Genesis and tectonic significance of Late Permian Qimulaike intrusive rocks in the west of East Kunlun Mountains, Xinjiang
-
摘要:
对东昆仑其木来克一带的花岗质岩体进行锆石U-Pb测年,获得花岗闪长岩年龄为274.6±1.2Ma,黑云母花岗岩闪长岩年龄271.2±0.6Ma,认为其形成于晚二叠世。该岩体的地球化学特征显示,其具有钙碱性、弱过铝质(A/CNK=0.99~1.1)特征;稀土元素球粒陨石标准化分布图表现为左陡右缓,具弱的负Eu异常;微量元素特征显示高场强元素Nb、Ta、Ti、P等亏损,结合构造环境认为其形成于岛弧环境,属于I型花岗岩。结合区域构造演化,认为古特提斯洋于晚二叠世开始向塔里木板块俯冲,与此同时洋中脊还在持续扩张,表明此时的特提斯洋已处于消亡期。
Abstract:Zircon U-Pb dating of Qimulaike granitic stocks shows that the age of the granodiorite is 274.6 ±1.2Ma and that of diatomite granitic diorite is 271.2±0.6Ma, implying the formation time of Late Permian. The geochemical characteristics of the rocks show that they have calc-alkaline and weak aluminum (A/CNK being 0.99~1.1)characteristics; the chondrite-normalized REE patterns show steepness on the left and smoothness on the rightwith weak negative anomaly of the δEu; the trace elements exhibit depletion of high field strong elements such as Nb, Ta, Ti and P.Combined with the structural environment, the authors hold that the rocks were formed in an island arc environment and belong to the I-type granite. In combination with regional tectonic evolution, it is shown that ancient Tethys in the Late Permian began subducting to the Tarim plate, while the mid-ocean ridge was still continuing to expand, indicating that the ancient Tethys at that time had been in the dying period.
-
Key words:
- granodiorite /
- Paleo-Tethys Ocean /
- tectonic evolution /
- Eastern Kunlun Orogen
-
图 7 侵入岩稀土元素球粒陨石化配分模式(a)和微量元素原始地化幔蛛网图(b)[33]
Figure 7.
图 9 SiO2-(Ce、Nb、Y、Zr)图解[36]
Figure 9.
图 10 Nb+(Y-Rb)、Y-Nb图解[42]
Figure 10.
表 1 锆石U-Th-Pb年龄分析结果
Table 1. Zircon U-Th-Pb dating results
点号 含量/10-6 232Th/238U 同位素比值 表面年龄/Ma Pb U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1311AY-P23-TW1 1 25 573 0.35 0.0520 0.0005 0.3114 0.0030 0.0434 0.0002 285 21 275 3 274 1 2 43 923 0.54 0.0517 0.0005 0.3084 0.0033 0.0433 0.0002 271 21 273 3 273 2 3 36 817 0.32 0.0520 0.0005 0.3117 0.0031 0.0434 0.0002 287 21 275 3 274 1 4 25 562 0.31 0.0515 0.0005 0.3101 0.0034 0.0436 0.0002 265 23 274 3 275 2 5 20 460 0.28 0.0515 0.0005 0.3095 0.0033 0.0436 0.0002 262 23 274 3 275 1 6 68 1413 0.44 0.0514 0.0004 0.3072 0.0024 0.0433 0.0002 261 18 272 2 273 1 7 60 1204 0.54 0.0521 0.0012 0.3075 0.0082 0.0428 0.0003 289 51 272 7 270 2 8 24 543 0.29 0.0516 0.0006 0.3103 0.0042 0.0436 0.0003 266 27 274 4 275 2 9 43 863 0.25 0.0526 0.0011 0.3098 0.0081 0.0427 0.0003 313 48 274 7 269 2 10 101 2858 1.03 0.2134 0.0024 0.6949 0.0103 0.0236 0.0002 2932 18 536 8 150 1 11 41 913 0.44 0.0516 0.0006 0.3091 0.0038 0.0434 0.0003 269 28 273 3 274 2 12 27 597 0.33 0.0514 0.0007 0.3133 0.0047 0.0442 0.0002 258 32 277 4 279 1 13 38 864 0.39 0.0519 0.0010 0.3069 0.0063 0.0429 0.0002 281 42 272 6 271 1 14 35 821 0.23 0.0511 0.0009 0.3108 0.0055 0.0441 0.0002 247 39 275 5 278 1 15 50 677 0.26 0.2200 0.0035 1.6062 0.0339 0.0529 0.0004 2981 26 973 21 333 2 16 14 314 0.44 0.0519 0.0008 0.3096 0.0055 0.0433 0.0003 281 36 274 5 273 2 17 40 795 0.54 0.0516 0.0009 0.3067 0.0062 0.0431 0.0003 267 40 272 5 272 2 18 24 534 0.24 0.0513 0.0006 0.3132 0.0036 0.0442 0.0002 256 25 277 3 279 1 19 14 292 0.35 0.0526 0.0007 0.3594 0.0050 0.0496 0.0003 311 31 312 4 312 2 20 36 772 0.39 0.0521 0.0009 0.3148 0.0058 0.0438 0.0003 289 38 278 5 277 2 21 23 524 0.24 0.0519 0.0005 0.3120 0.0031 0.0436 0.0002 280 22 276 3 275 1 22 17 379 0.31 0.0516 0.0007 0.3090 0.0041 0.0434 0.0002 268 29 273 4 274 2 23 89 994 1.30 0.2775 0.0059 1.9000 0.0500 0.0497 0.0004 3349 33 1081 28 312 3 24 38 850 0.26 0.0518 0.0005 0.3113 0.0034 0.0436 0.0002 277 24 275 3 275 1 1311AY-QM-TW2 1 108 2599 0.25 0.0512 0.0006 0.3077 0.0038 0.0436 0.0002 250 29 272 3 275 1 2 15 368 0.33 0.0521 0.0008 0.3074 0.0053 0.0428 0.0003 292 37 272 5 270 2 3 61 1466 0.31 0.0517 0.0005 0.3056 0.0031 0.0429 0.0002 271 21 271 3 271 2 4 53 1261 0.41 0.0517 0.0005 0.3059 0.0030 0.0429 0.0002 270 22 271 3 271 1 5 58 1369 0.43 0.0519 0.0005 0.3066 0.0031 0.0428 0.0002 281 21 272 3 270 1 6 25 582 0.39 0.0519 0.0006 0.3078 0.0037 0.0430 0.0002 280 26 272 3 272 1 7 62 1433 0.48 0.0517 0.0005 0.3072 0.0030 0.0431 0.0002 270 21 272 3 272 2 8 25 577 0.45 0.0518 0.0007 0.3081 0.0045 0.0431 0.0002 278 32 273 4 272 1 9 39 913 0.41 0.0518 0.0006 0.3060 0.0035 0.0428 0.0002 278 25 271 3 270 1 10 21 519 0.22 0.0520 0.0006 0.3077 0.0039 0.0429 0.0002 285 28 272 3 271 1 11 39 895 0.49 0.0518 0.0005 0.3060 0.0032 0.0429 0.0002 275 22 271 3 271 2 12 99 2420 0.25 0.0520 0.0005 0.3073 0.0030 0.0428 0.0003 287 20 272 3 270 2 13 35 811 0.44 0.0518 0.0005 0.3063 0.0033 0.0429 0.0002 275 24 271 3 271 1 14 38 891 0.32 0.0517 0.0005 0.3058 0.0034 0.0429 0.0002 273 24 271 3 271 1 15 57 1357 0.30 0.0515 0.0005 0.3059 0.0030 0.0431 0.0002 261 22 271 3 272 1 16 29 657 0.46 0.0517 0.0006 0.3052 0.0034 0.0428 0.0002 273 25 270 3 270 1 17 20 463 0.36 0.0521 0.0008 0.3077 0.0047 0.0428 0.0002 290 34 272 4 270 1 18 21 498 0.32 0.0518 0.0008 0.3062 0.0049 0.0428 0.0002 278 35 271 4 270 1 19 43 902 0.33 0.0770 0.0008 0.4842 0.0049 0.0456 0.0002 1122 20 401 4 287 1 20 32 739 0.31 0.0517 0.0006 0.3062 0.0041 0.0429 0.0002 273 28 271 4 271 1 21 31 750 0.36 0.0516 0.0005 0.3050 0.0034 0.0428 0.0002 269 24 270 3 270 1 22 16 379 0.41 0.0519 0.0008 0.3057 0.0049 0.0427 0.0002 281 36 271 4 270 1 23 26 604 0.43 0.0513 0.0006 0.3056 0.0036 0.0432 0.0002 255 26 271 3 273 1 24 45 1033 0.66 0.0519 0.0005 0.3091 0.0030 0.0432 0.0002 282 21 273 3 272 1 表 2 样品主量、微量和稀土元素分析结果
Table 2. Main, trace and rare earth elements analytical results of samples
编号 1311AY- 1311AY- 1311AY- 1311AY- 1311AY- 1311AY- 1311AY- 1311AY- 1311AY- L4060-GS1 L4073-GS1 P23-1 P23-2 P30-GS1 P9-3 QM-1 P004-1 P004-2 岩石名称 黑云母花岗 黑云母花岗 花岗闪 黑云母花 花岗 黑云母二 黑云母花 花岗 黑云母花 闪长岩 闪长岩 长岩 岗闪长岩 闪长岩 长花岗岩 岗闪长岩 闪长岩 岗闪长岩 SiO2 67.91 67.74 64.32 66.78 65.12 66.27 67.12 65.72 66.62 TiO2 0.4 0.43 0.49 0.49 0.52 0.41 0.47 0.43 0.44 Al2O3 16.34 15.9 17.63 15.64 17.24 17.24 16.44 17.02 16.52 Fe2O3 0.13 0.21 0.32 0.41 0.21 0.59 0.5 0.42 0.42 FeO 2.34 2.34 2.65 2.57 2.78 1.88 2.26 2.34 2.2 MnO 0.05 0.06 0.07 0.07 0.06 0.05 0.06 0.06 0.06 MgO 1.44 1.6 2.21 1.78 1.9 1.63 1.67 1.97 1.48 CaO 3.23 3.26 4.03 3.47 4.44 3.62 3.76 4.55 3.54 Na2O 3.78 3.91 3.7 3.64 3.79 4.08 3.86 4.15 3.98 K2O 2.86 2.83 2.45 3 2.27 2.63 2.41 1.97 2.63 P2O5 0.08 0.1 0.11 0.1 0.1 0.09 0.1 0.09 0.11 H2O 0.07 0.13 0.1 0.08 0.15 0.05 0.04 0.06 0.1 烧失量 1.43 1.34 1.62 1.63 1.38 1.39 1.18 1.06 1.54 总计 100.06 99.85 99.7 99.66 99.96 99.93 99.87 99.84 99.64 Rb 114 136 125 124 110 125 20.18 111 27.15 Sr 219 231 254 226 259 197 216 253 142 Ba 349 372 234 340 360 353 59.27 335 255 Nb 10.27 10.19 9.56 8.56 9.72 7.8 2.11 7.39 5.47 Ta 1.03 1.06 0.75 0.86 1.35 1 5.16 1.02 1.96 Zr 124 136 126 130 137 116 21.58 127 121 Hf 3.08 3.86 3.62 3.74 3.53 3.98 0.6 4.46 3.82 Th 10.6 9.2 13.5 11.6 6.4 11.92 1.21 7.43 3.22 Ti 2400 2580 2940 2940 3120 2460 2820 2580 2640 Cr 19.15 13.53 31.17 26.58 21.53 14.53 96.11 13.54 224 U 0.74 1 1.7 2 1 1.25 0.36 1.12 0.75 Li 45.1 46.4 59.48 49.41 55.1 25.05 7.15 21.89 8.63 Y 17.5 19 15.1 16.8 17.1 15 14.2 12.6 13 La 34 24.2 17 32 33.3 23 19.2 17.4 30.8 Ce 59.7 43.5 30.6 53.5 57.9 41.3 34.8 32.5 50.3 Pr 6.4 4.9 3.6 5.8 6.2 4.5 3.9 3.7 5.4 Nd 22.6 18.4 13.5 19.8 22.2 15.7 14.3 13 19.1 Sm 3.9 3.5 2.7 3.5 3.9 2.7 2.7 2.5 3.3 Eu 0.84 0.82 0.79 0.83 0.77 0.74 0.79 0.75 0.84 Gd 3.5 3.4 2.7 3.3 3.6 2.6 2.5 2.2 3 Tb 0.57 0.6 0.46 0.54 0.53 0.4 0.39 0.35 0.46 Dy 3.1 3.4 2.6 3.2 3.2 2.4 2.3 2.1 2.4 Ho 0.59 0.65 0.56 0.63 0.63 0.45 0.43 0.39 0.48 Er 1.8 1.9 1.5 1.8 1.8 1.3 1.2 1.1 1.3 Tm 0.28 0.31 0.26 0.29 0.29 0.21 0.19 0.17 0.19 Yb 1.8 2 1.8 2 1.8 1.3 1.2 1 1.3 Lu 0.31 0.3 0.26 0.29 0.3 0.2 0.18 0.16 0.2 ΣREE 139.39 107.88 78.33 127.48 136.42 96.80 84.08 77.32 119.07 LREE/
HREE10.66 7.59 6.72 9.58 10.23 9.93 9.02 9.35 11.76 δEu 0.68 0.72 0.88 0.74 0.62 0.84 0.91 0.96 0.80 (La/Yb)N 13.55 8.68 6.77 11.48 13.27 12.69 11.48 12.48 16.99 (La/Sm)N 5.63 4.46 4.06 5.90 5.51 5.50 4.59 4.49 6.03 (Gd/Yb)N 1.61 1.41 1.24 1.36 1.65 1.65 1.72 1.82 1.91 注:主量元素含量单位为%,微量和稀土元素含量单位为10-6 -
[1] 邓晋福, 罗照华, 苏尚国, 等.岩石成因, 构造环境与成矿作用[M].北京:地质出版社, 2004.
[2] 刘彬, 马昌前, 张金阳, 等.东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示[J].岩石学报, 2012, 28(6):1785-1807. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201206007
[3] Xiao W J, Windley B F, Fang A M, et al. Palaeozoic-Early Mesozoic Accretionary Tectonics of the Western Kunlun Range, NW China[J]. Gondwana Research, 2001, 4(4):826-827. doi: 10.1016/S1342-937X(05)70611-0
[4] Xiao W, Windley B, Hao J I E, et al. Arc-ophiolite obduction in the Western Kunlun Range (China):Implications for the Palaeozoic evolution of central Asia[J]. Journal of the Geological Society, 2002, 159(5):517-528. doi: 10.1144/0016-764901-093
[5] Zong Q W, Jiang C F, Yan Q R, et al. Accretion and collision orogeneses in the West Kunlun Mountains, China[J]. Gondwana Research, 2001, 4(4):843-844. http://cn.bing.com/academic/profile?id=ef81a69a398226a59eb6dd10caf6cdaa&encoded=0&v=paper_preview&mkt=zh-cn
[6] Matte P, Tapponnier P, Arnaud N, et al. Tectonics of Western Tibet, between the Tarim and the Indus[J]. Earth and Planetary Science Letters, 1996, 142(3):311-330. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0012-821X(96)00086-6/
[7] Mattern F, Schneider W. Suturing of the Proto-and Paleo-Tethys oceans in the western Kunlun (Xinjiang, China)[J]. Journal of Asian Earth Sciences, 2000, 18(6):637-650. doi: 10.1016/S1367-9120(00)00011-0
[8] 袁超, 孙敏, 肖文交, 等.原特提斯的消减极性:西昆仑128公里岩体的启示[J].岩石学报, 2004, 19(3):399-408. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200303003
[9] 张传林, 陆松年, 于海锋, 等.青藏高原北缘西昆仑造山带构造演化:来自锆石SHRIMP及LA-ICP-MS测年的证据[J].中国科学:地球科学(中文版), 2007, 37(2):145-154. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200702001
[10] 康磊, 校培喜, 高晓峰, 等.西昆仑康西瓦断裂西段斜长片麻岩LA-ICP-MS锆石U-Pb定年及其构造意义[J].地质通报, 2012, 31(8):1244-1250. doi: 10.3969/j.issn.1671-2552.2012.08.004 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20120804&flag=1
[11] 丁林, Maksatbek S, 蔡福龙, 等.印度与欧亚大陆初始碰撞时限、封闭方式和过程[J].中国科学:地球科学, 2017, 47:293-309. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201703003
[12] 王二七.关于印度与欧亚大陆初始碰撞时间的讨论[J].中国科学:地球科学, 2017, 47:284-292, http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201703002
[13] 马昌前, 熊富浩, 尹烁, 等.造山带岩浆作用的强度和旋回性:以东昆仑古特提斯花岗岩类岩基为例[J].岩石学报, 2015, 31(12):3555-3568. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201512004
[14] 姜春发, 王宗起, 李锦轶.中央造山带开合构造[M].北京:地质出版社, 2000:7-13.
[15] 刘训.新疆地壳结构和演化中的若干问题[J].地学前缘, 2006, 13(6):111-117. doi: 10.3321/j.issn:1005-2321.2006.06.014
[16] 丰成友, 王松, 李国臣, 等.青海祁漫塔格中晚三叠世花岗岩:年代学, 地球化学及成矿意义[J].岩石学报, 2012, 28(2):665-678. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202024
[17] 李荣社.昆仑山及邻区地质[M].北京:地质出版社, 2008.
[18] 陈守建, 李荣社, 计文化, 等.昆仑造山带二叠纪岩相古地理特征及盆山转换探讨[J].中国地质, 2010, 37(2):374-393. doi: 10.3969/j.issn.1000-3657.2010.02.011
[19] 罗照华, 曹永清.东昆仑印支晚期幔源岩浆活动[J].地质通报, 2002, 21(6):292-297. doi: 10.3969/j.issn.1671-2552.2002.06.003 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20020677&flag=1
[20] 莫宣学, 潘桂棠.从特提斯到青藏高原形成:构造-岩浆事件的约束[J].地学前缘, 2006, 13(6):43-51. doi: 10.3321/j.issn:1005-2321.2006.06.007
[21] 郑勇, 杨有生, 陈邦学, 等.东昆仑西段巴什康阔勒辉长岩地球化学特征及其构造意义[J].现代地质, 2016, 30(5):1004-1013. doi: 10.3969/j.issn.1000-8527.2016.05.006
[22] 陈邦学, 朱志新, 周能武, 等.新疆博格达东段阿克铁克协山地区辉绿岩岩石地球化学特征及其SHRIMP U-Pb测年意义[J].西北地质, 2015, 48(3):1-11. doi: 10.3969/j.issn.1009-6248.2015.03.001
[23] Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1):59-79. http://cn.bing.com/academic/profile?id=500081c8e53f10c3181de6408e70a21d&encoded=0&v=paper_preview&mkt=zh-cn
[24] Williams I S. U-Th-Pb geochronology by ion microprobe[J]. Reviews in Economic Geology, 1998, 7(1):1-35.
[25] 王岚, 杨理勤, 王亚平, 等.锆石LA-ICP-MS原位微区U-Pb定年[J].地球学报, 2012, 33(5):763-772. http://d.old.wanfangdata.com.cn/Periodical/dqxb201205011
[26] Ludwig K R. Using isoplot/EX, version2, a Geolocronolgical toolkit for Microsoft excel[J]. Berkeley Geochronological Center Special Publication, 1999, 47:151-181.
[27] 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16), 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
[28] 钟玉芳, 马昌前, 佘振兵.锆石地球化学特征及地质应用研究综述[J].地质科技情報, 2006, 25(1):27-34. http://d.old.wanfangdata.com.cn/Periodical/dzkjqb200601005
[29] Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3):215-224. http://cn.bing.com/academic/profile?id=734bf86c098739b75858e5b7d1c062b4&encoded=0&v=paper_preview&mkt=zh-cn
[30] Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1):63-81. doi: 10.1007/BF00384745
[31] Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 22(4):247-263. doi: 10.1016/0024-4937(89)90028-5
[32] Frost B R, Barnes C G, Collins W J, et al. A geochemical classification for granitic rocks[J]. Journal of Petrology, 2001, 42(11):2033-2048. doi: 10.1093/petrology/42.11.2033
[33] Sun S S, Mcdonough W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[34] 吴福元, 李献华, 杨进辉, 等.花岗岩成因研究的若干问题[J].岩石学报, 2007, 23(6):1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001
[35] Chappell B W, White A J R. Two contrasting granite types[J]. Pacific geology, 1974, 8(2):173-174. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027419645/
[36] Whalen J B, Currie K L, Chappell B W. A-type granites:geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4):407-419. doi: 10.1007/BF00402202
[37] Bowden P, Batchelor R A.花岗质岩石分类的岩石学, 地球化学和来源准则讨论[J].国外花岗岩类地质与矿产, 1986, 2(1):9.
[38] 邵铁全, 朱彦菲, 靳刘圆, 等.塔里木西南缘棋盘河乡玄武岩锆石U-Pb年代学和地球化学研究'[J].地质科学, 2015, 50(4):1120-1133. doi: 10.3969/j.issn.0563-5020.2015.04.006
[39] 王德滋, 刘昌实.桐庐I型和相山S型两类碎斑熔岩对比[J].岩石学报, 1993, 9(1):44-54. doi: 10.3321/j.issn:1000-0569.1993.01.005
[40] 董亮琼, 董国臣, 黄慧, 等.东昆仑土鲁音花岗岩的地球化学, 锆石U-Pb年龄及地质意义[J].中国地质, 2016, 43(5):1737-1749. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201605022.htm
[41] 吴祥珂, 孟繁聪, 许虹, 等.青海祁漫塔格玛兴大坂晚三叠世花岗岩年代学, 地球化学及Nd-Hf同位素组成[J].岩石学报, 2011, 27(11):3380-3394. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201111018
[42] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4):956-983. doi: 10.1093/petrology/25.4.956
[43] 杨有生, 陈邦学, 朱志新, 等.新疆东昆仑阿克苏库勒蛇绿岩地球化学特征和形成时限——来自辉长岩岩墙和枕状玄武岩的证据[J].地质通报, 2018, 37(2):369-381. doi: 10.3969/j.issn.1671-2552.2018.02.016 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2018020316&flag=1
① 杨有生, 陈邦学, 朱志新, 等.新疆东昆仑阿克苏库勒蛇绿岩地球化学特征和形成时限——来自辉长岩岩墙和枕状玄武岩的证据[J].地质通报, 2018, 37(2):369-381.