The Eocene magmatism and mineralization of Xiariduo rocks in the northern Yulong porphyry copper belt, Tibet: Evidence from zircon U-Pb geochronology and geochemistry
-
摘要:
在夏日多矿区识别出始新世黑云母二长花岗斑岩和石英闪长玢岩,确定其结晶年龄分别为41.6±0.3~41.7±0.3Ma和41.1±0.2~41.2±0.2Ma。首次在夏日多矿区厘定出始新世岩浆活动事件,并认为该矿区铜-钼成矿作用与该期构造-岩浆活动事件有关。岩石地球化学特征显示,黑云母二长花岗岩与石英闪长玢岩具有较一致的地球化学特征,均具有略高的SiO2、富K2O和Na2O、较高的K2O/Na2O值及较低的TFeO含量,属于弱过铝质的高钾钙碱性-钾玄岩系列;相对亏损K、Ba、Nb、P、Ti,富集Th、U、Sr、Hf,具有高分异Ⅰ型花岗岩特征;具高的Zr/Hf、Rb/Sr值和较低的Ti/Eu值。夏日多斑岩的形成与印度-亚洲大陆的陆-陆碰撞诱发大规模走滑系统引起下地壳拆沉,使软流圈物质上涌,引发富集地幔的部分熔融,产生的富集地幔岩浆上升底侵,并发生壳幔物质混染有关。
Abstract:In this study, the authors identified the Eocene biotite monzonitic granite porphyry and quartz diorite porphyrite in the Xiariduo mining area, and obtained their crystallization ages of 41.6±0.3~41.7±0.3Ma and 41.1±0.2~41.2±0.2Ma respectively, thus determining the Eocene magmatic events in the Xiariduo mining area for the first time, with the Cu-Mo mineralization related to the structural-magmatic events. Rock geochemistry shows that biotite monzonitic granite porphyry and quartz diorite porphyrite have the same geochemical characteristics, with slightly higher SiO2, rich K2O and Na2O, higher K2O/Na2O ratio and lower TFeO content, thus belonging to the weakly peraluminous and high potassium calc alkali-shoshonite series; in addition, they are relatively depleted in K, Ba, Nb, P, Ti and enriched in Th, U, Sr, Hf, thus having the characteristics of highly differentiated Ⅰ-typed granite with high Zr/Hf, Rb/Sr ratios and low Ti/Eu ratio. The formation of Xiariduo porphyry was related to the mixing of shell and mantle material, which was caused by the collision between Indian plate and Asian plate inducing a large-scale sliding system, which caused the sinking of the lower crust, the swelling of the soft-flow ring material, the partial melting of the enriched mantle, and the increasing accumulation of mantle magma.
-
Key words:
- Yulong porphyry copper belt /
- zircon U-Pb age /
- geochemical characteristics /
- Xiariduo /
- eastern Tibet
-
-
图 1 玉龙斑岩铜矿带区域构造图(据参考文献[12]修改)
Figure 1.
表 1 玉龙斑岩铜矿带北段夏日多岩体 LA-ICP-MS锆石 U-Th-Pb同位素分析结果
Table 1. LA-ICP-MS zircon U-Th-Pb isotopic data of the Xiariduo rocks in the northern Yulong porphyry copper belt
表 2 玉龙斑岩铜矿带北段夏日多岩体主量、微量和稀土元素含量
Table 2. Abundances of major, trace and rare earth elements of the Xiariduo rocks in northern Yulong porphyry copper belt
样品名称 黑云母二长花岗斑岩 石英闪长玢岩 样品编号 ZK0208-300 ZK0508-168 ZK0508-393 ZK0607-605 ZK0608-486 ZK0608-68 ZK0907-159 ZK0907-62 ZK0920-209 ZK0920-303 ZK0208-79 ZK0607-2.78 ZK0608-188 SiO2 70.40 70.06 69.72 69.24 68.94 71.64 68.82 68.54 72, 78 70.40 69.78 67.50 68.18 AL2O3 14.33 15.21 13.83 13.82 14-23 13.85 14-59 14.47 13.98 14.09 15.17 14.65 15.24 Fe2O3 0, 61 1.15 1.15 0.57 0.68 0.33 1.04 1.43 0.79 1.02 1.88 2.23 1.98 FeO 0.56 1.24 1.39 1.29 0.57 0.77 1.46 1.26 1.03 1.39 0.34 0.59 0.53 CaO 2, 30 2.51 2.77 2.56 1.12 1.01 1.91 2.09 1.81 2.51 1, 97 1.49 1.12 MgO 0, 70 1.54 1.70 1.14 1.05 1.20 1.34 1.71 1.08 1.63 1, 40 1.34 1.14 k2o 3, 82 3.68 4.31 4.44 6.40 5.09 4.73 4.36 4.65 4.10 4, 22 4.85 5.22 Na2O 3, 05 3.50 3.65 2.76 1.28 3.29 3.23 3.07 3.23 3.60 3, 22 2.50 2.78 TiOz 0, 28 0.38 0.43 0.36 0.28 0.29 0.44 0.38 0.31 0.38 0, 40 0.33 0.26 P2O5 0.13 0.16 0.18 0.15 0.12 0.12 0.17 0.17 0.12 0.15 0.17 0.15 0.11 MnO 0.014 0.030 0.036 0.019 0.019 0.015 0.020 0.021 0.023 0, 029 0.017 0.013 0.011 烧失量 2, 88 0.46 0.44 2.30 3.52 1.90 1.71 1.07 0.29 0.86 1.67 3.60 2.72 总计 99.07 99.92 99.61 98.65 98.21 99.51 99.46 98.57 100.09 100.16 100.24 99.24 99.29 Na2O+K2O 6.87 7.18 7.96 7.20 7.68 8.38 7.96 7.43 7.88 7.70 7, 44 7.35 8.00 k2O/ N2O 1, 25 1.05 1.18 1.61 5.00 1.55 1.46 1.42 1.44 1.14 1, 31 1.94 1.88 石英(Q) 33.53 28.05 24.63 29.91 35.06 29.81 26.40 27.58 30, 76 26.33 29.14 30.36 28.72 钙长石(An) 10.98 11.47 8.70 12.16 5.04 4.33 8.56 9.50 8.21 10.25 8, 80 6.71 5.01 钠长石(Ab) 26.83 29.78 31.15 24.24 11.44 28.52 27.96 26.65 27, 39 30.68 27.67 22.14 24.38 正长石(Or) 23.47 21.87 25.69 27.23 39.95 30.82 28.60 26.43 27, 53 24.40 25.33 30.00 31.97 A(碱性长石) 41.75 41.40 48.96 43.99 50.11 55.83 50.12 46.03 48.63 46.00 45.87 48.09 53.05 P(斜长石) 19.53 21.72 16.58 19.64 6.32 7.84 15.00 16.55 14.50 19.33 15.93 10.76 8.31 刚玉(C) 1.36 1.30 0.18 3.64 1.41 1.12 1.34 0.63 2.16 3.07 3.36 透辉石(Di) 3.16 1.04 紫苏辉石(Hy) 2, 23 4.96 3.78 4.34 3.19 3.77 4.57 5.65 3.47 4.74 4, 38 4.94 4.15 钛铁矿(Il) 0, 55 0.73 0.82 0.71 0.56 0.56 0.85 0.74 0.59 0.73 0, 77 0.66 0.51 磁铁矿(Mt) 0, 73 1.48 1.66 0.86 0.83 0.49 1.54 1.70 1.15 1.49 1, 35 1.76 1.62 磷灰石(Ap) 0.31 0.37 0.42 0.36 0.29 0.28 0.40 0.40 0.28 0.35 0.40 0.36 0.26 合计 99.99 100.01 100.00 99.99 100.00 99.99 100.00 99.99 100.01 100.01 100.00 100.00 99.99 DI 83.83 79.70 81.47 81.38 86.45 89.15 82.96 80.66 85.68 81.41 82.14 82.50 85.07 SI 8.02 13.88 13.94 11.18 10.54 11.24 11.36 14.49 10.02 13.88 12.77 11.75 9.86 A/NK 1.57 1.56 1.30 1.48 1.58 1.27 1.40 1.48 1.35 1.36 1.54 1.57 1.49 A/CNK 1.08 1.06 0.88 0.99 1.29 1.09 1.05 1.07 1.03 0.94 1.13 1.21 1.24 AR 2.16 2.31 2.57 2.02 3.00 2.59 2.29 2.18 2.38 2.53 2.20 1.90 2.03 Cu 514.1 37, 32 80.51 144.2 1037 301.4 152.5 529.4 170.8 90.95 46.71 2835 1175 Pb 19.77 38, 43 35.05 29.9 44.39 12.84 39.21 37.61 34.29 26 19.37 238 30.71 Zn 93.7 118.5 155.3 93.2 182.8 80.3 89.9 105.8 92.6 78.01 113.6 147.7 73.17 Cr 43.2 50.77 54.53 49.27 34.39 46.21 51.97 58.66 50.87 48.32 47.7 45.7 34.19 Ni 19.29 32, 13 32.31 28.52 22.09 17.27 28.6 36.19 22.93 27.68 24.35 28.55 19.81 Co 21.83 29.06 26.1 16.62 14.03 25.15 26.45 24.46 25.69 21.79 11.33 18.24 21.54 Li 27.44 40, 39 32.44 29.42 39.71 21.99 36.43 41.59 14.94 19.21 56.01 29.44 30.01 Rb 438.1 388.9 496.3 624.3 900.3 606 514.8 540.9 467.4 305.9 735.7 756 861.6 Cs 49.6 19.45 41.9 60.07 41.93 40.52 43.82 41.8 31.17 27.12 94.66 67.5 70.93 W 177.9 145.9 138.6 114.2 189.9 243.7 176.4 168.3 257.1 168 122.54 134.7 143.8 Mo 50.26 14.4 3.035 215.4 9.741 201.1 0.284 209.5 2.006 2.493 1.422 1.851 49.84 As 12.58 1.91 2.61 3.5 18.79 3.07 2.66 4.26 2.29 2.78 21.32 21.03 13.21 Sb 0.69 0.42 0.54 1.33 7.76 0.47 0.45 0.43 0.25 0.35 0.49 1.25 0.41 Sr 549.6 773.7 735.8 853.4 1366 307 712.3 768.8 621.3 764 295.5 501 4202 Ba 792.82 971.6 878.93 877.48 896.17 1444.41 1007.98 961.03 754.55 846.44 726.29 1099.65 1201.11 Hf 5.91 5.91 6.07 6.23 8.04 3.93 6.4 6.81 5.49 6.15 6.32 9.11 15.68 Th 18.49 17, 26 20.86 22.44 20.16 15.69 20.77 23.67 26.03 19.54 17.79 24.46 32.79 Zr 165.86 202.34 192.84 202.34 209.69 142.19 220.54 196.33 178.23 196.06 166.75 81.23 437.37 U 5.35 2.98 6.02 5.06 12.02 5.37 3.97 5.41 4.98 5 6.2 7.69 7.22 Nb 6.78 12, 74 10.53 8.81 6.51 7.84 11.13 8.58 11.63 10.69 9.32 8.89 8.7 Ta 0.47 1.64 0.77 0.89 0.43 0.76 0.91 0.58 0.96 0.76 1.17 1.13 1.47 F 1145.06 1145.06 1145.06 1351.54 1296.67 1468.35 1244.03 1351.54 856.7 1011.18 1296.67 1408.74 1530.49 B 33.31 7.92 28.99 24.59 35.77 24.7 14.46 11.02 9.73 8.15 122.22 31.08 31.91 La 38.17 35.68 39.11 26.35 16.42 16.53 42.5 41.64 36.02 38.25 29.87 28.44 15.45 Ce 65.27 59.58 66.09 47.71 35.55 32.05 69.31 67.65 51.25 69.55 46.04 49.25 31.13 Pr 11.18 10.67 11.37 8.685 7.153 5.915 12.55 11.6 10.66 12.17 7.439 8.504 6.211 Nd 28.92 28.33 29.36 23.14 20.27 15.59 33.25 30.71 25.14 31.31 18.15 24.66 17.52 Sm 4.926 4.942 4.882 3.976 3, 666 2.814 5.567 5.196 4.09 5.197 2.88 3.955 3.276 Eu 1.597 1.655 1.572 1.296 1, 297 1.736 1.779 1.736 1.405 1.645 1.273 1.367 1.546 Gd 4.747 4.498 4.683 3.684 3, 176 2.618 5.303 4.811 3.817 4.93 3.111 3.62 2.799 Tb 0.785 0.792 0.791 0.663 0, 608 0.507 0.906 0.821 0.653 0.838 0.536 0.655 0.57 Dy 2.569 2.985 2.871 2.309 2.14 1.778 3.273 2.907 2.456 2.896 1.783 2.416 2.14 Ho 0.384 0.467 0.457 0.373 0, 343 0.281 0.515 0.463 0.427 0.465 0.28 0.401 0.357 Er 1.522 1.723 1.73 1.405 1.3 1.016 1.928 1.771 1.454 1.811 1.09 1.546 1.322 Tm 0.175 0.223 0.219 0.18 0, 169 0.133 0.236 0.221 0.214 0.218 0.147 0.221 0.186 Yb 1.513 1.687 1.674 1.435 1.419 1.306 1.801 1.714 1.694 1.721 1.307 1.707 1.559 Lu 0.206 0.214 0.214 0.174 0.184 0.193 0.242 0.219 0.223 0, 23 0.167 0.236 0.214 Y 13.49 16.18 15.93 12.82 11.84 9.834 18.15 16.1 15.44 16.03 9.645 13.97 10.62 SREE 161.96 153.45 165.02 121.38 93.70 82.47 179.16 171.46 139.50 171.23 114.07 126.98 84.28 LREE 150.06 140.86 152.38 111.16 84.36 74.64 164.96 158.53 128.57 158.12 105.65 116.18 75.13 HREE 11.90 12.59 12.64 10.22 9.34 7.83 14.20 12.93 10.94 13.11 8.42 10.80 9.15 LREE/HREE 12.61 11.19 12.06 10.87 9.03 9.53 11.61 12.26 11.75 12.06 12.55 10.76 8.21 (La/Yb)N 18.10 15.17 16.76 13.17 8.30 9.08 16.93 17.43 15.25 15.94 16.39 11.95 7.11 δEu 1.00 1.05 0.99 1.02 1.13 1.92 0.99 1.04 1.07 0, 98 1.29 1.08 1.52 δCe 0.77 0.74 0.76 0.77 0.80 0.79 0.73 0.74 0.63 0, 79 0.74 0.77 0.78 注:主量元素含量单位为%,微量和稀土元素含量为 10-6 -
[1] 唐仁鲤, 罗怀松.西藏玉龙斑岩铜(钼)矿带地质[M].北京:地质出版社, 1995:1-320.
[2] 马鸿文.论藏东玉龙斑岩铜矿带岩浆侵入时代[J].地球化学, 1989, (3):210-216. doi: 10.3321/j.issn:0379-1726.1989.03.003
[3] 马鸿文.西藏玉龙斑岩铜矿带花岗岩类与成矿[M].武汉:中国地质大学出版社, 1990:1-158.
[4] 芮宗瑶, 黄崇轲, 齐国明.中国斑岩铜(钼)矿床[M].北京:地质出版社, 1984:1-350.
[5] 张玉泉, 谢应雯, 梁华英, 等.藏东玉龙铜矿带含矿斑岩及成岩系列[J].地球化学, 1998, 27(2):236-243. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199801012055
[6] 张玉泉, 谢应雯, 邱华宇, 等.钾玄岩系列:藏东玉龙铜矿带含矿斑岩元素地球化学特征[J].地球科学, 1998, 23(6):557-561. doi: 10.3321/j.issn:1000-2383.1998.06.003
[7] 陈文明.深源富碱硅热流体与斑岩铜矿含矿斑岩体的成因联系及流体包裹体、斑晶结构证据[J].地学前缘, 2001, 8(4):409-421. doi: 10.3321/j.issn:1005-2321.2001.04.023
[8] 何国朝, 王广强, 黄文婷, 等.藏东玉龙斑岩铜矿带扎拉尕含矿斑岩体锆石U-Pb年龄及其地质意义[J].地球化学, 2014, 43(4):399-407. http://d.old.wanfangdata.com.cn/Periodical/dqhx201404010
[9] 姜耀辉, 蒋少涌, 凌洪飞, 等.陆-陆碰撞造山环境下含铜斑岩岩石成因:以藏东玉龙斑岩铜矿带为例[J].岩石学报, 2006, 22(3):697-706. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603019
[10] 姜耀辉, 蒋少涌, 戴宝章, 等.玉龙斑岩铜矿含矿与非含矿斑岩元素和同位素地球化学对比研究[J].岩石学报, 2006, 22(10):2561-2566. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200610017
[11] 梁华英, 莫济海, 孙卫东, 等.藏东玉龙超大型斑岩铜矿床成岩成矿系统时间跨度分析[J].岩石学报, 2008, 24(10):2352-2358. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200810016
[12] Hou Z Q, Ma H W, Zaw K, et al. The Himalayan Yulong porphyry copper belt:Product of large-scale strike-slip faulting in eastern Tibet[J]. Economic Geology, 2003, 98(1):125-145.
[13] Liang H Y, Campbell I H, Allen C, et al. Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet[J]. Mineralium Deposita, 2006, 41(2):152-159. doi: 10.1007/s00126-005-0047-1
[14] 李伟, 张磊, 刘显凡, 等.藏东夏日多岩体岩石学和地球化学特征及其成因探讨[J].矿物岩石, 2016, 36(3):96-105. http://d.old.wanfangdata.com.cn/Periodical/kwys201603012
[15] 肖霞, 倪师军, 冯德新, 等.水系沉积物测量在西藏夏日多地区找矿中的应用[J].有色金属工程, 2016, 6(1):71-76. doi: 10.3969/j.issn.2095-1744.2016.01.017
[16] 张世铭, 肖渊甫, 龚婷婷, 等.西藏玉龙成矿带各贡弄、恒星错、马牧普地球化学异常优选评价[J].矿物岩石地球化学通报, 2012, 31(4):354-359. doi: 10.3969/j.issn.1007-2802.2012.04.006
[17] 张金树, 多吉, 何政伟.西藏玉龙斑岩铜矿带北段成矿规律分析[J].地质找矿论丛, 2008, 23(3):199-205. http://d.old.wanfangdata.com.cn/Periodical/dzzklc200803006
[18] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 1989, 42(1): 313-345.
[19] 郭利果, 刘玉平, 徐伟, 等. SHRIMP锆石年代学对西藏玉龙斑岩铜矿成矿年龄的制约[J].岩石学报, 2006, 21(4):1009-1016. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200604024
[20] 王成辉, 唐菊兴, 侯可军, 等.西藏玉龙铜钼矿区斑岩体Hf同位素特征及其地质意义[J].矿床地质, 2011, 30(2):292-304. doi: 10.3969/j.issn.0258-7106.2011.02.010
[21] 唐菊兴, 王成辉, 屈文俊, 等.西藏玉龙斑岩铜钼矿辉钼矿铼-锇同位素定年及其成矿学意义[J].岩矿测试, 2009, 28(3):215-218. doi: 10.3969/j.issn.0254-5357.2009.03.004
[22] Feldstein S N, Lange R A.Pliocene potassic magmas from the Kings River region, Sierra Nevada, California:Evidence for melting of a subduction-modified mantle[J]. J. Petrol., 1999, 40:1301-1320. doi: 10.1093/petroj/40.8.1301
[23] Furman T, Graham D.Erosion of lithospheric mantle beneath the East African Rift system:geochemical evidence from the Kivu Volcanic province[J]. Lithos, 1999, 48:237-262. doi: 10.1016/S0024-4937(99)00031-6
[24] Hofmann A W, Jochum K, Seufert M, et al. Nb and Pb in oceanic basalts:new constraints on mantle evolution[J]. Earth Planet. Sci. Lett., 1986, 79:33-45. doi: 10.1016/0012-821X(86)90038-5
[25] Taylor S R, Mclennan S M. The continental Crust:Its composition and Evolution[M]. Oxford Blackwell Scientific Publication, 1985:1-132.
[26] Plank T, Langmuir C H. The chemical composition of subducted sediment and its consequences for the the crust and mantle[J]. Chem. Geol., 1988, 145:325-394. http://www.sciencedirect.com/science/article/pii/S0009254197001502
[27] Dupuy C, Liotardand J M, Dostal J. Zr/Hf fractionation in intraplate basaltic rocks:Carbonate metasomatism in the mantle source[J]. Geochim Cosmochim Acta, 1992, 56:2417-2423. doi: 10.1016/0016-7037(92)90198-R
[28] Baker M B, Wyllie P J. High-pressure apatite solubility in carbonate-rich liquids:implications for mantle metasomatism. Geochim Cosmochim Acta, 1992, 56:3409-3422 doi: 10.1016/0016-7037(92)90388-Y
[29] Rapp R P, Watson E B. Dehydration melting of metabasalt at 8~32 kbar:implications for continental growth and crust mantle recycling[J]. J Petrol., 1995, 36:891-931. doi: 10.1093/petrology/36.4.891
[30] 王增, 申屠保涌, 丁朝建.藏东花岗岩类及其成矿作用[M].成都:西南交通大学出版社, 1995:1-150.
[31] 张玉泉, 谢应雯, 涂光炽.哀牢山-金沙江富碱侵入岩及其与裂谷构造关系初步研究[J].岩石学报, 1987, 3(1):17-25. doi: 10.3321/j.issn:1000-0569.1987.01.003
[32] Campbell I H, Stepanov A S, Liang H Y, et al. The origin of shoshonites:New insights from the Tertiary high-potassium intrusion of eastern Tibet[J].Contributions to Mineralogy and Petrology, 2014:167:983 http://link.springer.com/article/10.1007/s00410-014-0983-9
-