皖南休宁县石岭头一带花岗质小岩株形成时代重新厘定

刘秀, 余心起, 陈子微, 李鹏举, 周术召, 杨鑫鹏. 皖南休宁县石岭头一带花岗质小岩株形成时代重新厘定[J]. 地质通报, 2019, 38(2-3): 339-348.
引用本文: 刘秀, 余心起, 陈子微, 李鹏举, 周术召, 杨鑫鹏. 皖南休宁县石岭头一带花岗质小岩株形成时代重新厘定[J]. 地质通报, 2019, 38(2-3): 339-348.
LIU Xiu, YU Xinqi, CHEN Ziwei, LI Pengju, ZHOU Shuzhao, YANG Xinpeng. Redetermination of the age of granitic stocks in Silingtou area, Xiuning Country, southern Anhui Province[J]. Geological Bulletin of China, 2019, 38(2-3): 339-348.
Citation: LIU Xiu, YU Xinqi, CHEN Ziwei, LI Pengju, ZHOU Shuzhao, YANG Xinpeng. Redetermination of the age of granitic stocks in Silingtou area, Xiuning Country, southern Anhui Province[J]. Geological Bulletin of China, 2019, 38(2-3): 339-348.

皖南休宁县石岭头一带花岗质小岩株形成时代重新厘定

  • 基金项目:
    国家自然科学基金项目《浙赣皖相邻区中生代推(滑)覆构造特征及其时序分析》(批准号:41872201)
详细信息
    作者简介: 刘秀(1990-), 男, 在读博士生, 构造地质学专业。E-mail:didaliuxiu@sina.com
    通讯作者: 余心起(1962-), 男, 教授, 博士生导师, 构造地质学专业。E-mail:yuxinqi@cugb.edu.cn
  • 中图分类号: P588.12+1

Redetermination of the age of granitic stocks in Silingtou area, Xiuning Country, southern Anhui Province

More Information
  • 前人对皖南休宁县石岭头花岗质小岩株进行了K-Ar测年,结果为133.4Ma,属于早白垩世。笔者近期的野外地质调查发现,这些花岗质小岩株含过铝矿物堇青石,岩性特征与休宁花岗闪长岩体非常相近,为中粗粒花岗闪长岩,且见有变形,局部片理化明显。分别在休宁花岗闪长岩体内部和北部外叶村河中采集测年样品进行测定,获得休宁花岗闪长岩体内部835.4±32Ma和外叶小岩株841±29Ma的年龄,二者在误差范围内基本一致,表明它们属于同期岩体。岩石地球化学数据显示,花岗质小岩株具有与休宁花岗闪长岩体类似的地球化学特征,亏损Nb、Ta、Sr等高场强元素,富集K、Ru、Ba、U、Th,且均为强过铝质。结合前人所测休宁岩体数据对比分析,认为这些原先被认为早白垩世的花岗岩是新元古代的产物,为晋宁期休宁岩体的一部分,同时休宁岩体北界应北移约2km。其上覆盖的南华系休宁组砂岩应为超覆沉积形成。

  • 加载中
  • 图 1  皖南休宁岩体地区地质简图(据参考文献修改)

    Figure 1. 

    图 2  D252休宁兰渡外叶村花岗闪长岩野外照片

    Figure 2. 

    图 3  休宁岩体和外叶花岗质小岩株稀土元素球粒陨石标准化配分曲线(a)及微量元素原始地幔标准化蛛网图(b)(标准化数据据参考文献[10])

    Figure 3. 

    图 4  休宁岩体(D052)和外叶花岗质小岩株(D252)锆石阴极发光(CL)图像及微区U-Pb年龄分析点位

    Figure 4. 

    图 5  休宁花岗闪长岩锆石U-P谐和图(a、c)及年龄加权平均值示意图(b、d)

    Figure 5. 

    图 6  休宁组陆源碎屑沉积示意图

    Figure 6. 

    表 1  外叶和休宁花岗闪长岩主量、微量和稀土元素地球化学数据

    Table 1.  Petrochemical and geochemical data of Waiye and Xiuning granodiorite

    样品 03WN33* 03WN 35* 03HN49* 03HN51* WN350** D052 D252-y1 D252-y2 D252-y3
    SiO2 68.95 68.61 70.24 70.96 75.71 69.6 68.91 66.73 68.47
    TiO2 0.42 0.41 0.34 0.29 0.71 0.5 0.46 0.58 0.56
    Al2O3 15.63 15.77 15.21 14.73 12.61 15 15.37 16.37 15.23
    FeO- 3.28 3.4 2.79 2.63 2.68 3.74 3.33 3.81 3.89
    MnO 0.06 0.05 0.05 0.05 0.02 0.06 0.066 0.065 0.068
    MgO 1 1.24 0.97 1.05 0.5 1.17 1.09 1.34 1.30
    CaO 1.36 0.8 0.8 0.97 0.15 0.68 0.72 0.89 1.03
    Na2O 2.47 2.73 2.63 2.88 0.14 2.94 3.20 3.24 3.03
    K2O 4.18 3.93 4.12 3.68 4.21 3.96 4.63 4.45 3.49
    P2O5 0.21 0.24 0.16 0.19 0.06 0.2 0.18 0.19 0.19
    烧失量 1.88 2.31 2.2 2.11 2.6 1.73 1.86 2.16 2.62
    总计 99.44 99.49 99.51 99.54 99.39 99.73 99.83 99.81 99.88
    A/CNK 1.41 1.55 1.49 1.4 2.56 1.45 1.40 1.49 1.57
    Mn 413.8 383.7 397.2 419.2 154.93 464.79 514.74 503.79 525.15
    Ni 13.07 16.49 10.4 11.82 9.56 - 13.4 16.2 16.9
    Ga 17.62 19.58 17.46 17.59 17.4 18.8 16.6 18.1 17.7
    Rb 133.8 151 130 132.1 142 139 138 111 127
    Ba 808.3 620.3 894.8 670.9 466 724 879 910 380
    Th 9.31 9.11 8.84 7.07 - 11.2 9.09 8.75 10.7
    Nb 8.67 9.87 7.17 7.23 12 9 9.34 10.7 8.92
    Ta 0.67 0.72 0.58 0.49 0.96 0.7 0.61 0.70 0.60
    Hf 4.58 4.96 4.54 3.72 3.8 5 6.94 6.50 7.83
    U 2.52 2.52 1.53 1.04 2.54 1.78 2.06 1.28 1.96
    Sr 161 189.4 196.3 179 29.2 184.5 180 175 135
    Zr 164.7 186.1 144.9 142.4 128 171 169 186 203
    Y 24.26 33.68 25.64 25.07 26.2 22.9 21.8 20.8 29.6
    La 24.49 27.39 24.32 22.45 33.3 28.2 21.2 29.3 41.1
    Ce 51.8 56.85 50.91 47.97 70.2 64 51.0 63.5 82.8
    Pr 6.73 7.42 6.67 6.01 8.17 7.15 6.08 8.46 10.3
    Nd 26.05 28.5 25.51 22.39 32.2 27.1 25.0 34.6 41.3
    Sm 5.83 6.27 5.53 4.97 6.31 6.03 5.35 7.20 8.68
    Eu 1 1.07 1.07 0.89 1.11 1.16 1.12 1.43 1.20
    Gd 5.48 5.62 4.97 4.21 4.94 5.91 4.58 5.82 7.34
    Tb 0.88 0.92 0.8 0.71 0.88 0.93 0.84 0.95 1.21
    Dy 4.53 5.14 4.46 3.69 5.44 4.42 4.52 4.48 6.02
    Ho 0.9 0.95 0.89 0.68 1.02 0.89 0.80 0.76 1.07
    Er 2.4 2.43 2.38 1.72 2.83 2.26 2.03 1.80 2.73
    Tm 0.36 0.39 0.39 0.26 0.42 0.33 0.35 0.27 0.45
    Yb 2.44 2.56 2.41 1.65 2.72 0.93 2.05 1.54 2.68
    Lu 0.4 0.35 0.39 0.23 0.37 0.31 0.30 0.24 0.41
    注:03WN33*、03WN35*、03WN49*、03WN51*四组数据来自于吴荣新等[7]; WN350**数据来自于薛怀民等[1]; 主量元素含量单位为%, 微量和稀土元素含量单位为10-6
    下载: 导出CSV

    表 2  休宁和外叶花岗闪长岩 LA-ICP-MS锆石 U-Th-Pb分析结果

    Table 2.  LA-ICP-MS zircon U-Th-Pb analytical results of Xiuning and Waiye granodiorite

    注:带删除线数据不参与计算
    下载: 导出CSV
  • [1]

    薛怀民, 马芳, 宋永勤, 等.江南造山带东段新元古代花岗岩组合的年代学和地球化学:对扬子与华夏地块拼合时间与过程的约束[J].岩石学报, 2005, 26(11):3215-3244. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201011006

    [2]

    邢凤鸣, 徐祥, 陈江峰, 等.江南古陆东南缘新元古代大陆增长史[J].地质科学, 1992, 66:59-72. http://www.cnki.com.cn/Article/CJFDTotal-DZXE199201004.htm

    [3]

    周金城, 王孝磊, 邱检生.江南造山带是否格林威尔期造山带?——关于华南前寒武纪地质的几个问题[J].高校地质学报, 2008, 14(1):64-72. doi: 10.3969/j.issn.1006-7493.2008.01.007

    [4]

    徐备.论赣东北-皖南晚元古代沟弧盆体系[J].地质学报, 1990, (1):33-42. http://www.cnki.com.cn/Article/CJFD1990-DZXE199001003.htm

    [5]

    张玉芝, 王岳军, 范蔚冥, 等.江南隆起带新元古代碰撞结束时间:沧水铺砾岩上下层位的U-Pb年代学证据[J].大地构造与成矿学, 2011, 35(1):32-46. doi: 10.3969/j.issn.1001-1552.2011.01.004

    [6]

    李献华, 李正祥, 葛文春, 等.华南新元古代花岗岩的锆石U-Pb年龄及其构造意义[J].矿物岩石地球化学通报, 2001, 20(4):271-273. doi: 10.3969/j.issn.1007-2802.2001.04.019

    [7]

    吴荣新, 郑永飞, 吴元保.皖南新元古代花岗闪长岩体错石U-Pb定年以及元素和氧同位素地球化学研究[J].岩石学报, 2005, 21(3):587-606. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503004.htm

    [8]

    吴荣新, 郑永飞, 吴元保.皖南石耳山新元古代花岗岩锆石U-Pb定年以及元素和氧同位素地球化学研究[J].高校地质学报, 2005, 11(3):364-382. doi: 10.3969/j.issn.1006-7493.2005.03.008

    [9]

    夏林圻, 夏祖春, 李向民, 等.华南新元古代中期裂谷火山岩系:Rodinia超大陆裂谷化-裂解的地质纪录[J].西北地质, 2009, 42(2):0001-0033. http://d.old.wanfangdata.com.cn/Periodical/xbdz200901001

    [10]

    McDonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120:223-253. doi: 10.1016/0009-2541(94)00140-4

    [11]

    Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2):34-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=babd721ac13e2675d9485b52683be64c

    [12]

    Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the TransNorth China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2):537-571. http://petrology.oxfordjournals.org/content/51/1-2/537

    [13]

    Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LAICP-MS[J]. Chinese Science Bulletin, 2010, 55(15):1535-1546. doi: 10.1007/s11434-010-3052-4

    [14]

    李应运, 徐翔, 邢凤宁.皖南前寒武纪花岗岩类中片麻状构造的成因[J].地质科学, 1989, (1):59-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000368779

    安徽省地矿局三三二地质队. 1: 5万兰田幅、休宁县幅、屯溪幅区域地质调查报告.1998.

  • 加载中

(6)

(2)

计量
  • 文章访问数:  575
  • PDF下载数:  2
  • 施引文献:  0
出版历程
收稿日期:  2018-08-03
修回日期:  2018-10-10
刊出日期:  2019-03-15

目录