赣杭构造带龙游地区早白垩世基性岩矿物化学、岩石地球化学特征及其地质意义

卢宽, 杜诗琰, 张若曦, 邹妍, 蔡逸涛, 杨水源. 赣杭构造带龙游地区早白垩世基性岩矿物化学、岩石地球化学特征及其地质意义[J]. 地质通报, 2019, 38(1): 163-176.
引用本文: 卢宽, 杜诗琰, 张若曦, 邹妍, 蔡逸涛, 杨水源. 赣杭构造带龙游地区早白垩世基性岩矿物化学、岩石地球化学特征及其地质意义[J]. 地质通报, 2019, 38(1): 163-176.
LU Kuan, DU Shiyan, ZHANG Ruoxi, ZOU Yan, CAI Yitao, YANG Shuiyuan. Mineral chemistry, geochemistry and geological significance of Early Cretaceous mafic rock in Longyou area, Gan-Hang belt[J]. Geological Bulletin of China, 2019, 38(1): 163-176.
Citation: LU Kuan, DU Shiyan, ZHANG Ruoxi, ZOU Yan, CAI Yitao, YANG Shuiyuan. Mineral chemistry, geochemistry and geological significance of Early Cretaceous mafic rock in Longyou area, Gan-Hang belt[J]. Geological Bulletin of China, 2019, 38(1): 163-176.

赣杭构造带龙游地区早白垩世基性岩矿物化学、岩石地球化学特征及其地质意义

  • 基金项目:
    国家重点研发计划项目《热液型铀矿示范区岩浆演化及晚期酸性岩(脉)地质年代学研究》(编号:2017YFC0602601)和国家自然科学基金项目《赣杭构造带大洲铀矿田REE矿化机制及其与U成矿耦合关系研究》(批准号:41773040)
详细信息
    作者简介: 卢宽(1994-), 男, 在读硕士生, 矿物学、岩石学、矿床学专业。E-mail:278473262@qq.com
    通讯作者: 杨水源(1984-), 男, 博士, 副教授, 矿物学、岩石学、矿床学和地球化学专业。E-mail:shuiyuanyang@cug.edu.cn
  • 中图分类号: P534.53;P588.12+4

Mineral chemistry, geochemistry and geological significance of Early Cretaceous mafic rock in Longyou area, Gan-Hang belt

More Information
  • 通过龙游晚中生代基性岩岩相学观察、全岩主量、微量元素和Sr-Nd同位素及矿物电子探针分析,对岩石成因、岩浆演化和构造环境进行探讨。龙游基性岩岩性为橄榄辉长岩,Sr-Nd同位素显示为幔源特征;主量、微量元素特征显示其经历了以橄榄石、辉石为主的分离结晶作用,且未发生明显的地壳物质混染。橄榄石颗粒具核-边结构,富Mg贫Fe的核部Fo值为90.1~91.8,指示原始岩浆是软流圈地幔,富Fe贫Mg的边部显示橄榄石Fo值为77.4~85.3,且核-边两部分的Fo值相差较大,显示原始橄榄石形成之后受到地幔熔体/流体的交代作用。辉石斑晶大多属于透辉石,在部分斑晶的边部发育少量霓辉石。透辉石斑晶普遍具有核-幔-边结构,从核部到边部的SiO2含量降低,TiO2、Al2O3含量升高,结晶温度升高,显示原始辉石形成之后受到温度更高的地幔熔体/流体的交代作用。研究认为,古太平洋板块后撤造成岩石圈地幔拉伸作用并形成赣杭构造带深部断裂后,部分软流圈物质受到地幔流体/熔体的交代作用,并沿这些深部断裂向上侵位,经历了以橄榄石和辉石矿物为主的分离结晶作用和微弱的地壳物质混染,最终形成龙游橄榄辉长岩。

  • 加载中
  • 图 1  中国东南部赣杭构造带地质图(据参考文献[5]修改)

    Figure 1. 

    图 图版Ⅰ   

    Figure 图版Ⅰ. 

    图 2  龙游橄榄辉长岩中辉石矿物化学图解

    Figure 2. 

    图 3  龙游橄榄辉长岩中辉石矿物化学成分EnstatiteDiopside-Hedenbergite-Ferrosilite四角分类图解(图例同图 2[32]

    Figure 3. 

    图 4  龙游橄榄辉长岩 Nb/Y-Zr/TiO2图解[35]

    Figure 4. 

    图 5  龙游橄榄辉长岩稀土元素球粒陨石标准化图解(a)和微量元素蛛网图(b)(a和b中的标准化数据分别据参考文献[33] [34])

    Figure 5. 

    图 6  龙游橄榄辉长岩La-La/Sm(a)和ISr-εNd(t)图解(b)(a均为球粒陨石标准化数据[37], 标准化数据据参考文献[33]; b中实线为GHTB上的S、A型花岗岩范围[19], 虚线为晚中生代GHTB基性岩脉范围[25])

    Figure 6. 

    图 7  龙游橄榄辉长岩中辉石矿物(Ca+Na)-Ti(离子数)图解[44]

    Figure 7. 

    图 8  龙游橄榄辉长岩2Nb-Zr/4-Y构造环境判别图解[45]

    Figure 8. 

    表 1  龙游橄榄辉长岩中橄榄石化学组成

    Table 1.  Mineral chemistry of olivine from olivine gabbro in Longyou area

    %
    低Fe
    点号 2-1 2-11 2-12 3-8 4-7 2-2 2-13 2-14 3-9 3-10 3-30
    核部 边部
    SiO2 41.42 40.57 41.84 1.65 41.03 40.22 40.54 39.80 41.56 39.80 40.06
    TiO2 0.00 0.03 0.02 0.00 0.00 0.03 0.07 0.01 0.01 0.01 0.02
    Al2O3 0.02 0.09 0.09 0.03 0.04 0.05 0.01 0.04 0.04 0.03 0.04
    Cr2O3 0.05 0.07 0.02 0.03 0.04 0.03 0.03 0.00 0.01 0.02 0.02
    FeO 8.11 9.19 9.26 9.66 9.20 16.89 14.22 18.76 17.84 17.84 18.58
    MnO 0.05 0.00 0.03 0.04 0.05 0.11 0.08 0.10 0.08 0.10 0.10
    MgO 50.30 50.00 50.14 48.88 49.95 43.55 45.78 41.83 42.41 42.41 41.31
    CaO 0.08 0.26 0.15 0.05 0.08 0.33 0.34 0.75 0.07 0.30 0.27
    NiO 0.38 0.35 0.34 0.37 0.33 0.13 0.20 0.09 0.35 0.12 0.12
    Na2O 0.01 0.05 0.05 0.01 0.02 0.01 0.01 0.05 0.01 0.05 0.02
    K2O 0.00 0.01 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    总计 100.41 100.61 101.94 101.45 99.77 101.35 100.66 101.43 100.67 100.67 101.03
    以4个氧原子为基准计算阳离子数
    Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    Ni 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00
    Fe 0.16 0.19 0.18 0.20 0.19 0.35 0.29 0.39 0.37 0.38 0.39
    Mg 1.82 1.82 1.80 1.78 1.81 1.63 1.69 1.58 1.57 1.60 1.57
    Ca 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.02 0.00 0.01 0.01
    Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    A1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    sum X 2.00 2.03 2.00 1.98 2.01 2.00 2.00 2.00 1.95 1.99 1.97
    Si 1.00 0.99 1.00 1.01 0.99 1.00 1.00 1.00 1.03 1.00 1.01
    sum 3.00 3.01 3.00 2.99 3.01 3.00 3.00 3.00 2.97 2.99 2.98
    Fo 91.8 90.7 90.7 90.1 90.7 82.3 85.3 80.1 81.1 81.1 80.0
    低Fe 高Fe
    边部
    点号 4-8 4-9 4-16 4-32 4-33 4-35 2-3 3-31 3-32 4-18
    SiO2 41.65 39.88 40.39 41.57 39.85 39.11 39.74 39.54 39.06 39.41
    TiO2 0.02 0.01 0.01 0.00 0.02 0.04 0.01 0.02 0.06 0.00
    Al2O3 0.04 0.03 0.03 0.01 0.02 0.01 0.00 0.02 0.04 0.00
    Cr2O3 0.04 0.01 0.03 0.04 0.05 0.01 0.01 0.02 0.00 0.05
    FeO 15.74 15.74 14.79 18.25 18.25 18.04 20.15 20.45 20.45 20.15
    MnO 0.05 0.10 0.09 0.02 0.08 0.09 0.13 0.10 0.14 0.14
    MgO 43.52 43.52 44.47 42.12 42.12 41.47 40.68 38.98 38.98 40.80
    CaO 0.07 0.30 0.20 0.13 0.26 0.45 0.73 0.24 0.48 0.52
    NiO 0.36 0.17 0.09 0.33 0.12 0.17 0.02 0.11 0.09 0.11
    Na2O 0.00 0.00 0.02 0.00 0.00 0.02 0.01 0.03 0.00 0.00
    K2O 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    总计 101.37 99.75 100.12 100.83 100.78 99.41 101.49 99.98 99.30 101.17
    以4个氧原子为基准计算阳离子数
    Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    Ni 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
    Fe 0.32 0.33 0.31 0.38 0.38 0.39 0.43 0.44 0.44 0.43
    Mg 1.61 1.65 1.67 1.56 1.59 1.59 1.54 1.51 1.51 1.55
    Ca 0.00 0.01 0.01 0.00 0.01 0.01 0.02 0.01 0.01 0.01
    Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    A1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    sum X 1.95 1.99 1.98 1.95 1.99 2.00 1.99 1.96 1.98 2.00
    Si 1.03 1.01 1.01 1.03 1.01 1.00 1.01 1.02 1.01 1.000
    sum 2.97 3.00 2.99 2.97 3.00 3.00 3.00 2.98 2.99 3.000
    Fo 83.3 83.3 84.4 80.6 80.6 80.5 78.4 77.4 77.4 78.5
    注:sum X为Na、K、Ni、Fe、Mg、Ca、Mn、Al、Ti和Cr这10个阳离子在矿物化学分子式中阳离子数之和;sum为各阳离子和Si(阴离子)在矿物化学分子式中的离子数之和
    下载: 导出CSV

    表 2  龙游橄榄辉长岩中辉石化学组成

    Table 2.  Mineral chemistry of pyroxene from olivine gabbro in Longyou area

    下载: 导出CSV

    表 3  龙游橄榄辉长岩全岩主量和微量元素测试结果

    Table 3.  Major and trace element concentrations of olivine gabbro in Longyou area

    数据来源 本文 文献[25]
    样品名 DQW-21-2 DQW-21-3 DQW-21-4 HT2 HTSM1 HTSM2 HTSM3 HTSM4 HTSM5 HTSM6 HTSM7 HTSM8
    SiO2 39.00 39.08 38.99 45.11 42.95 43.10 41.99 41.50 42.92 42.18 43.25 41.75
    TiO2 3.12 3.15 3.13 2.35 2.53 2.53 2.58 2.57 2.51 2.60 2.56 2.59
    Al2O3 10.79 10.59 10.82 12.61 12.18 12.26 12.20 12.10 12.11 12.24 12.26 12.15
    Fe2O3 4.68 5.31 5.41 12.14 12.51 12.54 12.42 12.21 12.44 12.57 12.62 12.49
    FeO 8.69 8.30 8.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    MnO 0.19 0.19 0.19 0.17 0.17 0.17 0.17 0.18 0.17 0.18 0.17 0.18
    MgO 10.52 10.59 10.00 9.28 9.90 9.79 9.32 9.05 9.77 9.87 9.65 9.64
    CaO 11.21 11.14 11.54 8.64 9.46 9.46 9.72 10.07 9.45 9.77 9.61 9.75
    Na2O 4.07 4.06 4.19 4.53 5.08 5.06 4.69 4.75 4.76 5.00 5.05 4.92
    K2O 1.15 1.15 0.59 1.75 1.41 1.38 1.45 1.47 1.54 1.42 1.32 1.42
    P2O5 1.26 1.23 1.23 0.97 1.03 1.03 1.09 1.08 1.02 1.11 1.04 1.09
    烧失量 4.74 4.62 5.25 2.46 2.94 2.45 3.11 4.71 2.66 2.75 2.62 2.97
    总计 99.42 99.41 99.35 100.01 100.16 99.77 98.74 99.69 99.35 99.69 100.15 98.95
    Li 44.3 45.8 26.3 - - - - - - - -
    Sc 13.6 15.0 6.75 17.1 16.4 17.8 21.8 21.2 17.2 20.4 16.8 20.9
    Ti 17373 17410 9018 14100 15180 15180 15480 15420 15060 15600 15360 15540
    V 193 208 102 144 141 146 173 168 143 161 146 165
    Cr 188 180 84.1 238 203 220 228 220 210 213 212 215
    Mn 1253 1317 681 1316 1316 1316 1316 1394 1316 11394 1316 1394
    Co 49.8 54.1 24.4 53.6 48.4 49.1 72.3 73.4 48.3 80.9 49.4 114
    Ni 199 228 104 218 196 199 202 196 198 196 205 195
    Cu 43.4 45.6 23.5 - - - - - - - - -
    Zn 109 128 62.7 - - - - - - - - -
    Ga 21.0 21.7 10.3 - - - - - - - - -
    Rb 49.9 57.6 18.6 55.5 56.9 61.7 62.0 46.7 66.4 59.4 49.3 57.7
    Sr 1426 1408 736 1204 1160 1210 1140 1140 1180 1140 1150 1140
    Y 28.9 30.5 15.2 26.9 25.0 25.7 27.0 26.0 25.6 25.7 25.6 26.3
    Zr 353 359 181 315 247 255 294 291 255 292 254 293
    Nb 133 140 74.9 110 113 116 101 98.7 115 98.7 116 99.50
    Mo 2.95 2.83 0.85 - - - - - - - - -
    Cd 0.16 0.17 0.05 - - - - - - - - -
    Sn 2.30 2.36 1.30 - - - - - - - - -
    Cs 1.16 1.30 0.67 - - - - - - - - -
    Ba 924 1004 473 884 825 854 835 872 834 825 941 847
    La 86.3 91.7 47.6 64.8 64.0 65.9 62.0 60.2 66.2 61.4 66.7 62.9
    Ce 151.7 145.2 75.0 119 112 116 110 105 116 109 117 111
    Pr 17.4 17.9 8.6 13.1 12.9 13.3 12.9 12.8 13.4 13. 13.2 12.9
    Nd 67.0 72.0 37.3 51.0 51.4 52.9 49.1 48.0 52.9 49.5 52.7 48.4
    Sm 11.2 12.0 6.75 10.1 10.1 10.3 9.59 9.36 10.5 10.1 10.5 9.82
    Eu 3.90 3.62 2.09 3.24 3.31 3.41 3.61 3.38 3.35 3.71 3.44 3.62
    Gd 10.9 10.6 5.70 10.8 8.84 9.30 9.63 9.72 9.00 10.1 9.08 9.93
    Tb 1.22 1.23 0.62 1.22 1.21 1.26 1.23 1.21 1.27 1.25 1.29 1.25
    Dy 6.32 6.85 3.63 6.35 5.52 5.64 5.80 5.66 5.63 5.69 5.69 5.72
    Ho 1.13 1.13 0.57 1.06 0.98 1.00 0.96 0.94 1.01 0.99 1.00 0.95
    Er 2.50 2.44 1.31 2.62 2.24 2.28 2.39 2.30 2.33 2.38 2.35 2.34
    Tm 0.28 0.29 0.16 0.31 0.27 0.25 0.28 0.28 0.28 0.28 0.27 0.30
    Yb 1.47 1.45 0.82 1.82 1.48 1.50 1.54 1.57 1.59 1.57 1.55 1.57
    Lu 0.20 0.18 0.10 0.24 0.20 0.20 0.20 0.19 0.20 0.22 0.20 0.19
    Hf 6.82 7.11 3.71 6.92 5.25 5.28 6.24 6.22 5.28 6.24 5.32 6.17
    Ta 11.0 10.8 5.37 6.44 6.12 6.26 5.11 5.02 6.26 5.11 6.38 5.25
    W 1.58 1.89 0.71 - - - - - - - - -
    Pb 3.35 3.39 1.81 - - - - - - - - -
    Bi 0.02 0.05 0.01 - - - - - - - - -
    Th 11.0 10.0 5.63 10.5 9.10 9.40 9.40 9.30 9.60 9.80 9.40 9.90
    U 2.33 2.47 1.22 2.62 2.50 2.12 2.32 2.65 1.99 2.21 1.99 2.33
    ΣREE 362 367 190 285 274 283 269 261 284 269 285 271
    LREE/HREE 14.0 14.2 13.8 10.7 12.2 12.2 11.2 10.9 12.3 11.0 12.3 11.2
    Eu/Eu* 1.06 0.96 1.00 0.84 1.05 1.05 1.14 1.08 1.03 1.11 1.05 1.11
    Ce/Ce* 0.89 0.81 0.83 0.93 0.89 0.89 0.89 0.8 0.89 0.89 0.90 0.89
    (La/Yb)N 39.5 42.6 39.3 24.0 29.2 29.6 27.1 25.8 28.1 26.4 29.0 27.0
    (La/Sm)N 4.82 4.82 4.44 4.04 3.99 4.02 4.07 4.05 3.97 3.82 4.00 4.03
    (Gd/Yb)N 6.00 5.88 5.62 4.80 4.82 5.00 5.05 5.00 4.57 5.20 4.73 5.10
    注:Eu/Eu*=EuN/(SmN/GdN),Ce/Ce*=CeN/(LaN/PrN);球粒陨石标准化数据据参考文献[33];原始地幔标准化数据据参考文献[34];主量元素含量单位为%,微量元素为10-6
    下载: 导出CSV

    表 4  龙游橄榄辉长岩Sr、Nd同位素组成

    Table 4.  Sr and Nd isotopic compositions of olivine gabbro in Longyou area

    数据来源 样品号 87Rb/86Sr 87Sr/86Sr ISr 147Sm/144Nd 143Nd/144Nd INd εNd(t)
    本文 DQW-21-2 0.1013 0.704232 0.70405 0.1016 0.5129 0.512814 6.68
    DQW-21-3 0.1184 0.704037 0.703824 0.1004 0.512892 0.512807 6.54
    DQW-21-4 0.073 0.704523 0.704392 0.1092 0.512904 0.512812 6.63
    据Qi等[26] HT2 0.1334 0.70364 0.7034 0.1195 0.51284 0.512739 5.21
    HTSM2 0.1475 0.7036 0.703335 0.1176 0.51291 0.512811 6.61
    HTSM5 0.1628 0.70354 0.703247 0.1199 0.51287 0.512769 5.79
    HTSM7 0.124 0.70357 0.703347 0.1204 0.51289 0.512788 6.17
    下载: 导出CSV
  • [1]

    刘瑞.中国东部碱性基性岩与金刚石矿床成矿机制研究[J].长春工程学院学报(自然科学版), 2003, 4(4):1-4. doi: 10.3969/j.issn.1009-8984.2003.04.001

    [2]

    蔡逸涛, 陈国光, 张洁, 等.安徽栏杆地区橄榄辉长岩地球化学特征及其与金刚石成矿的关系[J].资源调查与环境, 2014, 35(4):245-253. doi: 10.3969/j.issn.1671-4814.2014.04.002

    [3]

    秦正永, 林晓辉.浙江龙游县虎头山是否存在"金伯利岩"[J].华南地质与矿产, 2001, (2):57-62. doi: 10.3969/j.issn.1007-3701.2001.02.009

    [4]

    高林志, 张恒, 丁孝忠, 等.江山-绍兴断裂带构造格局的新元古代SHRIMP锆石U-Pb年龄证据[J].地质通报, 2014, 33(6):763-775. doi: 10.3969/j.issn.1671-2552.2014.06.001 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20140601&flag=1

    [5]

    Yu X Q, Wu G G, Shu L S, et al. The Cretaceous tectonism of the Gan-Hang Tectonic Belt, southeastern China[J]. Earth Science Frontiers, 2006, 13(3):31-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200603006

    [6]

    Gilder S A, Gill J, Coe R S, et al. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China[J]. Journal of Geophysical Research, 1996, 101(B7):16137-16154. doi: 10.1029/96JB00662

    [7]

    Goodell P C, Gilder S, Fang X. A preliminary description of the Can-Hang failed rift, southeastern China[J]. Tectonophysics, 1991, (197):245-255. https://www.researchgate.net/publication/222346473_A_preliminary_description_of_the_Gan-Hang_failed_rift_southeastern_china

    [8]

    邓家瑞, 张志平.赣杭构造带前寒武纪构造格局的探讨[J].铀矿地质, 1997, 13(6):321-326. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700637089

    [9]

    邓家瑞, 张志平.赣杭构造带区域大地构造背景的探讨[J].铀矿地质, 1999, 15(2):8-13. http://d.old.wanfangdata.com.cn/Periodical/ykdz199902002

    [10]

    邓家瑞, 张志平.浙西-赣东北前寒武纪构造格局初探[J].华东地质学院学报, 1989, 12(1):18-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001277481

    [11]

    张星蒲.赣杭构造带中生代火山盆地的形成和演化[J].铀矿地质, 1999, 15(1):19-24. http://d.old.wanfangdata.com.cn/Periodical/ykdz199901003

    [12]

    冯少南.东吴运动的新认识[J].现代地质, 1991, 5(4):378-384. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003313898

    [13]

    何斌, 徐义刚, 王雅玫, 等.东吴运动性质的厘定及其时空演变规律[J].地球科学, 2005, 30(1):89-96. http://d.old.wanfangdata.com.cn/Periodical/dqkx200501012

    [14]

    胡世忠.关于龙潭组下界及东吴运动位置等问题的商榷[J].地层学杂志, 1979, 3(4):251-257. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000161656

    [15]

    余心起, 吴淦国, 舒良树, 等.白垩纪时期赣杭构造带的伸展作用[J].地学前缘, 2006, 13(3):31-43. doi: 10.3321/j.issn:1005-2321.2006.03.006

    [16]

    Jiang Y H, Ling H F, Jiang S Y, et al. Petrogenesis of a Late Jurassic Peraluminous Volcanic Complex and its High-Mg, Potassic, Quenched Enclaves at Xiangshan, Southeast China[J]. Journal of Petrology, 2005, 46(6):1121-1154. doi: 10.1093/petrology/egi012

    [17]

    Yang S Y, Jiang S Y, Jiang Y H, et al. Zircon U-Pb geochronology, Hf isotopic composition and geological implications of the rhyodacite and rhyodacitic porphyry in the Xiangshan uranium ore field, Jiangxi Province, China[J]. Science China:Earth Sciences, 2010, 53(10):1411-1426. doi: 10.1007/s11430-010-4058-0

    [18]

    Wong J, Sun M, Xing G F, et al. Geochemical and zircon U-Pb and Hf isotopic study of the Baijuhuajian metaluminous A-type granite:Extension at 125-100Ma and its tectonic significance for South China[J]. Lithos, 2009, 112(3/4):289-305. https://www.sciencedirect.com/science/article/pii/S0024493709000760

    [19]

    Jiang Y H, Zhao P, Zhou Q, et al. Petrogenesis and tectonic implications of Early Cretaceous S-and A-type granites in the northwest of the Gan-Hang rift, SE China[J]. Lithos, 2011, 121(1/4):55-73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4ce5ec8182c55216f6034bb10ff2de74

    [20]

    Sun F J, Xu X S, Zou H B, et al. Petrogenesis and magmatic evolution of~130Ma A-type granites in Southeast China[J]. Journal of Asian Earth Sciences, 2015, 98:209-224. doi: 10.1016/j.jseaes.2014.11.018

    [21]

    Yang S Y, Jiang S Y, Zhao K D, et al. Geochronology, geochemistry and tectonic significance of two Early Cretaceous Atype granites in the Gan-Hang Belt, Southeast China[J]. Lithos, 2012, 150:155-170. doi: 10.1016/j.lithos.2012.01.028

    [22]

    Wang H Z, Chen P R, Sun L Q, et al. Magma mixing and crustmantle interaction in Southeast China during the Early Cretaceous:Evidence from the Furongshan granite porphyry and mafic microgranular enclaves[J]. Journal of Asian Earth Sciences, 2015, 111:72-87. doi: 10.1016/j.jseaes.2015.08.010

    [23]

    Yang S Y, Jiang S Y, Zhao K D, et al. Petrogenesis and tectonic significance of Early Cretaceous high-Zr rhyolite in the Dazhou uranium district, Gan-Hang Belt, Southeast China[J]. Journal of Asian Earth Sciences, 2013, 74:303-315. doi: 10.1016/j.jseaes.2012.12.024

    [24]

    Liu L, Qiu J S, Li Z. Origin of mafic microgranular enclaves (MMEs) and their host quartz monzonites from the Muchen pluton in Zhejiang Province, Southeast China:Implications for magma mixing and crust-mantle interaction[J]. Lithos, 2013, 160/161:145-163. doi: 10.1016/j.lithos.2012.12.005

    [25]

    Qi Y Q, Hu R Z. Geochemical and Sr-Nd-Pb isotopic compositions of Mesozoic mafic dikes from the Gan-Hang tectonic belt, South China[J]. International Geology Review, 2012, 54(8):920-939. doi: 10.1080/00206814.2011.588820

    [26]

    Qi Y Q, Hu R Z. Petrogenesis and geodynamic setting of Early Cretaceous mafic-ultramafic intrusions, South China:A case study from the Gan-Hang tectonic belt[J]. Lithos, 2016, 258/259:149-162. doi: 10.1016/j.lithos.2016.04.027

    [27]

    Zhang R X, Yang S Y. A Mathematical Model for Determining Carbon Coating Thickness and Its Application in Electron Probe Microanalysis[J]. Microscopy and Microanalysis, 2016, 22(6):1374-1380. doi: 10.1017/S143192761601182X

    [28]

    郑巧荣.由电子探针分析值计算[J].矿物学报, 1983, (1):55-62. doi: 10.3321/j.issn:1000-4734.1983.01.009

    [29]

    高剑峰, 陆建军, 赖鸣远, 等.岩石样品中微量元素的高分辨率等离子质谱分析[J].南京大学学报(自然科学版), 2003, 39(6):844-850. doi: 10.3321/j.issn:0469-5097.2003.06.014

    [30]

    濮巍, 高剑峰, 赵葵东, 等.利用DCTA和HIBA快速有效分离Rb-Sr、Sm-Nd[J].地球学报, 2005, 26:54-54. doi: 10.3321/j.issn:1006-3021.2005.z1.020

    [31]

    Birck J L. Precision K-Rb-Sr isotopic analysis:Application to RbSr chronology[J]. Chemical Geology, 1986, 56:73-83. doi: 10.1016/0009-2541(86)90111-7

    [32]

    Morimoto N. Nomenclature of pyroxenes[J]. Mineralogy and Petrology, 1988, 52:535-550. https://link.springer.com/article/10.1007%2FBF01226262

    [33]

    Boynton W V. Cosmochemistry of the rare earth elements Meteorites studies[C]//Henderson P. Rare Earth Element Geochemistry. Elsevier, Amsterdam, 1984.

    [34]

    McDonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120:223-253. doi: 10.1016/0009-2541(94)00140-4

    [35]

    Winchester J A, Floyd P A. Geochemical magma type discrimination:application to altered and metamorphosed igneous rocks[J]. Earth Planet. Sci. Lett., 1976, 28(3):459-469. doi: 10.1016/0012-821X(76)90207-7

    [36]

    Allegre C. J, Hart S R. Trace elements in igneous petrology[J]. Chemical Geology, 1979, 25:355-358. http://d.old.wanfangdata.com.cn/NSTLQK/10.1007-BF00375445/

    [37]

    Treuil M, Varet J. Criteres volcanologiques, petrologiques et geochimiques de lagenese et de la differenciation des magmas basaltiques; exemple de l'Afar[J]. Bulletin de la Societe Geologique de France. 1973, S7-XV(5/6):506-540.

    [38]

    Gao S, Luo T C, Zhang B R, et al. Chemical composition of the continental crust as revealed by studies in East China[J]. Geochimica et Cosmochimica Acta, 1998, 62(11):1959-1975. doi: 10.1016/S0016-7037(98)00121-5

    [39]

    Gao S, Zhang B R, Jin Z M, et al. How mafic is the lower continental crust?[J]. Earth and Planetary Science Letters, 1998, 161:101-117. doi: 10.1016/S0012-821X(98)00140-X

    [40]

    Kato T, Enami M, Zhai M. Ultra-high-pressure (UHP) marble and eclogite in the Su-Lu UHP terrane, eastern China[J]. Journal of Metamorphic Geology, 1997, 15:169-182. doi: 10.1111/j.1525-1314.1997.00013.x

    [41]

    Zhang R Y, Hirajima T, Banno S, et al. Petrology of ultrahighpressure rocks from the southern Su-Lu region, eastern China[J]. Journal of Metamorphic Geology, 1995, 13(6):659-675. doi: 10.1111/jmg.1995.13.issue-6

    [42]

    Thompson R N. Some high-pressure pyroxenes[J]. Mineralogical Magazine, 1974, 39:768-787. doi: 10.1180/minmag.1974.039.307.04

    [43]

    刘勇, 李廷栋, 肖庆辉等.湘南宁远地区碱性玄武岩形成时代的新证据:锆石LA-ICP-MS U-Pb定年[J].地质通报, 2010, 29(6):833-841. doi: 10.3969/j.issn.1671-2552.2010.06.005 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20100605&flag=1

    [44]

    Leterrier J, Maury R C, Thonon P, et al. Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series[J]. Earth and Planetary Science Letters, 1982, 59:139-154. doi: 10.1016/0012-821X(82)90122-4

    [45]

    张兴洲, 张元厚.黑龙江群夹层状大理岩中的霓辉石和镁钠闪石[J].黑龙江地质, 1991, 2(4):35-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005862011

    [46]

    祁生胜, 王毅智, 范桂兰, 等.唐古拉山北坡中新世霓辉石正长岩的地球化学特征、时代及构造意义[J].地质通报, 2007, 26(12):1678-1685. doi: 10.3969/j.issn.1671-2552.2007.12.022 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=200701221&flag=1

    [47]

    Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the NbZr-Y diagram[J]. Chemical Geology, 1986, 56(3/4):207-218. https://www.sciencedirect.com/science/article/abs/pii/0009254186900045?via%3Dihub

  • 加载中

(9)

(4)

计量
  • 文章访问数:  1512
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2018-07-10
修回日期:  2018-09-12
刊出日期:  2019-01-15

目录