青海南山地区加里东期强过铝质花岗岩锆石U-Pb年龄、地球化学特征及其地质意义

张永明, 裴先治, 李佐臣, 李瑞保, 刘成军, 裴磊, 陈有炘, 王盟. 青海南山地区加里东期强过铝质花岗岩锆石U-Pb年龄、地球化学特征及其地质意义[J]. 地质通报, 2019, 38(5): 742-756.
引用本文: 张永明, 裴先治, 李佐臣, 李瑞保, 刘成军, 裴磊, 陈有炘, 王盟. 青海南山地区加里东期强过铝质花岗岩锆石U-Pb年龄、地球化学特征及其地质意义[J]. 地质通报, 2019, 38(5): 742-756.
ZHANG Yongming, PEI Xianzhi, LI Zuochen, LI Ruibao, LIU Chengjun, PEI Lei, CHEN Youxin, WANG Meng. Zircon U-Pb age, geochemical characteristics and geological significance of the Caledonian strongly peraluminous granites in the Nanshan area, Qinghai Province[J]. Geological Bulletin of China, 2019, 38(5): 742-756.
Citation: ZHANG Yongming, PEI Xianzhi, LI Zuochen, LI Ruibao, LIU Chengjun, PEI Lei, CHEN Youxin, WANG Meng. Zircon U-Pb age, geochemical characteristics and geological significance of the Caledonian strongly peraluminous granites in the Nanshan area, Qinghai Province[J]. Geological Bulletin of China, 2019, 38(5): 742-756.

青海南山地区加里东期强过铝质花岗岩锆石U-Pb年龄、地球化学特征及其地质意义

  • 基金项目:
    国家自然科学基金项目《扬子地块西北缘碧口群构造属性及与Rodinia超大陆聚合-裂解关系》(批准号:41872233)、《秦岭-祁连结合部位早古生代晚期岩浆事件及其对构造演化的启示》(批准号:41872235)、《东昆仑东段晚古生代—早中生代构造演化与造山过程研究》(批准号:41472191)、国家自然科学基金青年项目《东昆仑东段东昆中蛇绿岩年代学及构造属性研究》(批准号:41502191)及中国地质调查局项目《青海省共和县曲什那地区1:5万三幅区域地质矿产调查》(编号:12120114041201)
详细信息
    作者简介: 张永明(1971-), 男, 讲师, 博士, 构造地质学专业。E-mail:yongmzh@163.com
    通讯作者: 裴先治(1963-), 男, 教授, 博士生导师, 从事构造地质学和区域地质学研究。E-mail:peixzh@sina.com
  • 中图分类号: P597+.3;P588.12+1

Zircon U-Pb age, geochemical characteristics and geological significance of the Caledonian strongly peraluminous granites in the Nanshan area, Qinghai Province

More Information
  • 青海南山地区位于南祁连构造带和西秦岭造山带的交接部位,在该地区元古宇变质地层中新厘定出一套含石榴子石白云母二长花岗岩,并对其进行了详细的岩石学、岩石地球化学和LA-ICP-MS锆石U-Pb定年研究。结果表明,浪日娘含石榴子石白云母二长花岗岩结晶年龄为438.7±4.2Ma,形成于早志留世早期。岩石含石榴子石、白云母、电气石等高铝矿物,同时具高SiO2、富Al2O3特征,高铝饱和指数A/CNK=1.09~1.28,属高钾钙碱性强过铝质S型花岗岩;微量元素富集大离子亲石元素Cs、Rb、U、K和Pb,亏损高场强元素Nb、Ti、Zr、P和Ba、Sr;稀土元素总量低,配分曲线为轻稀土元素富集的右倾模式,具有弱-中等负Eu异常。高Rb/Sr值(1.83~3.95)、低CaO/Na2O值(0.11~0.19),伴随有Pb正异常和Ba负异常,暗示源区物质成分为泥质岩并经历了缺水熔融条件下的白云母脱水熔融。结合岩体年龄及区域地质资料,推断其可能形成于原特提斯洋闭合碰撞造山过程。

  • 加载中
  • 图 1  南山地区浪日娘含石榴子石白云母二长花岗岩体大地构造位置(a、b,据参考文献[20]修改)及岩体地质图(c)

    Figure 1. 

    图 2  浪日娘含石榴子石白云母二长花岗岩野外(a)及镜下照片(b~d)

    Figure 2. 

    图 3  浪日娘含石榴子石白云母二长花岗岩(PM202/25-2)典型锆石阴极发光(CL)图像

    Figure 3. 

    图 4  浪日娘含石榴子石白云母二长花岗岩(PM202/25-2)锆石U-Pb谐和图

    Figure 4. 

    图 5  浪日娘含石榴子石白云母二长花岗岩TAS(a)、A/CNK-A/NK(b)、SiO2-K2O(c)和Zr-TiO2图解(d)

    Figure 5. 

    图 6  浪日娘含石榴子石白云母二长花岗岩球粒陨石标准化稀土元素配分图解(a)和原始地幔标准化微量元素蛛网图(b)

    Figure 6. 

    图 7  浪日娘含石榴子石白云母二长花岗岩SiO2-TFe2O3/MgO(a,底图据参考文献[40]),(Zr+Nb+Ce+Y)-(Na2O+K2O)/CaO(b,底图据参考文献[37]),Rb-Th(c,底图据参考文献[41])和SiO2-P2O5图解(d)

    Figure 7. 

    图 8  浪日娘含石榴子石白云母二长花岗岩源区判别图解

    Figure 8. 

    图 9  浪日娘含石榴子石白云母二长花岗岩构造环境判别图(a底图据参考文献[65];b底图据参考文献[58])

    Figure 9. 

    表 1  浪日娘含石榴子石白云母花岗岩(PM202/25-2)LA-ICP-MS锆石U-Th-Pb同位素分析结果

    Table 1.  LA-ICP-MS zircon U-Th-Pb analytic data for Langriniang garnet-bearing muscovite granites

    点号 含量/10-6 Th/U 同位素比值 年龄/Ma
    Pb 232Th 238U 206Pb/238U 207Pb/235U 207Pb/206Pb 206Pb/238U 207Pb/235U 207Pb/206Pb
    1 37 107 192 0.56 0.1350 0.0011 1.2849 0.0254 0.069 0.0015 817 6 839 11 898 44
    2 61 87 398 0.22 0.1282 0.0009 1.1378 0.0198 0.0643 0.0013 778 5 771 9 752 41
    3 74 122 170 0.72 0.3258 0.0043 5.0097 0.1301 0.1115 0.003 1818 21 1821 22 1824 48
    4 137 144 371 0.39 0.1303 0.0015 1.3129 0.0179 0.0731 0.0009 790 5 851 3 1028 13
    5 136 137 372 0.37 0.1396 0.0014 1.3986 0.0202 0.0727 0.0010 842 2 888 4 1013 19
    6 329 61 1926 0.03 0.0707 0.0004 2.6427 0.0176 0.2711 0.0030 440 2 1313 5 3313 17
    7 93 227 637 0.36 0.1256 0.0008 1.1902 0.0181 0.0688 0.0012 763 5 796 8 892 36
    8 264 226 514 0.44 0.3710 0.0031 8.5974 0.1087 0.1682 0.0025 2034 14 2296 12 2539 25
    9 55 10 668 0.01 0.0718 0.0007 0.6238 0.0101 0.0630 0.0010 447 3 492 4 718 24
    10 69 160 404 0.40 0.1280 0.0008 1.2368 0.0161 0.0700 0.0011 777 5 818 7 930 32
    11 81 341 503 0.68 0.1241 0.0008 1.1331 0.0152 0.0662 0.0011 754 5 769 7 813 33
    12 111 91 313 0.29 0.3138 0.0031 4.8781 0.0896 0.1127 0.0023 1759 15 1799 15 1844 36
    13 146 201 311 0.65 0.1347 0.0014 1.2360 0.0183 0.0665 0.0009 815 2 817 4 833 15
    14 63 139 506 0.27 0.0705 0.0002 0.5839 0.0077 0.0580 0.0008 439 2 467 5 530 25
    15 86 210 442 0.48 0.0696 0.0003 0.5481 0.0069 0.0572 0.0007 434 2 444 4 499 23
    16 805 192 2140 0.09 0.3439 0.0024 7.9388 0.0803 0.1674 0.0022 1905 12 2224 9 2532 22
    17 72 145 522 0.28 0.0699 0.0003 0.5379 0.0084 0.0558 0.0009 436 4 437 6 445 27
    18 293 171 2060 0.08 0.0701 0.0004 2.4232 0.0169 0.2506 0.0028 437 2 1250 5 3189 18
    19 144 142 359 0.39 0.1359 0.0014 1.4887 0.0206 0.0795 0.0010 821 2 926 4 1184 9
    20 160 48 425 0.11 0.1007 0.0011 1.7455 0.0246 0.1257 0.0016 619 2 1025 4 2043 12
    21 75 148 513 0.29 0.0705 0.0020 0.5193 0.0807 0.0535 0.0116 439 4 425 27 461 422
    22 91 104 516 0.20 0.0714 0.0007 0.6175 0.0100 0.0627 0.0010 445 3 488 4 706 24
    23 92 211 428 0.49 0.0702 0.0002 0.5629 0.0070 0.0574 0.0007 437 2 453 5 506 21
    24 34 112 215 0.52 0.1330 0.0027 1.2144 0.0769 0.0662 0.0043 805 15 807 35 814 130
    下载: 导出CSV

    表 2  浪日娘含石榴子石白云母花岗岩主量、微量和稀土元素分析结果

    Table 2.  Analyses of major, trace elements and REE for Langriniang garnet-bearing muscovite granites

    样品号 PM202/25-1 PM202/25-2 PM202/25-3 PM202/25-4 PM202/25-5 PM202/25-6 PM202/25-7 PM202/29-1 PM202/31-1
    SiO2 73.26 72.24 73.86 72.72 74.35 73.23 74.16 73.65 72.78
    TiO2 0.04 0.03 0.03 0.04 0.05 0.05 0.04 0.02 0.04
    Al2O3 15 14.78 15.05 14.9 14.79 14.54 14.93 14.83 15.45
    TFe2O3 0.77 0.71 0.7 0.76 0.87 0.98 0.68 0.81 0.9
    MnO 0.04 0.07 0.05 0.03 0.03 0.06 0.03 0.06 0
    MgO 0.17 0.12 0.1 0.13 0.17 0.16 0.12 0.12 0.23
    CaO 0.5 0.47 0.44 0.58 0.62 0.6 0.86 0.78 0.6
    Na2O 3.29 3.87 4.1 4.2 4.19 4.23 4.49 4.99 4.01
    K2O 5.62 5.86 4.74 4.18 3.2 3.92 3.77 3.66 4.35
    P2O5 0.14 0.15 0.14 0.14 0.12 0.15 0.15 0.14 0.22
    烧失量 0.52 0.36 0.42 0.41 0.53 0.51 0.59 0.41 0.48
    总计 99.35 98.66 99.63 98.09 98.92 98.43 99.82 99.47 99.06
    A/CNK 1.21 1.09 1.19 1.19 1.29 1.18 1.15 1.09 1.25
    AKI 0.59 0.66 0.59 0.56 0.5 0.56 0.55 0.58 0.54
    CaO/Na2O 0.15 0.12 0.11 0.14 0.15 0.14 0.19 0.16 0.15
    DI 93.81 95.51 94.6 93.63 92.31 93.39 92.97 93.86 92.7
    La 3.58 3.24 1.61 2.81 3.96 4.26 3.33 1.71 3.74
    Ce 8.57 8.24 4.59 6.85 8.53 9.7 7.14 3.73 8.2
    Pr 0.78 0.73 0.33 0.64 0.84 0.94 0.72 0.33 0.81
    Nd 2.72 2.6 1.13 2.19 2.84 3.23 2.51 0.97 2.65
    Sm 0.78 0.74 0.3 0.67 0.77 0.9 0.64 0.32 0.77
    Eu 0.19 0.16 0.09 0.13 0.14 0.17 0.21 0.11 0.16
    Gd 0.97 0.86 0.35 0.82 0.86 1.01 0.55 0.45 0.83
    Tb 0.2 0.17 0.06 0.17 0.17 0.2 0.08 0.13 0.17
    Dy 1.2 1.18 0.37 1.02 0.99 1.13 0.38 0.96 0.92
    Ho 0.19 0.2 0.07 0.16 0.17 0.19 0.05 0.18 0.12
    Er 0.5 0.51 0.2 0.31 0.44 0.42 0.14 0.54 0.25
    Tm 0.07 0.07 0.03 0.04 0.07 0.05 0.02 0.08 0.03
    Yb 0.43 0.52 0.19 0.26 0.44 0.35 0.1 0.58 0.14
    Lu 0.06 0.06 0.03 0.03 0.06 0.04 0.01 0.07 0.02
    Li 30.1 7.49 5.3 3.84 12.6 18.2 20.2 6.84 3.85
    Be 1.91 1.93 2.54 1.93 1.48 2.01 2.34 2.16 1.49
    Sc 6.98 5.84 5.84 6.23 5.26 5.52 5.48 4.65 4.3
    V 2 1.09 1.28 1.46 1.89 1.35 1.27 0.51 1.45
    Cr 1.3 1.01 0.28 0.62 1 0.67 0.48 0.58 1.02
    Co 3.42 2.57 1.58 1.39 1.32 1.27 1.07 0.85 1
    Ni 2.78 2.44 2.08 2.28 1.63 1.28 1.02 0.47 0.58
    Cu 1.11 0.72 0.77 0.96 1.01 0.75 0.97 0.91 1.06
    Zn 15.9 12.7 16.6 19.2 22.1 28.3 17.9 23 35.7
    Ga 8.87 6.02 6.82 7.9 8.81 8.87 7.33 7.61 7.84
    Rb 124.9 182.4 143.7 131.6 99.7 135.8 114.3 115.2 133.5
    Sr 68.2 66.9 36.3 36 39.3 41.9 56.8 38.7 36.6
    Y 6.85 6.32 1.96 4.82 5.8 5.62 1.49 6.48 4.05
    Zr 43.8 47.4 22.5 29.2 60.8 33.4 23.8 26.3 23.2
    Nb 3.94 0.39 1.46 2.71 2.97 2.42 3.25 2.59 0.89
    Mo 0.13 0.12 0.14 0.11 0.13 0.05 0.08 0.12 0.17
    Cd 0.04 0.05 0.03 0.04 0.06 0.05 0.06 0.04 0.05
    In 0.03 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02
    Cs 5.34 5.09 7.76 4 3.01 3.5 2.41 4.63 1.87
    Ba 131.1 137.9 88 76.5 80.6 86.16 100.4 40.6 87.5
    Hf 1.58 1.56 0.93 1.16 1.98 1.33 0.96 1.22 0.96
    Ta 0.87 0.08 0.34 0.2 0.23 0.33 0.24 0.92 0.05
    Pb 49.7 51 42.6 41.6 38.9 42.4 46.6 43.6 45.9
    Bi 1.08 0.8 1.24 3.93 1.47 4.11 4.6 8.48 3.44
    Th 1.16 1.04 0.36 0.77 1.29 1.33 0.94 0.38 1.03
    U 1.18 0.65 0.51 1.14 1.02 0.96 1.48 0.27 1.14
    (La/Yb)N 5.67 4.2 5.7 7.37 6.03 8.14 22.62 2 18.26
    δEu 0.67 0.6 0.87 0.53 0.52 0.54 1.05 0.88 0.63
    Nb/Ta 4.52 4.82 4.33 13.41 12.65 7.32 13.6 2.81 18.97
    Rb/Sr 1.83 2.73 3.96 3.66 2.54 3.24 2.01 2.98 3.65
    Sr/Ba 0.52 0.48 0.41 0.47 0.49 0.49 0.57 0.95 0.42
    ∑REE 27.07 25.62 11.31 20.92 26.09 28.22 17.37 16.65 22.85
    TZr/℃ 776 783 723 743 805 754 727 735 725
    下载: 导出CSV
  • [1]

    Zen E A. Phase relations of peraluminous granitic rocks and their petrogenetic implications[J]. Annual Review of Earth and Planetary Sciences, 1988, 16:21-51. doi: 10.1146/annurev.ea.16.050188.000321

    [2]

    Chappell B W, White A J R. Ⅰ-and S-type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh:Earth Sciences, 1992, 83(1/2):1-26.

    [3]

    Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45(1/4):29-44. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0223027258/

    [4]

    Gou L L, Zhang L F, Lü Z, et al. Geochemistry and geochronology of S-type granites and their coeval MP/HT metasedimentary rocks in Chinese Southwest Tianshan and their tectonic implications[J]. Journal of Asian Earth Sciences, 2015, 107:151-171. doi: 10.1016/j.jseaes.2015.04.020

    [5]

    Yang H, Zhang H F, Luo B J, et al. Generation of peraluminous granitic magma in a post-collisional setting:A case study from the eastern Qilian orogen, NE Tibetan Plateau[J]. Gondwana Research, 2016, 36:28-45. doi: 10.1016/j.gr.2016.04.006

    [6]

    Patiño Douce A E, Harris N. Experimental constraints on Himalayan anatexis[J]. Journal of Petrology, 1998, 39(4):689-710. doi: 10.1093/petroj/39.4.689

    [7]

    Chen Y X, Song S G, Niu Y L, et al. Melting of continental crust during subduction initiation:A case study from the Chaidanuo peraluminous granite in the North Qilian suture zone[J]. Geochimica et Cosmochimica Acta, 2014, 132:311-336. doi: 10.1016/j.gca.2014.02.011

    [8]

    Finger F, Roberts M P, Haunschmid B, et al. Variscan granitoids of central Europe:their typology, potential sources and tectonothermal relations[J]. Mineralogy and Petrology, 1997, 61(1/4):67-96. http://d.old.wanfangdata.com.cn/NSTLQK/10.1007-BF01172478/

    [9]

    邓晋福, 赵海玲, 赖绍聪, 等.白云母/二云母花岗岩形成与陆内俯冲作用[J].地球科学, 1994, 19(2):139-147. doi: 10.3321/j.issn:1000-2383.1994.02.006

    [10]

    Barbarin B. Genesis of the two main types of peraluminous granitoids[J]. Geology, 1996, 24(4):295-298. doi: 10.1130/0091-7613(1996)024<0295:GOTTMT>2.3.CO;2

    [11]

    Gerdes A, Montero P, Bea F, et al. Peraluminous granites frequently with mantle-like isotope compositions:the continentaltype Murzinka and Dzhabyk batholiths of the Eastern Urals[J]. International Journal of Earth Sciences, 2002, 91(1):3-19. doi: 10.1007/s005310100195

    [12]

    张宏飞, Harris N, Parrish R, 等.北喜马拉雅淡色花岗岩地球化学:区域对比、岩石成因及其构造意义[J].地球科学, 2005, 30(3):275-288. http://d.old.wanfangdata.com.cn/Periodical/dqkx200503003

    [13]

    Wu C L, Wooden J L, Yang J S, et al. Granitic magmatism in the North Qaidam early Paleozoic ultrahigh-pressure metamorphic belt, northwest China[J]. International Geology Review, 2006, 48(3):223-240. doi: 10.2747/0020-6814.48.3.223

    [14]

    Xu Z Q, Yang J S, Wu C L, et al. Timing and mechanism of formation and exhumation of the Northern Qaidam ultrahigh-pressure metamorphic belt[J]. Journal of Asian Earth Sciences, 2006, 28(2/3):160-173. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6f563b78a5d492193fe4045c87fa189f

    [15]

    余吉远, 李向民, 马中平, 等.南祁连乙什春基性-超基性岩体LA-ICP-MS锆石U-Pb年龄及其地质意义[J].高校地质学报, 2012, 18(1):158-163. doi: 10.3969/j.issn.1006-7493.2012.01.014

    [16]

    张照伟, 李文渊, 王亚磊, 等.南祁连化隆地区下什堂含铜镍矿基性-超基性岩体成因研究:锆石年代学、地球化学和Sr-Nd同位素约束[J].岩石学报, 2015, 31(9):2539-2548. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201509006

    [17]

    郭周平, 李文渊, 张照伟, 等.南祁连化隆地区鲁满山花岗岩的岩石成因:地球化学、锆石U-Pb年代学及Hf同位素约束[J].中国地质, 2015, 42(4):864-880. doi: 10.3969/j.issn.1000-3657.2015.04.006

    [18]

    钟林汐.青海拉脊山中酸性侵入岩的地球化学特征、成岩时代及构造意义[D].中国地质大学(北京)硕士学位论文, 2015: 1-77.http://cdmd.cnki.com.cn/Article/CDMD-11415-1015385502.htm

    [19]

    郭现轻, 闫臻, 付长垒, 等.青海南山"金水口岩群"的时代与构造属性研究[J].地质学报, 2016, 90(3):589-606. doi: 10.3969/j.issn.0001-5717.2016.03.015

    [20]

    常宏, 金章东, 安芷生.青海南山隆起的沉积证据及其对青海湖-共和盆地构造分异演化的指示[J].地质论评, 2009, 55(1):49-57. doi: 10.3321/j.issn:0371-5736.2009.01.006

    [21]

    Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the TransNorth China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2009, 51:537-571.

    [22]

    Ludwig K R. User's manual for Isoplot/Ex, version3.00//A geochronological toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication, 2003, 4:1-70.

    [23]

    李怀坤, 耿建珍, 郝爽, 等.用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICP-MS)测定锆石U-Pb同位素年龄的研究[J].矿物学报, 2009, (增刊):600-601. doi: 10.3321/j.issn:1000-4734.2009.z1.311

    [24]

    Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of zircon textures[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):469-500. doi: 10.2113/0530469

    [25]

    Xu B. Recent study of the Rodinia Supercontinent evolution and its main goal[J]. Geological Science and Technology Information, 2001, 20(1):15-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200101003

    [26]

    董国安, 杨怀仁, 杨宏仪, 等.祁连地块前寒武纪基底锆石SHRIMP U-Pb年代学及其地质意义[J].科学通报, 2007, 52(13):1572-1585. doi: 10.3321/j.issn:0023-074X.2007.13.015

    [27]

    何世平, 李荣社, 王超, 等.南祁连东段化隆岩群形成时代的进一步限定[J].岩石矿物学杂志, 2011, 30(1):34-44. doi: 10.3969/j.issn.1000-6524.2011.01.004

    [28]

    余吉远, 李向民, 马中平, 等.南祁连化隆岩群LA-ICP-MS锆石U-Pb年龄及其地质意义[J].西北地质, 2012, 45(1):79-85. doi: 10.3969/j.issn.1009-6248.2012.01.011

    [29]

    雍拥, 肖文交, 袁超, 等.中祁连东段花岗岩LA-ICP-MS锆石U-Pb年龄及地质意义[J].新疆地质, 2008, 26(1):62-70. doi: 10.3969/j.issn.1000-8845.2008.01.013

    [30]

    Guo Z F, Wilson M. The Himalayan leucogranites:constraints on the nature of their crustal source region and geodynamic setting[J]. Gondwana Research, 2012, 22(2):360-376. doi: 10.1016/j.gr.2011.07.027

    [31]

    Boynton W V. Geochemistry of the rare earth elements: Meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. Elsevier, 1984: 63-114.

    [32]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [33]

    Frost B R, Barnes C G, Collins W J, et al. A geochemical classification for granitic rocks[J]. Journal of Petrology, 2001, 42(11):2033-2048. doi: 10.1093/petrology/42.11.2033

    [34]

    廖忠礼, 莫宣学, 潘桂棠, 等.西藏过铝花岗岩的岩石化学特征及成因探讨[J].地质学报, 2006, 80(9):1329-1341. doi: 10.3321/j.issn:0001-5717.2006.09.009

    [35]

    Chappell B W. Aluminium saturation in Ⅰ-and S-type granites and the characterization of fractionated hapogranites[J]. Lithos, 1999, 46(3):535-551. doi: 10.1016/S0024-4937(98)00086-3

    [36]

    吴福元, 李献华, 杨进辉, 等.花岗岩成因研究的若干问题[J].岩石学报, 2007, 23(6):1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

    [37]

    Whalen J B, Currie K L, Chappell B W. A-type granites:geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95:407-419. doi: 10.1007/BF00402202

    [38]

    Frost C D, Frost B R. On ferroan (A-type)granitoid:their compositional variability and modes of origin[J]. Journal of Petrology, 2011, 52(1):39-53. doi: 10.1093/petrology/egq070

    [39]

    Wu F Y, Jahn B M, Wilde S A, et al. Highly fractionated Ⅰ-type granites in NE China(Ⅰ):geochronology and petrogenesis[J]. Lithos, 2003, 66(3/4):241-273.

    [40]

    Eby G N. The A-type granitoids:A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 1990, 26:115-134. doi: 10.1016/0024-4937(90)90043-Z

    [41]

    Li X H, Li Z X, Li W X, et al. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic Ⅰ-and A-type granites from central Guangdong, SE China:A major igneous event in response to foundering of a subducted flat-slab?[J]. Lithos, 2007, 96:186-204. doi: 10.1016/j.lithos.2006.09.018

    [42]

    Wolf M B, Wyllie P J. Dehydration-melting of amphibolite at 10kbar:The effects of temperature and time[J]. Contributions to Mineralogy and Petrology, 1994, 115(4):369-383. doi: 10.1007/BF00320972

    [43]

    Healy B, Collins W J, Richards S W. A hybrid origin for Lachlan S-type granites:the Murrumbidgee Batholith example[J]. Lithos, 2004, 78(1/2):197-216. http://cn.bing.com/academic/profile?id=aec657c4be62e5fff79467ee76ba98f4&encoded=0&v=paper_preview&mkt=zh-cn

    [44]

    Chappell B W, Wyborn D. Origin of enclaves in S-type granites of the Lachlan Fold Belt[J]. Lithos, 2012, 154:235-247. doi: 10.1016/j.lithos.2012.07.012

    [45]

    Patiño Douce A E. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?[C]//Castro A, Fernandez C, Vigneresse J L. Understanding granites: integrating new and classical techniques. Geological Society, London, Special Publication, 1999, 168: 55-75.

    [46]

    Kapp J D A, Miller C F, Miller J S. Ireteba Pluton, Eldorado Mountains, Nevada:Late, Deep-Source, Peraluminous Magmatism in the Cordilleran interior[J]. The Journal of Geology, 2002, 110(6):649-669. doi: 10.1086/342864

    [47]

    Le Fort P, Cuney M, Deniel C, et al. Crustal Generation of the Himalayan Leucogranites[J]. Tectonophysics, 1987, 134(1/3):39-57. http://cn.bing.com/academic/profile?id=718be49298a8f60fe80cd921d08993a8&encoded=0&v=paper_preview&mkt=zh-cn

    [48]

    Castro A, Patiño Douce A E, Corretge L G, et al. Origin of peraluminous granites and granodiorites, Iberian massif, Spain:an experimental test of granite petrogenesis[J]. Contributions to Mineralogy and Petrology, 1999, 135(2/3):255-276.

    [49]

    Korhonen F, Brown M, Clark C, et al. Are granites and granulites consanguineous?[J]. Geology, 2015, 43(11):991-994. doi: 10.1130/G37164.1

    [50]

    Taylor S R, Mclennan S M. The chemical composition of the Archaean crust (in the nature of the lower continental crust)[J]. Geological Societu Special Publications, 1986, 24:173-178. doi: 10.1144/GSL.SP.1986.024.01.16

    [51]

    Patiño Douce A E, Beard J S. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar[J]. Journal of Petrology, 1995, 36:707-738. doi: 10.1093/petrology/36.3.707

    [52]

    Inger S, Harris N. Geochemical constraints on leucogranite magmatism in the Langtang valley, Nepal Himalaya[J]. Journal of Petrology, 1993, 34(2):345-368. doi: 10.1093/petrology/34.2.345

    [53]

    Harris, N B W, Ayres M, Massey J. Geochemistry of granitic melts produced during the incongruent melting of muscoviteimplications for the extraction of Himalayan leucogranite magmas[J].Journal of Geophysical Research:Solid Earth, 1995, 100(B8):15767-15777. doi: 10.1029/94JB02623

    [54]

    Weinberg R F, Hasalova P. Water-fluxed melting of the continental crust:a review[J]. Lithos, 2015, 212:158-188. http://cn.bing.com/academic/profile?id=5197d5ef1e2a3208d3efb704f7dec13b&encoded=0&v=paper_preview&mkt=zh-cn

    [55]

    Miller C F, McDowell S M, Mapes R W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 2003, 31:529-532. doi: 10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2

    [56]

    Finger F, Schiller D. Lead contents of S-type granites and their petrogenetic significance[J]. Contributions to Mineralogy and Petrology, 2012, 164(5):747-755. doi: 10.1007/s00410-012-0771-3

    [57]

    Clemens J D, Vielzeuf D. Constraints on melting and magma production in the crust[J]. Earth and Planetary Science Letters, 1987, 86(2/4):287-306. http://cn.bing.com/academic/profile?id=dace9238d29c8e87a94836422565c187&encoded=0&v=paper_preview&mkt=zh-cn

    [58]

    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4):956-983. doi: 10.1093/petrology/25.4.956

    [59]

    Harris N B W, Pearce J A, Tindle A G. Geochemical characteristics of collision-zone magmatism[J]. Geological Society London Special Publications, 1986, 19(5):67-81. http://d.old.wanfangdata.com.cn/NSTLQK/10.1144-GSL.SP.1986.019.01.04/

    [60]

    肖庆辉, 邓晋福, 马大铨, 等.花岗岩研究思维与方法[M].北京:地质出版社, 2002:1-294.

    [61]

    Liegeois J P, Navez J, Hertogen J, et al. Contrasting origin of post collisional high-K calc-alkaline and Shoshonitic versus alkaline and peralkaline grauitoids. The use of sliding normalization[J]. Lithos, 1998, 45:1-28. doi: 10.1016/S0024-4937(98)00023-1

    [62]

    Searle M P, Parrish R R, Hodges K V, et al. Shisha Pangma leucogranite, South Tibetan Himalaya:field relations, geochemistry, age, origin and emplacement[J]. The Journal of Geology, 1997, 105(3):295-317. doi: 10.1086/515924

    [63]

    Harris N, Massey J. Decompression and anatexis of Himalayan metapelites[J]. Tectonics, 1994, 13(6):1537-1546. doi: 10.1029/94TC01611

    [64]

    王晓先, 张进江, 闫淑玉, 等.藏南错那淡色花岗岩LA-MCICP-MS锆石U-Pb年龄、岩石地球化学及其地质意义[J].地质通报, 2016, 35(1):91-103. doi: 10.3969/j.issn.1671-2552.2016.01.008 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20160108&flag=1

    [65]

    Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48(1/4):43-55.

    [66]

    夏林圻, 夏祖春, 徐学义.北祁连山早古生代洋脊-洋岛和弧后盆地火山作用[J].地质学报, 1998, 72(4):301-312. doi: 10.3321/j.issn:0001-5717.1998.04.002

    [67]

    夏林圻, 夏祖春, 徐学义.北祁连山奥陶纪弧后盆地火山岩浆成因[J].中国地质, 2003, 30(1):48-60. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200301006

    [68]

    吴才来, 姚尚志, 杨经绥, 等.北祁连洋早古生代双向俯冲的花岗岩证据[J].中国地质, 2006, 33(6):1197-1208. doi: 10.3969/j.issn.1000-3657.2006.06.002

    [69]

    何世平, 王洪亮, 徐学义, 等.北祁连东段红土堡基性火山岩锆石LA-ICP-MS U-Pb年代学及其地质意义[J].地球科学进展, 2007, 22(2):143-151. doi: 10.3321/j.issn:1001-8166.2007.02.004

    [70]

    Xiao W J, Windley B F, Yong Y, et al. Early Paleozoic to Devonian multiple accretionary model for the Qilian Shan, NW China[J]. Journal of Asian Earth Sciences, 2009, 35(3/4):323-333.

    [71]

    Song S G, Niu Y L, Zhang L F, et al. Tectonic evolution of early Paleozoic HP metamorphic rocks in the North Qilian Mountains, NW China:New Perspectives[J]. Journal of Asian Earth Sciences 2009, 35(3/4):334-353.

    [72]

    Song S G, Niu Y L, Su L, et al. Tectonics of the North Qilian orogen, NW China[J]. Gondwana Research, 2013, 23(4):1378-1401. doi: 10.1016/j.gr.2012.02.004

    [73]

    裴先治, 丁仨平, 胡波, 等.西秦岭天水地区关子镇蛇绿岩的厘定及其地质意义[J].地质通报, 2004, 23(12):1202-1208. doi: 10.3969/j.issn.1671-2552.2004.12.006 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2004012217&flag=1

    [74]

    裴先治, 丁仨平, 李佐臣, 等.西秦岭北缘关子镇蛇绿岩的形成时代:来自辉长岩中LA-ICP-MS锆石U-Pb年龄的证据[J].地质学报, 2007, 81(11):1550-1561. doi: 10.3321/j.issn:0001-5717.2007.11.010

    [75]

    Zhang G B, Song S G, Zhang L F, et al. The subducted oceanic crust within continental-type UHP metamorphic belt in the North Qaidam, NW China:Evidence from petrology, geochemistry and geochronology[J]. Lithos, 2008, 104(1/4):99-118.

    [76]

    董云鹏, 杨钊, 张国伟, 等.西秦岭关子镇蛇绿岩地球化学及其大地构造意义[J].地质学报, 2008, 82(9):1186-1194. doi: 10.3321/j.issn:0001-5717.2008.09.004

    [77]

    朱小辉, 陈丹玲, 刘良, 等.柴北缘绿梁山地区早古生代弧后盆地型蛇绿岩的年代学、地球化学及大地构造意义[J].岩石学报, 2014, 30(3):822-834. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201403021

    [78]

    黄增保, 郑建平, 李葆华, 等.南祁连大道尔吉早古生代弧后盆地型蛇绿岩的年代学、地球化学特征及意义[J].大地构造与成矿学, 2016, 40(4):826-838. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201604016

    [79]

    侯青叶, 张宏飞, 张本仁, 等.祁连造山带中部拉脊山古地幔特征及其归属:来自基性火山岩的地球化学证据[J].地球科学, 2005, 30(1):61-70. doi: 10.3321/j.issn:1000-2383.2005.01.008

    [80]

    闫臻, 王宗起, 李继亮, 等.西秦岭楔的构造属性及其增生造山过程[J].岩石学报, 2012, 28(6):1808-1828. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201206008

    [81]

    付长垒, 闫臻, 郭现轻, 等.拉脊山口蛇绿混杂岩中辉绿岩的地球化学特征及SHRIMP锆石U-Pb年龄[J].岩石学报, 2014, 30(6):1695-1706. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201406012

    [82]

    张翔, 张莉莉, 汪禄波, 等.党河南山乌里沟中酸性岩体锆石UPb年龄、地球化学特征及与金矿成矿关系[J].成都理工大学学报:自然科学版, 2015, 42(5):596-607. http://www.cnki.com.cn/Article/CJFDTotal-CDLG201505011.htm

    [83]

    张照伟, 李文渊, 高永宝, 等.南祁连裕龙沟岩体ID-TIMS锆石U-Pb年龄及其地质意义[J].地质通报, 2012, 31(2/3):455-462. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2012020330&flag=1

    [84]

    张照伟, 李文渊, 高永宝, 等.南祁连亚曲含镍铜矿基性杂岩体形成年龄及机制探讨[J].地球学报, 2012, 33(6):925-935. http://d.old.wanfangdata.com.cn/Periodical/dqxb201206013

    [85]

    卢欣祥, 孙延贵, 张雪亭, 等.柴达木盆地北缘塔塔楞环斑花岗岩的SHRIMP年龄[J].地质学报, 2007, 81(5):626-634. doi: 10.3321/j.issn:0001-5717.2007.05.006

    [86]

    夏林圻, 李向民, 余吉远等.祁连山新元古代中-晚期至早古生代火山作用与构造演化[J].中国地质, 2016, 43(4):1087-1138.

    [87]

    王婧, 张宏飞, 徐旺春, 等.西秦岭党川地区花岗岩的成因及其构造意义[J].地球科学, 2008, 33(4):474-486. doi: 10.3321/j.issn:1000-2383.2008.04.005

    [88]

    Zhang H F, Zhang B R, Nigel Harris, et al. U-Pb zircon SHRIMP ages, geochemical and Sr-Nd-Pb isotopic compositions of intrusive rocks from the Longshan-Tianshui area in the southeast corner of the Qilian orogenic belt, China:Constraints on petrogenesis and tectonic affinity[J]. Journal of Asian Earth Sciences, 2006, 27:751-764. doi: 10.1016/j.jseaes.2005.07.008

    [89]

    周宾, 郑有业, 童海奎, 等.柴北缘早古生代埃达克质花岗岩锆石定年及其地质意义[J].现代地质, 2014, 28(5):875-883. doi: 10.3969/j.issn.1000-8527.2014.05.001

  • 加载中

(9)

(2)

计量
  • 文章访问数:  961
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2017-09-29
修回日期:  2017-10-19
刊出日期:  2019-05-15

目录