-
摘要:
格陵兰矿产资源丰富,但尚未大规模开发,现已逐渐成为矿产资源勘查与开发的热点地区。格陵兰的矿产勘查资料易于获得,但中文资料匮乏。中国铀矿类型主要有岩浆型、热液型、砂岩型和碳硅泥岩型,总体上“小、贫、散”,超大型与大型铀矿床很稀缺。为缓解中国铀矿资源的紧缺状况,推动中国企业在格陵兰“走出去”,在收集整理资料的基础上,初步评价了格陵兰的铀矿资源潜力。格兰陵主要的铀矿成因类型是砂岩型、砾岩型、脉型、侵入岩型、火山岩型和交代岩型6种。可确定5个找矿远景区,其中A级3个,B级和C级各1个,建议中国企业重点关注A级远景区。格陵兰政府对于铀矿开采的禁令已经解除,铀矿资源可利用性评价良好,值得中国企业关注。
Abstract:Greenland is rich in mineral resources, but has not yet been developed. Greenland has gradually become a hot area for the exploitation of mineral resources. Greenland has a long history of mineral exploration and easy access to information, but Chinese references are very insufficient. The uranium deposits in China are mainly of magmatic type, hydrothermal type, sandstone type and carbon-silicon mudstone type, suggesting" small, poor and scattered" characteristics in general, and superlarge and large uranium deposits are rare. To alleviate the shortage of uranium resources in China and promote Chinese enterprises' "going out" policy in Greenland, the authors, based on the collection and translation as well as previous data, preliminarily evaluatedthe potential of uranium resources in Greenland. The results show that the six types of uranium deposits include sandstone type, conglomerate type, vein type, intrusive rock type, volcanic rock type and metasomatism rock type. The five potential areas were determined, which include three class A, one class B and one class C. The authors hold that Chinese companies should focus on class A potential areas. Greenland government's ban on uranium mining has been lifted, and the evaluation of uranium resources availability is good, which is worthy of Chinese Enterprises'attention.
-
Key words:
- Greenland /
- uranium deposit /
- resources potential evaluation
-
图 1 格陵兰已知铀矿点(据参考文献[3]修改)
Figure 1.
图 2 格陵兰铀矿资源远景区划分(据参考文献[24]修改)
Figure 2.
表 1 格陵兰已知类型铀矿点及其特征(据参考文献[13-15]修改)
Table 1. The known types of uranium deposits and their characteristics in Greenland
铀矿类型 构造环境 矿化时间 特征元素 岩石类型 蚀变 品位/吨位 格陵兰铀矿点
实例(在图 1的编号)砂岩型 大陆的稳定台地或沿海地区的内陆盆地,大陆架边缘 泥盆纪或更早时期 U
(V, Cu)粒状结构的变质长石砂岩 0.05% ~0.5%低品位/十几万吨到几百吨 Illorsuit(D1-A1)
MilneLand(D1-I1)砾岩型 在太古宙克拉通边缘形成的张性盆地或沿海平原 太古宙—古元古代 U, Cu, PGE 河流相砂岩和砾岩 品位低(0.01%~ 0.10%)/一般是大型(几万到20×104t) Wagener Halvø(D4-H1) 脉型 造山期后的大陆环境,与钙碱性火成岩和火山岩有关 元古宙—古近纪-新近纪 U (Ni, Co, As, Bi, Cu, Pb, Zn, Mn等) 花岗岩、正长岩、霞石正长岩、石英正长岩 赤铁矿化、高岭土化、钠长石化、绿泥石化、碳酸盐化、硅化、绢云母化、硫化物化 具有低品位0.05% ~0.5%。然而,脉矿床经常集群发现 NordreSermilik(D5-A2)
NorthofBredefjord(D5-
A2) Puissattaq(D5-A3)
Moskusokseland(D5-E1)
Foldaelv(D5-E2)
Nedre
Arkosedal侵入岩型 褶皱带内或稳定地块边缘 元古宙、古生代 U, REE (F, Zr, Nb, Ta) 过碱性正长岩,碳酸盐岩,白岗岩,地壳来源的花岗岩-二长岩和伟晶岩 赤铁矿化 高达0.08%品位的铀但是吨位普遍很低(几吨到几百吨铀),品位低的吨位一般很大 Kvanefjeld(D6-B1)
Motzfeldt (D6-B2)
Sarfartoq(D6-J)
Naassuttooq(D6-K1)
HinksLand(D6-O1)火山岩型 大陆裂谷(破火山口),热点,弧后和俯冲(伸展机制) 元古宙—古近纪-新近纪 U(Mo, F, REE) 高硅碱性流纹岩和钾化合物粗面岩 钠长石化、水云母化、蒙脱石化、迪开石化、赤铁矿化、硅化 单独矿床是小到中型(10~ 40000t)相当低-中等的品位(0.1%~0.4%) Randbøld(D7-A2) Moskusokseland(D7-A1) 交代岩型 克拉通边缘的造山带/活动带或先前的克拉通内的裂谷盆地 元古宙 U 糜棱岩、片麻岩/花岗岩,变质流纹岩,变质火山碎屑岩,角闪岩和变质沉积岩 钠长石化绢云母化和绿泥石化。赤铁矿化也发生 品位大部分较低(0.1%~0.2%) Motzfeldt(D8-A)
GrønnedalIka(D8-C)
NorthofNordre Sermilik
(D8-B)表 2 中国铀矿床类型划分[20]
Table 2. The types of uranium deposits in Greenland
铀矿床类型 产出位置 形成时代 矿床实例 砂岩型铀矿床 北方大中型盆地 主要在白垩纪和新生代 纳岭沟、库捷尔太、十红滩、皂火壕、城子山 花岗岩型 华东南铀成矿省 时代跨度很大 希望、下庄、黄峰岭、大多数在白垩纪和新生代 火山岩型 新疆地区、中国东部地区 主要在中—新生代 巴泉、张麻井、大桥坞、白杨河、大宫厂邹家山 碳硅泥岩型 主要分布在湘、赣、粤、川、黔、桂等地、南秦岭地区及华南地区。 晚震旦世—早二叠世 麻池寨、铜湾、金银寨、马鞍肚、铲子坪 -
[1] 陈其慎, 于汶加, 张艳飞, 等.点石——未来20年全球矿产资源产业发展研究[M].北京:科学出版社, 2016:1-62.
[2] 李九玲, 卢伟, 赵元艺, 等.格陵兰重要金属矿简介及分布规律[J].地质科技情报, 2013:18-25. doi: 10.3969/j.issn.1009-6248.2013.02.003
[3] Stensgaard B M, Sørensen L L. Mineral potential in Greenland[EB/OL]Geological Survey of Denmark and Greenland, 2013, 23(2017-11-02)http://www.naalakkersuisut.gl.
[4] Armour-Brown A, Tukiainen T, Nyegaard P, et al. The South Greenland regional uranium exploration programme[J].Geological Survey of Greenland, 1984.
[5] Steenfelt A, Armour-Brown A. Characteristics of the South Greenland uranium Province[J]. IAEA Vienna, 1988.
[6] Gulson B L, Krogh T E. Evidence of multiple intrusion, possible resetting of U-Pb ages, and new crystallization of zircons in the post-tectonic intrusions ('Rapakivi granites') and gneisses from South Greenland[J]. Geochimica et Cosmochimica Acta, 1975, 39(1):65-82. doi: 10.1016/0016-7037(75)90185-4
[7] Armour-Brown A. Geology and evaluation of the uranium mineral occurrence at Igd-lorssuit, South Greenland[R]. The South Greenland Exploration Programme 1984-1986, Report No. 2. Open File Series Grønlands Geologiske Undersøgelse, 1986.
[8] Birkelund T, Perch-Nielsen K. Late Palaeozoic-Mesozoic evolution of central East Greenland, In Geology of Greenland[J]. Geological Survey of Greenland, Copenhagen, 1976.
[9] Schatzlmaier P, Schöllnberger W, Thomassen B. Untersuchung des Vorkommens von Zirkon und seltenen Erden auf Kote 800 Milneland[R]. Internal NM-report, 1973.
[10] Harpøth O, Pedersen J L, Schønwandt H K, et al. The mineral occurrences of central East Greenland[J]. Meddelelser om Grønland, Geoscience 1986, 17.
[11] Hallenstein C. Uranium and thorium prospecting in Nordmine concession, EasGreenland[R]. Internal NM-report, 1977.
[12] Chadwick B, Garde A A. Palaeoproterozoic oblique plate convergence in South Greenland:a reappraisal of the Ketilidian Orogen[J]. Geological Society London Special Publications, 1996, 112(1):179-196. doi: 10.1144/GSL.SP.1996.112.01.10
[13] Finch R J. Book Review:"Uranium-Cradle to Grave" by Burns and Sigmon[J]. Elements, 2013, 9(5):395.
[14] IAEA.World Distribution Of Uranium Deposits (Udepo), With Uranium Deposit Classification 2009[M]. International Atomic Energy Agency (IAEA)Technical Documents (IAEA-TECDOC), 2009: 109.
[15] Grauch R I, Mosier D L. Descriptive Model of Unconformity UAu[J]. Geological Survey Bulletin, 1963:248-250. https://pubs.usgs.gov/bul/b1693/Md37a.pdf
[16] Upton B G J, Emeleus C H. Mid-Proterozoic alkaline magmatism in southern Greenland:the Gardar Province[J]. Geological Society of London, 1987, 30(1):449-471. doi: 10.1144/GSL.SP.1987.030.01.22
[17] Secher K, Heaman L M, Nielsen T F D, et al. Timing of kimberlite, carbonatite, and ultramafic lamprophyre emplacement in the alkaline province located 64°-67° N in southern West Greenland[J]. Lithos, 2009, (112):400-406. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=deffb9f0fe1f7f4fb6eb85a39becc7c3
[18] Secher K, Larsen L M. Geology and mineralogy of the Sarfartoq carbonatite complex, southern West Greenland[J]. Lithos, 1980, (13):199-212. http://cn.bing.com/academic/profile?id=b7a085b32f19d284ae3a42f19500bca4&encoded=0&v=paper_preview&mkt=zh-cn
[19] Secher K. Airborne radiometric survey between 66 and 69N, southern and central West Greenland[J]. Grønlands Geologiske Undersøgelse Rapport, 1976, (80):65-67.
[20] 蔡煜琦, 张金带, 李子颖, 等.中国铀矿资源特征及成矿规律概要[J].地质学报, 2015, 89(6):1051-1069. doi: 10.3969/j.issn.0001-5717.2015.06.005
[21] 罗晶晶, 吴柏林, 李艳青, 等.鄂尔多斯盆地东北部纳岭沟铀矿床元素地球化学特征及其地质意义[J].铀矿地质, 2017, 33(2):89-96. doi: 10.3969/j.issn.1000-0658.2017.02.004
[22] 黄世杰.中国特大、超大型砂岩型铀矿形成条件探讨[J].铀矿地质, 2018, 34(3):129-137. doi: 10.3969/j.issn.1000-0658.2018.03.001
[23] 王贵, 王强, 苗爱生, 等.鄂尔多斯盆地纳岭沟铀矿床铀矿物特征与形成机理[J].矿物学报, 2017, 37(4):461-468. http://d.old.wanfangdata.com.cn/Periodical/kwxb201704013
[24] 杨霄, 黄亚松.格陵兰地质矿产特征及主要金属矿产找矿方向[J].中国煤炭地质, 2013, 25(12):99-105. http://d.old.wanfangdata.com.cn/Periodical/zgmtdz201312023
[25] 卢伟, 赵元艺, 逯文辉, 等.格陵兰优势金属矿产与矿业投资环境分析[J].地质科技情报, 2013, 32(5):52-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201305009