Geochronologic sequence of Neoproterozoic Tonian magmatism in Fanjingshan area, xiuning Country, Guizhou Province
-
摘要:
为获得江南造山带西段梵净山地区新元古代拉伸纪岩浆的演化时序,为区域综合对比提供可靠的典型地区岩浆岩年代学研究基础资料,以及为梵净山申报地质公园提供详实的科普素材,对研究区新发现的辉绿岩体进行了年代学研究,获得该岩体U-Pb年龄为805.3±4.5Ma。通过对已有年龄数据的系统梳理与总结,认为梵净山群回香坪组内玄武岩的喷发结束时间为840Ma,存在831Ma、814~805Ma两次基性-超基性岩浆活动和855Ma、834Ma两次酸性岩浆活动。梵净山地区的新元古代拉伸纪岩浆活动时序可与黔东南—桂北地区对比。结合岩石类型及其地球化学特征,认为江南造山带西段拉伸早期岩浆岩的成因可能与扬子和华夏板块的俯冲碰撞有关,拉伸晚期岩浆岩的形成可能与华南大陆伸展裂陷有关。
Abstract:In order to obtain the geochronologic sequence of the Neoproterozoic magmatism in Fanjingshan area of the western Jiangnan Orogen and to provide a reliable foundation of chronological study in the typical area for comprehensive comparison and for geopark declaration and science popularization, the paper reports the zircon U-Pb dating of a newly discovered diabase in Fanjingshan area. The result shows that the diabase was formed at 805.3±4.5Ma. The authors also sorted and summarized the existing age reports in a comprehensive and systematic way, and hold that the end of the eruption of basalts was 840Ma. There were two periods of basic-ultrabasic magmatism (831Ma, 814~805Ma) and two periods of acid magmatism (855Ma, 834Ma) that occurred in Fanjingshan area during Neoproterozoic. The magmatic geochronology sequence of Fanjingshan area largely corresponds to that of southwest Guizhou-north Guangxi area. Combined with rock types and its geochemical features, it is implied that the Neoproterozoic Early Tonian magmatic rocks in western part of Jiangnan Orogen were formed by the subduction-collision process of Yangtze and Cathaysia blocks, and the Late Tonian magmatic rocks were formed by the rifting process of South China Craton.
-
Key words:
- Jiangnan Orogen /
- Wuling movement /
- Banxi Group /
- diabase /
- zircon U-Pb dating /
- geopark
-
表 1 梵净山地区已有岩浆岩年龄统计
Table 1. Statics of ages of magmatic rocks in Fanjingshan area
样品编号 位置 坐标 层位 岩性 定年方法 206Pb/238U年龄加权平均值 来源 Fjs-16 - N27°51'48.5"、
E108°45'38.6"梵净山群回香坪组 玄武岩 LA-ICP-MS 814±15Ma*(n=6, MSWD=0.57) [17] Fjs-07-2 - N27°51'59.2"、
E108°45'38.6"梵净山群回香坪组 辉长岩 LA-ICP-MS 827±24Ma(n=4,MSWD=0.12) [17] Fjs-09-2 - N27°51'57.3"、
E108°45'24.3"梵净山群回香坪组 辉绿岩 LA-ICP-MS 831±6Ma(n=22, MSWD=0.16) [17] Fjs-24 - N27°54'53.8"、
E108°38'08.8"梵净山群肖家河组 辉长辉绿岩 LA-ICP-MS 814±6Ma(n=8,MSWD=0.45) [17] F1047-5 公园佛堂前 N27°51.144'、
E108°45.998'梵净山群回香坪组 凝灰岩 SHRIMP 840.0±5Ma(n=17,MSWD=1.5) [22] 100831-7 登山路旁边 N27°54.057'、
E108°42.215'梵净山群回香坪组 辉长岩 LA-ICP-MS 748±2Ma(n=10,MSWD=0.16) [27] 100902-1A 烂茶坪 N27°58.567'、
E108°41.223'梵净山群淘金河组 辉长岩内部 LA-ICP-MS 804±5Ma(n=14,MSWD=0.24) [27] 100902-1D 烂荼坪 N27°58.567'、
E108°41.223'梵净山群淘金河组 辉长岩边部 LA-ICP-MS 813±8Ma(n=7,MSWD=0.19) [27] 100830-1C 鱼坳 N27°53.648'、
E108°43.274'梵净山群铜厂组 沉凝灰岩 LA-ICP-MS 832.0±8.5Ma(n=11,MSWD=6.5) [28] 090928-2B 护国寺 N27°55.020'、
E108°38.000'梵净山群肖家河组 辉绿岩 LA-ICP-MS 856.3±4.5Ma(n=4,MSWD=0.0024) [29] 100509-2A 桃树林北 N27°59.585'、
E108°41.266'梵净山群余家沟组 凝灰岩 LA-ICP-MS 851.3±4.0Ma(n=20,MSWD=1.5) [28] 100408-2B2 保庆堂 N27°59.680'、
E108°41.067'板溪群芙蓉坝组 花岗岩砾石 LA-ICP-MS 855.1±1.5Ma(n=23,MSWD=1.6) [29] FJS16 - N27°54'45"、
E108°39'49"梵净山群下部 凝灰岩 SIMS 830.8±4.4Ma(n=7,MSWD=2.1) [30] FJS39 - N27°54'29"、
E108°39'10"梵净山群下部 火山碎屑岩 SIMS 827±15Ma(n=10,MSWD=3.0) [30] FG7 桃树林 N27°59'01"、
E108°41'24"梵净山群淘金河组 白云母花岗岩 SIMS 827.5±7.4Ma(n=10,MSWD=1.7) [30] T0731 金顶下1.6 km N27°55'03.6"、
E108°40'41.8"梵净山群回香坪组 火山集块岩 SHRIMP 840±11Ma(n=12,MSWD=0.86) [31] T090420a 桃树林 N27°59.026',
E108°41.403'梵净山群淘金河组 白云母花岗岩 LA-ICP-MS 838.5±1.5Ma(n=14,MSWD=11.1) [32] F1048-1B-2 桃树林 N27°59.025'、
E108°41.401'梵净山群淘金河组 白云母花岗岩 SHRIMP 835±5Ma(n=15,MSWD=1.2) [33] T09419-5 公园大门 N27°50.821'、
E108°46.211'板溪群甲路组 凝灰岩 LA-ICP-MS 814.0±6.3Ma(n=17,MSWD=1.5) [34] FJS-387A - - 梵净山群 辉长岩 SHRIMP 821±4Ma(n=15,MSWD=1.3) [35] HS24 - N28°01'58.6"、
E108°41'37.0"板溪群 英安岩 LA-ICP-MS 805.8±1.6Ma(n=14,MSWD=0.24) [36] JIA 平所村 N27°59'13.4"、
E108°40'34.6"板溪群甲路组 辉绿岩 LA-ICP-MS 805.3±4.5Ma(n=14,MSWD=0.043) 本次研究 注:*代表207Pb/206Pb年龄加权平均值 表 2 梵净山地区辉绿岩LA-ICP-MS锆石U-Th-Pb同位素比值及年龄
Table 2. LA-ICP-MS zircon U-Th-Pb dating results for diabase in Fanjingshan area
编号 Th /10-6 U /10-6 Th/U 207Pb/235U比值 207Pb/235U 1σ 206Pb/238U比值 206Pb/238U 1σ 207Pb/235U年龄/Ma 207Pb/235U 1σ 206Pb/238U年龄/Ma 206Pb/238U 1σ 谐和度 岩浆锆石 JIA-02 619 442 1.40 1.2552 0.0305 0.1328 0.0016 826 14 804 9 97% JIA-06 286 287 1.00 1.2234 0.0315 0.1330 0.0017 811 14 805 10 99% JIA-07 288 658 0.44 1.2679 0.0258 0.1330 0.0016 831 12 805 9 96% JIA-08 658 564 1.17 1.2590 0.0296 0.1328 0.0014 827 13 804 8 97% JIA-10 126 175 0.72 1.2341 0.0396 0.1327 0.0018 816 18 803 10 98% JIA-12 2693 904 2.98 1.2289 0.0259 0.1331 0.0014 814 12 805 8 98% JIA-13 1911 1063 1.80 1.2333 0.0228 0.1333 0.0013 816 10 807 7 98% JIA-16 118 248 0.47 1.2547 0.0302 0.1338 0.0017 826 14 809 10 98% JIA-17 104 372 0.28 1.2575 0.0283 0.1335 0.0013 827 13 808 8 97% JIA-18 1637 782 2.09 1.2362 0.0279 0.1329 0.0015 817 13 804 9 98% JIA-19 769 497 1.55 1.2669 0.0287 0.1327 0.0015 831 13 803 9 96% JIA-20 3298 2108 1.56 1.2428 0.0282 0.1330 0.0015 820 13 805 9 98% JIA-21 518 400 1.30 1.2128 0.0299 0.1333 0.0013 806 14 807 7 99% JIA-22 54 239 0.23 1.2367 0.0364 0.1328 0.0019 817 17 804 11 98% 捕获锆石 JIA-01 64 91 0.70 2.4247 0.0969 0.2211 0.0026 1250 29 1288 14 97% JIA-03 277 504 0.55 3.3343 0.0721 0.2526 0.0032 1489 17 1452 16 97% JIA-04 268 378 0.71 1.2912 0.0324 0.1392 0.0014 842 14 840 8 99% JIA-05 616 497 1.24 1.2752 0.0297 0.1387 0.0017 835 13 837 9 99% JIA-09 115 398 0.29 3.2740 0.0737 0.2510 0.0030 1475 18 1444 15 97% JIA-11 194 370 0.52 1.3677 0.0327 0.1453 0.0018 875 14 875 10 99% JIA-14 134 80 1.67 5.8957 0.1289 0.3312 0.0045 1961 19 1844 22 93% JIA-15 1 353 0.00 2.0986 0.0461 0.1895 0.0016 1148 15 1119 9 97% JIA-23 288 680 0.42 1.2744 0.0360 0.1405 0.0032 834 16 847 18 98% 注:谐和度=100×(1-abs(206Pb/238U Age-207Pb/235U Age)/((206Pb/238U Age+207Pb/235U Age)/2)) -
[1] Li Z X, Wartho J A, Occhipinti S, et al. Early history of the eastern Sibao Orogen (South China) during the assembly of Rodinia:new mica 40Ar/39Ar dating and SHRIMP U-Pb detrital zircon provenance constraints[J]. Precambrian Research, 2007, 159:79-94. doi: 10.1016/j.precamres.2007.05.003
[2] Li X H, Li W X, Li Z X, et al. Amalgamation between the Yangtze and Cathaysia Blocks in South China:constraints from SHRIMP UPb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 2009, 174:117-128. doi: 10.1016/j.precamres.2009.07.004
[3] 李献华, 王选策, 李武显, 等.华南新元古代玄武质岩石成因与构造意义:从造山运动到陆内裂谷[J].地球化学, 2008, 37(4):382-398. doi: 10.3321/j.issn:0379-1726.2008.04.012
[4] Li Z X, Li X H, Kinny P D, et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents:Evidence for a mantle super plume that broke up Rodinia[J]. Precambriam Research, 2003, 122:85-109. doi: 10.1016/S0301-9268(02)00208-5
[5] Li Z X, Li X H, Li W X, et al. Was Cathaysia part of Proterozoic Laurentia?-new data from Hainan Island, South China[J]. Terra Nova, 2008, 20:154-164. doi: 10.1111/j.1365-3121.2008.00802.x
[6] Li X H, Li Z X, Ge W C, et al. Neoproterozoic granitoids in South China:Crustal melting above a mantle plume at ca. 825Ma?[J]. Precambriam Research, 2003, 122:45-83. doi: 10.1016/S0301-9268(02)00207-3
[7] Li X H, Li W X, Li Z X, et al. 850-790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China:a major episode of continental rift magmatism during the breakup of Rodinia[J]. Lithos, 2008, 102:341-357. doi: 10.1016/j.lithos.2007.04.007
[8] Wang X C, Li Z X, Li X H, et al. Geochemical and Hf-Nd isotope data of Nanhua rift sedimentary and volcaniclastic rocks indicate a Neoproterozoic continental flood basalt provenance[J]. Lithos, 2011, 127:427-440. doi: 10.1016/j.lithos.2011.09.020
[9] Wang X C, Li X H, Li Z X, et al. Episodic Precambrian crust growth:evidence from U-Pb ages and Hf-O isotopes of zircon in the Nanhua Basin, central South China[J]. Precambrian Research, 2012, 222/223:386-403. doi: 10.1016/j.precamres.2011.06.001
[10] Zhang S B, Wu R X, Zheng Y F. Neoproterozoic continental accretion in South China:geochemical evidence from the Fuchuan ophiolite in the Jiangnan orogen[J]. Precambrian Research, 2012, 220:45-64. http://cn.bing.com/academic/profile?id=e6d6066d8cc47170254d5d31189a9990&encoded=0&v=paper_preview&mkt=zh-cn
[11] Yao J, Cawood P, Shu L, et al. An Early Neoproterozoic Accretionary Prism Ophiolitic Mélange from the Western Jiangnan Orogenic Belt, South China[J]. The Journal of Geology, 2016, 124:587-601. doi: 10.1086/687396
[12] Yao J, Shu L, Cawood P, et al. Constraining timing and tectonic implications of Neoproterozoic metamorphic event in the Cathaysia Block, South China[J]. Precambrian Research, 2017, 293:1-12. doi: 10.1016/j.precamres.2017.01.032
[13] Wang X L, Zhou J C, Griffin W L, et al. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen:dating the assembly of the Yangtze and Cathaysia blocks[J]. Precambrian Research, 2007, 159:117-131. doi: 10.1016/j.precamres.2007.06.005
[14] Zhang Y, Wang Y, Geng H, et al. Early Neoproterozoic (~850 Ma) back-arc basin in the Central Jiangnan Orogen (Eastern South China):geochronological and petrogenetic constraints from metabasalts[J]. Precambrian Research, 2013, 231:325-342. doi: 10.1016/j.precamres.2013.03.016
[15] Zhou M F, Ma Y X, Yan D P, et al. The Yanbian terrane (Southern Sichuan Province, SW China):a neoproterozoic arc assemblage in the western margin of the Yangtze Block[J]. Precambrian Research, 2006, 144:19-38. doi: 10.1016/j.precamres.2005.11.002
[16] Zhou M F, Yan D P, Wang C L, et al. Subduction-related origin of the 750 Ma Xuelongbao adakitic complex (Sichuan Province, China):implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China[J]. Earth and Planetary Science Letters, 2006, 248:286-300. doi: 10.1016/j.epsl.2006.05.032
[17] Zhou J C, Wang X L, Qiu J S. Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China:coeval arc magmatism and sedimentation[J]. Precambrian Research, 2009, 170:27-42. doi: 10.1016/j.precamres.2008.11.002
[18] Cawood P A, Wang Y J, Xu Y J, et al. Locating South China in Rodinia and Gondwana:a fragment of greater India lithosphere[J]? Geology, 2013, 41:903-906. doi: 10.1130/G34395.1
[19] Zhao G C. Jiangnan Orogen in South China:Developing from divergent double subduction[J]. Gondwana Research, 2015, 27:1173-1180. doi: 10.1016/j.gr.2014.09.004
[20] Zheng Y F, Zhang S B, Zhao Z F, et al. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China:Implications for growth and reworking of continental crust[J]. Lithos, 2007, 96:127-150. doi: 10.1016/j.lithos.2006.10.003
[21] Zheng Y F, Wu R X, Wu Y B. Rift melting of juvenile arc derived crust:Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China[J]. Precambrian Research, 2008, 163:351-383. doi: 10.1016/j.precamres.2008.01.004
[22] 高林志, 陈建书, 戴传固, 等.黔东地区梵净山群与下江群凝灰岩SHRIMP锆石U-Pb年龄[J].地质通报, 2014, 33:949-959. doi: 10.3969/j.issn.1671-2552.2014.07.002
[23] Wang X L, Zhou J C, Griffin W L, et al. Geochemical zonation across a Neoproterozoic orogenic belt:Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China[J]. Precambrian Research, 2014, 242:154-171. doi: 10.1016/j.precamres.2013.12.023
[24] Wang J, Shu L, Santosh M. U-Pb and Lu-Hf isotopes of detrital zircon grains from Neoproterozoic sedimentary rocks in the central Jiangnan Orogen, South China:Implications for Precambrian crustal evolution[J]. Precambrian Research, 2017, 294:175-188. doi: 10.1016/j.precamres.2017.03.025
[25] 覃永军, 杜远生, 牟军, 等.黔东南地区新元古代下江群的地层年代及其地质意义[J].地球科学, 2015, 40:1107-1120. http://d.old.wanfangdata.com.cn/Periodical/dqkx201507001
[26] 崔晓庄, 江新胜, 邓奇, 等.桂北地区丹洲群锆石U-Pb年代学及对华南新元古代裂谷作用期次的启示[J].大地构造与成矿学, 2016, 154:1049-1063. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201605014
[27] 王敏, 戴传固, 陈建书, 等.贵州省梵净山区新元古代岩浆活动的年代学格架及其大地构造意义[J].中国地质, 2016, 43:843-856. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201603011
[28] 王敏, 戴传固, 王雪华, 等.贵州梵净山群沉积时代——来自原位锆石U-Pb测年证据[J].岩石矿物学杂志, 2012, 31:843-857. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201206006
[29] 王敏.黔东北梵净山地区晚元古代岩浆活动及其大地构造意义[D].中国地质大学(北京)博士学位论文, 2012: 1-154.
http://cdmd.cnki.com.cn/Article/CDMD-11415-1012364507.htm [30] Zhao J H, Zhou M F, Yan D P, et al. Reappraisal of the ages of Neoproterozoic strata in South China:No connection with the Grenvillian orogeny[J]. Geology, 2011, 34:299-302. http://cn.bing.com/academic/profile?id=8fdfb092f1c179d42ac237f853ec0059&encoded=0&v=paper_preview&mkt=zh-cn
[31] 张传恒, 高林志, 史晓颖, 等.梵净山群火山岩锆石SHRIMP年龄及其年代地层学意义[J].地学前缘, 2014, 21:139-143. http://d.old.wanfangdata.com.cn/Periodical/dxqy201402011
[32] 王敏, 戴传固, 王雪华, 等.贵州梵净山白云母花岗岩锆石年代、铪同位素及对华南地壳生长的制约[J].地学前缘, 2011, 18:213-223. http://d.old.wanfangdata.com.cn/Periodical/dxqy201105021
[33] 高林志, 戴传固, 丁孝忠, 等.侵入梵净山群白岗岩锆石U-Pb年龄及白岗岩底砾岩对下江群沉积的制约[J].中国地质, 2011, 38:1413-1420. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201106001
[34] 高林志, 戴传固, 刘燕学, 等.黔东地区下江群凝灰岩锆石SHRIMP U-Pb年龄及其地层意义[J].中国地质, 2010, 37(4):1071-1080. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201004021
[35] 薛怀民, 马芳, 宋永勤.江南造山带西南段梵净山地区镁铁质-超镁铁质岩:形成时代、地球化学特征与构造环境[J].岩石学报, 2012, 28:3015-3030. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201209026
[36] Su J B, Dong S W, Zhang Y Q, et al. Orogeny processes of the western Jiangnan Orogen, South China:Insights from Neoproterozoic igneous rocks and a deep seismic profile[J]. Journal of Geodynamics, 2017, 103:42-56. doi: 10.1016/j.jog.2016.12.004
[37] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15):1535-1546. doi: 10.1007/s11434-010-3052-4
[38] Ludwig K R, ISOPLOT 3.0:A Geochronological Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication, 2003, 4:1-71. http://d.old.wanfangdata.com.cn/Periodical/wjclxb201711009
[39] Rubatto D. Zircon trace element geochemistry:partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 2002, 184:123-138. doi: 10.1016/S0009-2541(01)00355-2
[40] Xin Y J, Li J H, Dong S W, et al. Neoproterozoic post-collisional extension of the central Jiangnan Orogen:Geochemical, geochronological, and Lu-Hf isotopic constraints from the ca. 820-800 Ma magmatic rocks[J]. Precambrian Research, 2017, 294:91-110. doi: 10.1016/j.precamres.2017.03.018
[41] Xia Y, Xu X, Niu Y, et al. Neoproterozoic amalgamation between Yangtze and Cathaysia blocks:The magmatism in various tectonic settings and continent-arc-continent collision[J]. Precambrian Research, 2018, 309:56-87. doi: 10.1016/j.precamres.2017.02.020
[42] Lin M, Peng S, Jiang X, et al. Geochemistry, petrogenesis and tectonic setting of Neoproterozoic mafic-ultramafic rocks from the western Jiangnan orogen, South China[J]. Gondwana Research, 2016, 35:338-356. doi: 10.1016/j.gr.2015.05.015
[43] Yao J, Shu L, Santosh M, et al. Neoproterozoic arc-related maficultramafic rocks and syn-collision granite from the western segment of the Jiangnan Orogen, South China:Constraints on the Neoproterozoic assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Research, 2014, 243:39-62. doi: 10.1016/j.precamres.2013.12.027
[44] Wang X L, Zhou J C, Qiu J S, et al. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China:Implications for tectonic evolution[J]. Precambrian Research, 2006, 145:111-130. doi: 10.1016/j.precamres.2005.11.014
[45] Zhou J B, Li X H, Ge W C, et al. Age and origin of middle Neoproterozoic mafic magmatism in southern Yangtze Block and relevance to the break-up of Rodinia[J]. Gondwana Research, 2007, 12:184-197. doi: 10.1016/j.gr.2006.10.011
[46] Zhao J H, Zhou M F, Neoproterozoic high-Mg basalts formed by melting of ambient mantle in South China[J]. Precambrian Research, 2013, 233:193-205. doi: 10.1016/j.precamres.2013.04.017
[47] Campbell I H, Testing the plume theory[J]. Chemical Geology, 2007, 241:153-176. doi: 10.1016/j.chemgeo.2007.01.024
[48] Li S, Wang T, Wilde S A, et al. Evolution, source and tectonic significance of Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt (central segment)[J]. Earth-Science Reviews, 2013, 126:206-234. doi: 10.1016/j.earscirev.2013.06.001
[49] Wang M J, Song S G, Niu Y L, et al. Post-collisional magmatism:Consequences of UHPM terrane exhumation and orogen collapse, Qaidam UHPM belt, NW China[J]. Lithos, 2014, 210/211:181-198. doi: 10.1016/j.lithos.2014.10.006
[50] Chen Y X, Song S G, Niu Y L, et al. Melting of continental crust during subduction initiation:A case study from the Chaidanuoperaluminous granite in the North Qilian suture zone[J]. Geochim Cosmochim Acta, 2014, 132:311-336. doi: 10.1016/j.gca.2014.02.011
[51] Xia L Q. The geochemical criteria to distinguish continental basalts from arcrelated ones[J]. Earth-Science Reviews, 2014, 139:195-212. doi: 10.1016/j.earscirev.2014.09.006
[52] Wang X C, Wilde S A, Xu B, et al. Origin of Arc-Like Continental Basalts:Implications for Deep-Earth Fluid Cycling and Tectonic Discrimination[J]. Lithos, 2016, 261:5-45. doi: 10.1016/j.lithos.2015.12.014
[53] Lee C A, Luffi P, Plank T, et al. Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas[J]. Earth and Planetary Science Letters, 2009, 279:20-33. doi: 10.1016/j.epsl.2008.12.020
[54] Plank T, Kelley K A, Zimmer M M, et al. Why Do Mafic Arc Magmas Contain~4wt% Water on Average?[J]. Earth and Planetary Science Letters, 2013, 364:168-179. doi: 10.1016/j.epsl.2012.11.044
[55] Wang X C, Li X H, Li W X, et al.Ca. 825 Ma komatiitic basalts in South China:First evidencefor >1500℃ mantle melts by a Rodinian mantle plume[J]. Geology, 2007, 35:1103-1107. doi: 10.1130/G23878A.1
[56] Wang X C, Li X H, Li W X, et al. Variable involvements of mantle plumes in the genesis of mid-Neoproterozoicbasaltic rocks in South China:A review[J]. Gondwana Research, 2009, 15:381-395. doi: 10.1016/j.gr.2008.08.003
① 中国国土资源航空物探遥感中心.黔东地区重点航磁异常研究报告. 2016.
② 贵州一〇八地质队第三分队.贵州省梵净山区1: 50000区域地质调查报告. 1974.