

    [43]

    Eby G N.The A-type granitoids:a review of their occurrence and chemical characteristics and speculation on their petrogenesis[J]. Lithos, 1990, 26:115-134. doi: 10.1016/0024-4937(90)90043-Z

    [44]

    Bonin B.A-type granites and related rocks:Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97:1-29.

    [45]

    张旗, 冉皞, 李承东.A型花岗岩的实质是什么?[J].岩石矿物学杂志, 2012, 31(4):621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014

    [46]

    King P L, White A J R, Chappell B W, et al.Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia[J]. J.Petrol., 1997, 38(3):371-391. doi: 10.1093/petroj/38.3.371

    [47]

    邱检生, 王德滋, 蟹泽聪史, 等.福建沿海铝质A型花岗岩的地球化学及岩石成因[J].地球化学, 2000, 29(4):313-321. http://d.old.wanfangdata.com.cn/Periodical/dqhx200004001

    [48]

    Hergt J, Woodhead J, Schofield A.A-type magmatism in the Western Lachlan Fold Belt?A study of granites and rhyolites from the Grampians region, Western Victoria[J]. Lithos, 2007, 97(1/2):122-139.

    [49]

    吴锁平, 吴才来, 陈其龙.阿尔金断裂南侧吐拉铝质A型花岗岩的特征及构造环境[J].地质通报, 2007, 26(10):1385-1392. doi: 10.3969/j.issn.1671-2552.2007.10.016 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2007010218&flag=1

    [50]

    黎敦朋, 赵越, 胡健民, 等.青藏高原西北缘中新世晚期A型花岗岩的特征及意义[J].地质通报, 2007, 26(12):1671-1677. doi: 10.3969/j.issn.1671-2552.2007.12.021 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=200701220&flag=1

    [51]

    杨钢, 肖龙, 高睿, 等.内蒙古阿尔山地区中生代A型花岗岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其构造意义[J].地质通报, 2014, 33(5):649-660. doi: 10.3969/j.issn.1671-2552.2014.05.006 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20140506&flag=1

    [52]

    武昱东, 王宗起, 罗金海, 等.滇东北东川下田坝A型花岗岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其构造意义[J].地质通报, 2014, 33(6):860-873. doi: 10.3969/j.issn.1671-2552.2014.06.009 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20140609&flag=1

    [53]

    De La Roche H, Leteeeier J, Grande Claude P, et al.A classification of volcanic and plutonic rocks using R1-R2 diagrams and major element analyses-Its relationships and current nomemclature[J]. Chem.Geol., 1980, 29:183-210. doi: 10.1016/0009-2541(80)90020-0

    [54]

    Hong D W, Wang S G, Han B F et al.Post-orogenic alkaline granites from China and comparisons with anorogenic alkaline granites elsewhere[J]. Journal of Southeast Asian Earth Seienees, 1996, 13(l):13-27.

    [55]

    王惠, 王玉净, 陈志勇, 等.内蒙古巴彦敖包二叠纪放射虫化石的发现[J].地层学杂志, 2005, 29(4):368-372. doi: 10.3969/j.issn.0253-4959.2005.04.009

    [56]

    Shang Q H.The discovery and significance of Permian radiolarians Northern Orogenic belt in the northern and middle lnner Mongolia[J]. Chinese Science Bulletin, 2004, 49:2574-2579. doi: 10.1360/csb2004-49-24-2574

    [57]

    公繁浩, 黄欣, 郑月娟, 等.内蒙古西乌旗下二叠统寿山沟组海底扇的发现及意义[J].地质与资源, 2013, 22(6):478-483. doi: 10.3969/j.issn.1671-1947.2013.06.007

    [58]

    李锦轶, 高立明, 孙桂华, 等.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J].岩石学报, 2007, 23(3):565-582. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200703004

    [59]

    李锦轶, 刘建峰, 曲军峰, 等.中国东北地区主要地质特征和地壳构造格架[J].岩石学报, 2019, 35(10):2989-3016. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201910005

    [60]

    王金芳, 李英杰, 李红阳, 等.内蒙古乌兰沟埃达克岩锆石U-Pb年龄及构造环境[J].地质通报, 2018, 37(10):1933-1943. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20181017&flag=1

    [61]

    王金芳, 李英杰, 李红阳, 等.内蒙古梅劳特乌拉蛇绿岩中早二叠世高镁闪长岩的发现及洋内俯冲作用[J].中国地质, 2018, 45(4):706-719. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201804006

    [62]

    王金芳, 李英杰, 李红阳, 等.贺根山缝合带白音呼舒奥长花岗岩锆石U-Pb年龄、地球化学特征及构造意义[J].地质论评, 2019, 65(4):857-872. http://d.old.wanfangdata.com.cn/Periodical/dzlp201904007

    [63]

    王金芳, 李英杰, 李红阳, 等.内蒙古贺根山缝合带后造山作用——满克头鄂博组火山岩锆石U-Pb年龄和地球化学制约[J].地质通报, 2019, 38(9):1443-1454. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20190904&flag=1

    [64]

    李锦轶, 刘建峰, 曲军峰, 等.中国东北地区古生代构造单元:地块还是造山带?[J].地球科学, 2019, 44(10):3157-3177. http://d.old.wanfangdata.com.cn/Periodical/dqkx201910001

    辽宁省第二区域地质测量队.L-50-35(白塔子庙幅)1: 200000地质图说明书.1972.

  • 加载中

(12)

(2)

计量
  • 文章访问数:  764
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2018-05-15
修回日期:  2018-07-27
刊出日期:  2020-01-15

目录