塔里木东南缘安南坝地区约2.5Ga花岗闪长质片麻岩的发现及岩石成因

辜平阳, 徐学义, 何世平, 赵惠博, 庄玉军, 陈锐明, 查方勇, 郭亚鹏. 塔里木东南缘安南坝地区约2.5Ga花岗闪长质片麻岩的发现及岩石成因[J]. 地质通报, 2019, 38(5): 834-844.
引用本文: 辜平阳, 徐学义, 何世平, 赵惠博, 庄玉军, 陈锐明, 查方勇, 郭亚鹏. 塔里木东南缘安南坝地区约2.5Ga花岗闪长质片麻岩的发现及岩石成因[J]. 地质通报, 2019, 38(5): 834-844.
GU Pingyang, XU Xueyi, HE Shiping, ZHAO Huibo, ZHUANG Yujun, CHEN Runming, ZHA Fangyong, GUO Yapeng. Ca. 2.5Ga granodioritic gneiss in Annanba area of southeastern Tarim and its petrogenesis[J]. Geological Bulletin of China, 2019, 38(5): 834-844.
Citation: GU Pingyang, XU Xueyi, HE Shiping, ZHAO Huibo, ZHUANG Yujun, CHEN Runming, ZHA Fangyong, GUO Yapeng. Ca. 2.5Ga granodioritic gneiss in Annanba area of southeastern Tarim and its petrogenesis[J]. Geological Bulletin of China, 2019, 38(5): 834-844.

塔里木东南缘安南坝地区约2.5Ga花岗闪长质片麻岩的发现及岩石成因

  • 基金项目:
    陕西自然科学基金项目《青海阿尔金东段新太古代米兰岩群中麻粒岩成因及变质作用过程研究》(编号:2017JM4001)、《新疆克拉玛依岩浆混合岩体中长石矿物微区精细结构特征研究》(编号:2017JM4031)、国家自然科学基金项目《青藏高原羌塘地区地壳早期物质探索研究》(批准号:41002063)和中国地质调查局项目《青海阿尔金1:5万打柴沟等6幅区调》(编号:1212011121193)、《新疆1:5万喀伊车山口等3幅高山峡谷区填图试点》(编号:12120114042701)、《商丹—大柴旦地区区域地质调查》(编号:DD20190069)
详细信息
    作者简介: 辜平阳(1982-), 男, 博士, 从事构造地质学、地球化学研究。E-mail:pingyang-322@163.com
  • 中图分类号: P534.2;P588.12

Ca. 2.5Ga granodioritic gneiss in Annanba area of southeastern Tarim and its petrogenesis

  • 塔里木东南缘安南坝地区新发现的花岗闪长质片麻岩主要由斜长石、碱性长石、石英、角闪石、黑云母等组成。岩石SiO2(>70%)、Al2O3(>15%)、Na2O(3.56%~4.15%)含量较高;MgO(0.39%~0.59%)、Fe2O3(0.23%~0.36%)、FeO(0.76%~1.11%)含量、K2O/Na2O值(0.64~0.81)及Mg#值(19~27)均较低。花岗闪长质片麻岩稀土元素总量低(∑REE=28.81×10-6~68.51×10-6),(La/Yb)N=(46.27~98.27),轻、重稀土元素分异明显,球粒陨石标准化稀土元素配分曲线表现为右倾型,Eu(δEu=1.57~2.00)呈明显的正异常。岩石Rb、Ba、Sr等大离子亲石元素含量较高,Nb、Ta等高场强元素及Cr、Ni等相容元素含量较低。地球化学特征显示,该花岗闪长质片麻岩具有高铝型TTG和低重稀土元素系列TTG的地球化学特征。研究表明,阿克塞县安南坝地区花岗闪长质片麻岩可能是在榴辉岩相压力条件下,由加厚的玄武质下地壳部分熔融形成,源区残留相主要为石榴子石、金红石(少量)及角闪石。LA-ICP-MS锆石U-Pb上交点年龄为2555±11Ma,代表了花岗闪长质片麻岩的成岩时代,说明新太古代晚期是塔里木东南缘重要的陆壳增生期。此外,岩石中还获得了约2.44Ga、约1.96Ga的变质年龄,表明塔里木东南缘基底岩石在古元古代经历了2期构造-热事件的叠加改造。

  • 加载中
  • 图 1  塔里木盆地周缘前寒武纪变质岩分布图(a)[13]及研究区地质图(b)

    Figure 1. 

    图 2  安南坝地区花岗闪长质片麻岩野外露头(a、b)及镜下显微照片(c、d)

    Figure 2. 

    图 3  安南坝地区花岗闪长质片麻岩K-Na-Ca(a)和An-Ab-Or图解(b)

    Figure 3. 

    图 4  安南坝地区花岗闪长质片麻岩稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)[18]

    Figure 4. 

    图 5  安南坝地区花岗闪长质片麻岩中代表性锆石阴极发光(CL)图像及年龄值(Ma)

    Figure 5. 

    图 6  安南坝地区花岗闪长质片麻岩LA-ICP-MS锆石U-Pb谐和图

    Figure 6. 

    图 7  安南坝地区花岗闪长质片麻岩Nb-Nb/Ta(a)和Zr/Sm-Nb/Ta(b)关系图解[38]

    Figure 7. 

    表 1  安南坝地区花岗闪长质片麻岩主量、微量和稀土元素含量分析结果

    Table 1.  Major elements, trace elements and REE compositions of granodioritic gneiss in Annanba area

    元素 PM023-11-1 PM023-11-2 PM023-11-3 PM023-11-4 PM023-11-5 PM023-11-6
    SiO2 73.08 70.92 71.27 72.13 72.45 70.77
    TiO2 0.19 0.19 0.26 0.23 0.18 0.27
    Al2O3 15.28 16.29 15.93 15.34 15.36 16.48
    Fe2O3 0.32 0.23 0.34 0.26 0.29 0.36
    FeO 0.88 0.76 0.94 1.11 1.02 0.95
    MnO 0.03 0.03 0.04 0.03 0.04 0.04
    MgO 0.53 0.44 0.59 0.41 0.39 0.48
    CaO 3.25 3.47 3.89 3.15 3.05 3.96
    Na2O 3.78 4.15 3.56 3.85 4.13 3.68
    K2O 2.44 3.01 2.88 2.92 2.65 2.72
    P2O5 0.04 0.06 0.07 0.03 0.04 0.05
    Mg# 25 26 27 19 19 23
    TFeO+MgO 1.70 1.41 1.84 1.75 1.67 1.75
    TFeO/MgO 2.20 2.19 2.11 3.27 3.28 2.65
    OR 14.46 17.88 17.07 17.37 15.74 16.13
    Ab 32.00 35.23 30.16 32.72 35.05 31.18
    An 15.93 16.95 18.94 15.55 14.97 19.41
    Cu 7.26 9.91 15.00 15.00 9.99 10.40
    Pb 12.70 13.50 15.30 13.40 17.20 12.40
    Zn 12.70 14.00 17.40 16.00 12.60 20.20
    Cr 4.68 10.60 15.80 9.36 5.70 17.70
    Ni 10.10 11.80 23.80 11.20 10.90 12.40
    Co 2.21 3.16 4.00 4.08 2.84 3.67
    Li 4.14 5.10 5.16 5.50 4.27 5.44
    Rb 59.40 72.90 62.00 64.80 104.00 52.90
    Cs 0.17 0.16 0.20 0.18 0.20 0.17
    Sr 454.00 603.00 498.00 578.00 574.00 591.00
    Ba 3730.00 4130.00 3300.00 2360.00 4730.00 2000.00
    V 27.40 22.10 20.00 18.10 22.20 29.80
    Sc 0.84 1.27 1.36 3.02 1.36 2.74
    Nb 1.80 1.22 2.36 1.86 1.64 3.61
    Ta 0.10 0.08 0.15 0.10 0.10 0.23
    Zr 94.90 162.00 154.00 117.00 129.00 136.00
    Hf 2.36 4.03 3.94 2.97 3.22 3.48
    Be 0.44 0.44 0.51 0.84 0.34 0.81
    Ga 13.50 15.40 14.60 15.20 13.50 16.90
    Ge 0.59 0.59 0.61 0.68 0.49 0.67
    U 0.12 0.20 0.15 0.16 0.14 0.17
    Th 0.68 0.46 1.07 1.26 0.73 1.52
    La 7.51 13.70 12.90 18.40 12.50 20.50
    Ce 12.80 20.60 23.00 28.40 18.50 31.30
    Pr 1.28 1.80 2.31 2.68 1.77 3.10
    Nd 4.11 5.31 7.98 8.63 5.33 9.37
    Sm 0.60 0.68 1.28 1.04 0.81 1.18
    Eu 1.69 2.02 1.70 1.44 2.20 1.32
    Gd 0.35 0.44 0.86 0.75 0.54 0.81
    Tb 0.04 0.04 0.09 0.06 0.05 0.08
    Dy 0.22 0.20 0.46 0.36 0.27 0.38
    Ho 0.04 0.04 0.09 0.07 0.05 0.08
    Er 0.09 0.11 0.23 0.16 0.14 0.19
    Tm 0.01 0.02 0.03 0.02 0.02 0.03
    Yb 0.06 0.10 0.20 0.14 0.11 0.16
    Lu 0.01 0.02 0.03 0.03 0.02 0.02
    Y 0.95 1.28 2.42 1.84 1.60 2.09
    I REE 28.82 45.07 51.15 62.19 42.31 68.51
    LREE 27.99 44.11 49.17 60.59 41.11 66.77
    HREE 0.83 0.96 1.98 1.60 1.20 1.74
    LREE/HREE 33.88 45.94 24.79 37.84 34.40 38.37
    5Eu 2.00 2.07 2.16 1.57 1.75 1.65
    (La/Yb)N 89.78 98.27 46.26 94.27 81.51 91.90
    注:主量元素含量单位为%, 微量和稀土元素为 10-6
    下载: 导出CSV

    表 2  安南坝地区花岗闪长质片麻岩LA-ICP-MS锆石U-Th-Pb同位素分析结果

    Table 2.  LA-ICP-MS zircon U-Th-Pb isotopic analyses of granodioritic gneiss in Annanba area

    测点 同位素比值 同位素年龄/Ma 含量/10-6 Th/U
    207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U Th U Pb
    PM023-11-1 0.1683 0.0016 10.0358 0.0998 0.4326 0.0026 0.0903 0.0023 2541 16 2438 24 2317 14 118 626 283 0.19
    PM023-11-2 0.1591 0.0015 10.1096 0.1017 0.4610 0.0029 0.0946 0.0023 2446 16 2445 25 2444 15 42 112 55 0.38
    PM023-11-3 0.1682 0.0015 9.4388 0.1091 0.4069 0.0031 0.1047 0.0024 2540 15 2382 28 2201 17 100 411 178 0.24
    PM023-11-4 0.1199 0.0016 5.7984 0.0810 0.3509 0.0019 0.0720 0.0019 1954 24 1946 27 1939 11 86 48 22 1.77
    PM023-11-5 0.1840 0.0017 13.0217 0.1237 0.5133 0.0029 0.1040 0.0030 2689 16 2681 25 2671 15 167 147 93 1.14
    PM023-11-6 0.1213 0.0012 6.0037 0.0594 0.3588 0.0020 0.0775 0.0022 1976 17 1976 20 1977 11 285 100 54 2.86
    PM023-11-7 0.1677 0.0017 7.9832 0.0751 0.3453 0.0027 0.0876 0.0023 2535 17 2229 21 1912 15 325 777 296 0.42
    PM023-11-8 0.1799 0.0016 12.6149 0.1215 0.5085 0.0030 0.1151 0.0029 2652 15 2651 26 2650 15 108 172 100 0.63
    PM023-11-9 0.1693 0.0017 10.7860 0.1508 0.4619 0.0037 0.1151 0.0037 2551 17 2505 35 2448 20 186 544 273 0.34
    PM023-11-10 0.1708 0.0019 9.9371 0.1049 0.4219 0.0025 0.1436 0.0050 2566 18 2429 26 2269 13 153 239 122 0.64
    PM023-11-11 0.1562 0.0015 9.7528 0.0993 0.4528 0.0028 0.1050 0.0036 2415 16 2412 25 2408 15 77 83 45 0.93
    PM023-11-12 0.1619 0.0015 10.4379 0.1030 0.4675 0.0029 0.1194 0.0038 2476 16 2474 24 2473 16 356 635 336 0.56
    PM023-11-13 0.1182 0.0012 5.7229 0.0568 0.3510 0.0019 0.0896 0.0026 1930 18 1935 19 1940 11 4 70 24 0.06
    PM023-11-14 0.1578 0.0019 9.7258 0.1717 0.4471 0.0042 0.1161 0.0033 2432 20 2409 43 2382 22 55 157 76 0.35
    PM023-11-15 0.1685 0.0016 10.8858 0.1031 0.4686 0.0025 0.1096 0.0032 2543 16 2513 24 2478 13 108 156 84 0.69
    PM023-11-16 0.1836 0.0017 12.9045 0.1219 0.5098 0.0028 0.1109 0.0037 2685 15 2673 25 2656 14 176 161 101 1.09
    PM023-11-17 0.1246 0.0018 6.1298 0.0719 0.3567 0.0024 0.0748 0.0028 2024 26 1995 23 1967 13 228 69 39 3.31
    PM023-11-18 0.1672 0.0020 7.7825 0.0882 0.3376 0.0019 0.1134 0.0055 2530 20 2206 25 1875 10 111 322 121 0.34
    PM023-11-19 0.1686 0.0016 9.9592 0.1088 0.4285 0.0027 0.0962 0.0034 2544 16 2431 27 2299 14 124 127 66 0.97
    PM023-11-20 0.1666 0.0016 8.7980 0.1141 0.3831 0.0034 0.0909 0.0029 2523 16 2317 30 2091 19 138 574 233 0.24
    PM023-11-21 0.1228 0.0020 6.1097 0.1011 0.3610 0.0021 0.0962 0.0031 1997 28 1992 33 1987 12 24 42 17 0.57
    PM023-11-22 0.1205 0.0021 5.8810 0.1002 0.3540 0.0021 0.0744 0.0021 1964 30 1958 33 1954 11 123 28 18 4.36
    PM023-11-23 0.1695 0.0016 10.2701 0.1060 0.4395 0.0028 0.0922 0.0031 2553 16 2459 25 2348 15 301 1199 558 0.25
    PM023-11-24 0.1198 0.0012 5.8463 0.0602 0.3538 0.0019 0.0757 0.0023 1954 18 1953 20 1953 11 131 63 30 2.09
    PM023-11-25 0.1863 0.0017 13.1971 0.1235 0.5137 0.0028 0.0978 0.0027 2710 15 2694 25 2672 15 106 346 192 0.31
    PM023-11-26 0.1701 0.0016 10.8798 0.1021 0.4638 0.0026 0.0982 0.0031 2559 15 2513 24 2456 14 113 246 125 0.46
    下载: 导出CSV
  • [1]

    Jahn B M, Glikson A Y, Peucat J J, et al. REE geochemistry and isotopic data of Archaean silica volcanics and granitoids from the Pilbara Block, Western Australia:Implications for the early crustal evolution[J]. Geochimica et Cosmochimica Acta, 1981, 45:1633-1652. doi: 10.1016/S0016-7037(81)80002-6

    [2]

    Moyen J F, Martin H. Forty years of TTG research[J]. Lithos, 2012, 148:312-336. doi: 10.1016/j.lithos.2012.06.010

    [3]

    张旗, 翟明国.太古宙TTG岩石是什么含义?[J].岩石学报, 2012, 28(11):3446-3456. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201211002

    [4]

    万渝生, 董春艳, 任鹏, 等.华北克拉通太古宙TTG岩石的时空分布、组成特征及形成演化:综述[J].岩石学报, 2017, 33(5):1405-1419. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201705003

    [5]

    何登发, 李德生.塔里木盆地构造演化与油气聚集[M].北京:地质出版社, 1996:1-6.

    [6]

    贾承造.中国塔里木盆地构造特征与油气[M].北京:地质出版社, 1997:29-92.

    [7]

    张建新, 李怀坤, 孟繁聪, 等.塔里木盆地东南缘(阿尔金山)"变质基底"记录的多期构造热事件:锆石U-Pb年代学的制约[J].岩石学报, 2011, 27(1):23-46. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201101002

    [8]

    刘永顺, 于海峰, 辛后田, 等.阿尔金山地区构造单元划分和前寒武纪重要地质事件[J].地质通报, 2009, 28(10):1430-1438. doi: 10.3969/j.issn.1671-2552.2009.10.009 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20091009&flag=1

    [9]

    辛后田, 赵凤清, 罗照华, 等.塔里木盆地东南缘阿克塔什塔格地区古元古代精细年代格架的建立及其地质意义[J].地质学报, 2011, 85(12):1977-1993. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201112002

    [10]

    辛后田, 刘永顺, 罗照华, 等.塔里木盆地东南缘阿克塔什塔格地区新太古代陆壳增生:米兰岩群和TTG片麻岩的地球化学及年代学约束[J].地学前缘, 2013, 20(1):240-259. http://d.old.wanfangdata.com.cn/Periodical/dxqy201301020

    [11]

    陆松年, 袁桂邦.阿尔金山阿克塔什塔格早前寒武纪岩浆活动的年代学证据[J].地质学报, 2003, 77(1):61-68. doi: 10.3321/j.issn:0001-5717.2003.01.008

    [12]

    刘永顺, 辛后田, 周世军, 等.阿尔金山东段拉配泉地区前寒武纪及古生代构造构造演化[M].北京:地质出版社, 2010:84-87.

    [13]

    Lu S N, Li H K, Zhang C L, et al. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments[J]. Precambrian Research, 2008, 160(1/2):94-107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=92cbf7cde9189410a5bd41a8161f2517

    [14]

    校培喜, 高晓峰, 胡云绪, 等.阿尔金-东昆仑西段成矿带地质背景研究[M].北京:地质出版社, 2014:48-51.

    [15]

    Gao S, Liu Xiaoming, Yuan Honglin, et al. Analysis of forty-two major and trace elements of USGS and NIST SRM Glasses by LAICPMS[J]. Geostand Newsl, 2002, 22:181-195. https://www.researchgate.net/publication/252188504_Analysis_of_forty-two_major_and_trace_elements_in_USGS_and_NIST_SRM_glasses_by_LA-ICPMS

    [16]

    Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192:59-79. doi: 10.1016/S0009-2541(02)00195-X

    [17]

    Ludwig K R. 3.0-A geochronologycal toolkit for Micro-soft Excel[J]. Berkeley Geo chronology Certer, Special Publication, 2003, (4):1-70.

    [18]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process[C]//Sauders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society Special Publication, 1989, 42: 3l3-345.

    [19]

    万渝生, 刘敦一, 董春艳, 等.高级变质作用对锆石U-Pb同位素体系的影响:胶东栖霞地区变质闪长岩锆石定年[J].地学前缘, 2011, 18(2):17-25. http://d.old.wanfangdata.com.cn/Periodical/dxqy201102002

    [20]

    朱文斌, 葛荣峰, 吴海林.北阿尔金地区古元古代ca.2.0Ga岩浆-变质事件[J].岩石学报, 2018, 34(4):1175-1190. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201804017

    [21]

    Ma M Z, Wan Y S, Santosh M, et al. Decoding multiple tectonothermal events in zircons from single rock samples:SHRIMP zircon U-Pb data from the Late Neoarchean rocks of Daqingshan, North China Craton[J]. Gondwana Research, 2012, 22(3/4):810-827.

    [22]

    胡霭琴, 韦刚健.塔里木盆地北缘新太古代辛格尔灰色片麻岩形成时代问题[J].地质学报, 2006, 80(1):126-134. doi: 10.3321/j.issn:0001-5717.2006.01.014

    [23]

    邓兴梁, 舒良树, 朱文斌, 等.新疆兴地断裂带前寒武纪构造-岩浆-变形作用特征及其年龄[J].岩石学报, 2008, 24(12):2800-2808. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200812014

    [24]

    Long X P, Yuan C, Sun M, et al. Archean crustal evolution of the northern Tarim Craton, NW China:zircon U-Pb and Hf isotopic constrains[J]. Precambrian Research, 2010, 180(3/4):272-284. http://cn.bing.com/academic/profile?id=61ebc9c09877f37d401233f1a0a0e489&encoded=0&v=paper_preview&mkt=zh-cn

    [25]

    Zhang C L, Li H K, Santosh M, et al. Precambrian evolution and cratonization of the Tarim Block, NW China:Petrology, geochemistry, Nd-isotopes and U-Pb zircon geochronology from Archaean gabbro-TTG-potassic granite suite and Paleoproterozoic metamorphic belt[J]. Journal of Asian Earth Sciences, 2012, 47:5-20. doi: 10.1016/j.jseaes.2011.05.018

    [26]

    Zhang J X, Gong J H, Yu S Y, et al. Neoarchean-Paleoproterozoic multiple tectonothermal events in the western Alxa block, North China Craton and their geological implication:Evidence from zircom U-Pb ages and Hf isotopic composition[J]. Precambrian Research, 2013, 235:36-45. doi: 10.1016/j.precamres.2013.05.002

    [27]

    赵燕, 第五春荣, 孙勇, 等.甘肃敦煌水峡口地区前寒武纪岩石的锆石U-Pb年龄、Hf同位素组成及其地质意义[J].岩石学报, 2013, 29(5):1698-1712. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201305017

    [28]

    Shu L S, Deng X L, Zhu W B, et al. Precambrian tectonic evolution of the Tarim Block, NW China:New geochronological insights from the Quruqtagh domain[J]. Journal of Asian Earth Sciences, 2011, 42(5):774-790. doi: 10.1016/j.jseaes.2010.08.018

    [29]

    郭召杰, 张志诚, 刘树文, 等.塔里木克拉通早前寒武纪基底层序与组合:颗粒锆石U-Pb年龄新证据[J].岩石学报, 2003, 5(3):537-542. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200303020

    [30]

    董昕, 张泽明, 唐伟.塔里木克拉通北缘的前寒武纪构造热事件——新疆库尔勒铁门关高级变质岩的锆石U-Pb年代学限定[J].岩石学报, 2011, 27(1):47-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201101003

    [31]

    吴海林, 朱文斌, 舒良树, 等. Columbia超大陆聚合事件在塔里木克拉通北缘的记录[J].高校地质学报, 2012, 18(4):686-700. doi: 10.3969/j.issn.1006-7493.2012.04.009

    [32]

    Lei R X, Wu C Z, Chi G X, et al. Petrogenesis of the Paleoproterozoic Xishankou pluton, northern Tarim block, northwest China:implications for assembly of the supercontinent Columbia[J]. International Geology Review, 2012, 54(15):1829-1842. doi: 10.1080/00206814.2012.678045

    [33]

    辛后田, 罗照华, 刘永顺, 等.塔里木东南缘阿克塔什塔格地区古元古代壳源碳酸岩的特征及其地质意义[J].地学前缘, 2012, 19(6):167-178. http://d.old.wanfangdata.com.cn/Periodical/dxqy201206020

    [34]

    Foley S, Tiepolo M, Vannucci R. Growth of early continental crust controlled by melting of amphibolites in subduction zones[J]. Nature, 2002, 417(6891):837-840. doi: 10.1038/nature00799

    [35]

    Condie K C. TTGs and adakites:Are they both slab melts?[J]. Lithos, 2005, 80(1/4):33-44. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0210094244/

    [36]

    Moyen J F. The composite Archaean grey gneisses:Petrological significance and evidence for a non-uniqu tectonic setting for Archaean crustal growth[J]. Lithos, 2011, 123(1/4):21-36. http://cn.bing.com/academic/profile?id=9ca6418a0a2b9aef918e37e6dbe807d0&encoded=0&v=paper_preview&mkt=zh-cn

    [37]

    Moyen J F, Martin H. Forty years of TTG research[J]. Lithos, 2012, 148:312-336. doi: 10.1016/j.lithos.2012.06.010

    [38]

    Hoffmann J E, Munker C, Naeraa T, et al. Mechanisms of Archean crust formation inferred from high-precision HFSE systematics in TTGs[J]. Geochimica et Cosmochimica Acta, 2011, 75(15):4157-4178. doi: 10.1016/j.gca.2011.04.027

    [39]

    Martin H, Moyen J F. Secular changes in tonalite-trondhjemitegranodiorite composition as markers of the progressive cooling of Earth[J]. Geology, 2002, 30(4):319-322. doi: 10.1130/0091-7613(2002)030<0319:SCITTG>2.0.CO;2

    [40]

    Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite(TTG), and sanukitoid:Relationships and some implications for crustal evolution[J]. Lithos, 2005, 79(1/2):1-24. http://cn.bing.com/academic/profile?id=7371dfa5724c0893c0b1241c8ad6e418&encoded=0&v=paper_preview&mkt=zh-cn

    [41]

    Smithies R H. The Archaean tonalite-trondhjemite-granodiorite (TTG)series is not an analogue of Cenozoic adakite[J]. Earth and Planetary Science Letters, 2000, 182(1):115-125. http://cn.bing.com/academic/profile?id=85663bafe075f8be0568ab11ca06696f&encoded=0&v=paper_preview&mkt=zh-cn

    [42]

    Whalen J B, Percival J A, Mcnicoll V J, et al. A mainly crustal origin for tonalitic granitoid rocks, superior province, Canada:Implications for Late Archean tectonomagmatic processes[J]. Journal of Petrology, 2002, 43(8):1551-1570. doi: 10.1093/petrology/43.8.1551

    [43]

    Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge:Experimental constraints at 3.8GPa[J]. Chemical Geology, 1999, 160:335-356. doi: 10.1016/S0009-2541(99)00106-0

    [44]

    Tang J, Zheng Y F, Wu Y B, et al. Geochronology and geochemistry of metamorphic rocks in the Jiaobei terrane:Constraints on its tectonic affinity in the Sulu orogen[J]. Precambrian Research, 2007, 152(1/2):48-82. http://cn.bing.com/academic/profile?id=ec2c8ffc67b573cc4747b287930decae&encoded=0&v=paper_preview&mkt=zh-cn

    [45]

    Martin H. Petrogenesis of Archaean teondhjemimes, tonalities and geanodiorites from Eeastern Finland:Major and trace element Geochemistry[J]. Journal of Petrology, 1987, 28:921-953. doi: 10.1093/petrology/28.5.921

    [46]

    Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China Craton[J]. Nature, 2004, 432(7019):892-897. doi: 10.1038/nature03162

    [47]

    Jiang N, Liu Y S, Zhou W G, et al. Derivation of Mesozoic adakitic magmas from ancient lower crust in the North China Craton[J]. Geochimica et Cosmochimica Acta, 2007, 71(10):2591-2608. doi: 10.1016/j.gca.2007.02.018

    [48]

    Halla J, Hunen J V, Heilimo E, et al. Geochemical and numerical constraints on Neoarchean plate tectonics[J]. Precambrian Research, 2009, 174(1/2):155-162. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d9f42ce2aa594282d0023ae497dcc384

    辜平阳,董增产,陈锐明,等. 青海阿尔金 1∶5万打柴沟等 6幅区域地质调查报告. 2015.

  • 加载中

(7)

(2)

计量
  • 文章访问数:  605
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2018-05-09
修回日期:  2018-06-15
刊出日期:  2019-05-15

目录