拉萨地块晚古生代沉积源区转变——来自措勤地区永珠组碎屑锆石的证据

杨洋, 刘函, 崔浩杰, 李俊, 苟正彬, 胡志忠. 拉萨地块晚古生代沉积源区转变——来自措勤地区永珠组碎屑锆石的证据[J]. 地质通报, 2019, 38(6): 1006-1017.
引用本文: 杨洋, 刘函, 崔浩杰, 李俊, 苟正彬, 胡志忠. 拉萨地块晚古生代沉积源区转变——来自措勤地区永珠组碎屑锆石的证据[J]. 地质通报, 2019, 38(6): 1006-1017.
YANG Yang, LIU Han, CUI Haojie, LI Jun, GOU Zhengbin, HU Zhizhong. Evolution of Late Paleozoic sedimentary provenance of Lhasa block: Detrital zircons from Yongzhu Formation in Cuoqin area, Tibet[J]. Geological Bulletin of China, 2019, 38(6): 1006-1017.
Citation: YANG Yang, LIU Han, CUI Haojie, LI Jun, GOU Zhengbin, HU Zhizhong. Evolution of Late Paleozoic sedimentary provenance of Lhasa block: Detrital zircons from Yongzhu Formation in Cuoqin area, Tibet[J]. Geological Bulletin of China, 2019, 38(6): 1006-1017.

拉萨地块晚古生代沉积源区转变——来自措勤地区永珠组碎屑锆石的证据

  • 基金项目:
    中国地质调查局项目《三江造山带澜沧—昌都地区区域地质调查》(编号:DD20190053)
详细信息
    作者简介: 杨洋(1991-), 男, 在读硕士生, 矿物学、岩石学、矿床学专业。E-mail:2512054267@qq.com
    通讯作者: 刘函(1986-), 男, 在读硕士, 工程师, 从事青藏高原区域地质调查及地质演化研究。E-mail:liuhan_cdcgs@163.com
  • 中图分类号: P534.4

Evolution of Late Paleozoic sedimentary provenance of Lhasa block: Detrital zircons from Yongzhu Formation in Cuoqin area, Tibet

More Information
  • 晚古生代是拉萨地块地质演化的重要转折期,一些关键地质问题存在争论,如拉萨地块来源问题。选择西藏措勤地区上石炭统永珠组为研究对象,石英砂岩中碎屑锆石U-Pb测年数据显示523Ma、920Ma两个年龄峰值。通过与拉萨地块及其周缘晚石炭世冰期之前地层碎屑锆石对比,认为拉萨地块永珠组920Ma年龄峰值更具有冈瓦纳大陆靠印度一侧的物源特征,其与南羌塘、拉萨、喜马拉雅微陆块在裂离之前具有显著的亲缘关系。而含有冰筏碎屑的拉嘎组和来姑组中包含的西澳大利亚物源信息(约1180Ma年龄峰值),暗示来自西澳大利亚的冰筏可能通过洋流作用漂移至拉萨地块而后沉积冰筏碎屑。

  • 加载中
  • 图 1  西藏措勤地区区域地质背景图

    Figure 1. 

    图 2  永珠组岩石组合类型

    Figure 2. 

    图 4  西藏措勤县杀穷下石炭统永珠组实测地层剖面

    Figure 4. 

    图 3  石英砂岩正交偏光镜下照片(a)和平行层理(b)

    Figure 3. 

    图 5  永珠组石英砂岩典型碎屑锆石阴极发光图像

    Figure 5. 

    图 6  永珠组碎屑锆石U-Pb谐和图(a)和年龄直方图(b)

    Figure 6. 

    图 7  拉萨微陆块及相邻微陆块晚石炭世—早二叠世地层碎屑锆石年龄频率分布对比

    Figure 7. 

    图 8  拉萨地块永珠组与相邻微陆块碎屑锆石年龄频率分布对比s

    Figure 8. 

    表 1  西藏措勤地区永珠组石英砂岩碎屑锆石U-Th-Pb年龄分析结果

    Table 1.  U-Th-Pb data of detrital zircons from quartz sandstone in Yongzhu Formation, Cuoqin region, Tibet

    样品编号 同位素比值 Th/U 同位素年龄/Ma 采用年龄
    207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U
    PM02-N1-01 0.058 0.003 0.773 0.048 0.097 0.002 0.014 0.001 0.376 534 134 582 27 598 10 598
    PM02-N1-02 0.060 0.004 0.720 0.045 0.088 0.002 0.013 0.001 1.471 586 134 551 27 543 9 543
    PM02-N1-03 0.077 0.004 2.105 0.099 0.197 0.004 0.026 0.002 0.303 1128 89 1151 33 1159 19 1128
    PM02-N1-04 0.139 0.005 7.866 0.303 0.406 0.006 0.054 0.003 0.735 2212 63 2216 35 2198 27 2212
    PM02-N1-05 0.098 0.005 4.180 0.200 0.308 0.005 0.040 0.002 0.769 1590 86 1670 39 1730 24 1590
    PM02-N1-06 0.059 0.004 0.683 0.039 0.085 0.002 0.012 0.001 0.800 553 121 529 24 526 10 526
    PM02-N1-08 0.077 0.003 1.653 0.055 0.154 0.002 0.041 0.002 0.060 1132 63 991 21 922 11 922
    PM02-N1-09 0.107 0.010 2.650 0.219 0.181 0.006 0.034 0.003 0.296 1748 142 1315 61 1072 33 1748
    PM02-N1-10 0.057 0.003 0.765 0.040 0.096 0.001 0.012 0.001 0.062 507 113 577 23 589 8 589
    PM02-N1-11 0.067 0.004 1.418 0.085 0.151 0.003 0.022 0.001 0.452 849 120 897 36 906 17 906
    PM02-N1-12 0.059 0.003 0.971 0.051 0.118 0.002 0.017 0.001 0.361 567 110 689 26 718 12 718
    PM02-N1-13 0.096 0.005 3.960 0.195 0.293 0.005 0.043 0.003 0.474 1545 90 1626 40 1658 23 1545
    PM02-N1-14 0.060 0.005 0.748 0.061 0.091 0.002 0.012 0.001 0.493 615 174 567 35 561 12 561
    PM02-N1-15 0.073 0.005 1.743 0.113 0.171 0.003 0.023 0.002 0.709 1002 130 1025 42 1020 17 1002
    PM02-N1-16 0.076 0.003 2.076 0.087 0.196 0.004 0.028 0.002 0.060 1085 76 1141 29 1154 20 1085
    PM02-N1-17 0.077 0.004 1.911 0.110 0.178 0.004 0.023 0.002 0.625 1107 112 1085 39 1058 19 1107
    PM02-N1-18 0.065 0.005 1.333 0.092 0.148 0.003 0.020 0.002 0.476 783 144 860 40 890 16 890
    PM02-N1-19 0.154 0.005 9.895 0.309 0.459 0.006 0.055 0.004 0.324 2388 49 2425 29 2436 27 2388
    PM02-N1-20 0.142 0.005 7.702 0.257 0.387 0.005 0.047 0.004 0.417 2249 54 2197 30 2110 24 2249
    PM02-N1-21 0.077 0.003 1.851 0.079 0.173 0.003 0.025 0.002 0.232 1111 79 1064 28 1027 17 1111
    PM02-N1-22 0.069 0.005 1.466 0.100 0.156 0.003 0.019 0.002 0.543 901 138 916 41 934 17 934
    PM02-N1-23 0.070 0.004 1.527 0.081 0.159 0.003 0.020 0.002 0.654 936 103 941 32 951 18 951
    PM02-N1-24 0.064 0.004 1.415 0.087 0.158 0.003 0.020 0.002 0.469 736 128 895 37 946 16 946
    PM02-N1-25 0.061 0.004 0.734 0.041 0.087 0.002 0.011 0.002 0.229 644 115 559 24 539 10 539
    PM02-N1-26 0.110 0.005 5.289 0.264 0.343 0.007 0.038 0.005 1.053 1802 86 1867 43 1899 32 1802
    PM02-N1-27 0.110 0.005 3.323 0.162 0.217 0.004 0.025 0.003 1.064 1805 84 1486 38 1263 21 1805
    PM02-N1-28 0.073 0.005 2.028 0.134 0.201 0.004 0.024 0.003 0.741 1010 132 1125 45 1178 21 1010
    PM02-N1-29 0.107 0.007 4.928 0.282 0.339 0.009 0.039 0.005 0.730 1756 97 1807 48 1879 41 1756
    PM02-N1-30 0.107 0.005 4.140 0.172 0.280 0.006 0.036 0.004 0.296 1749 68 1662 34 1590 28 1749
    PM02-N1-31 0.075 0.005 1.728 0.094 0.171 0.003 0.021 0.002 0.847 1054 104 1019 35 1015 19 1054
    PM02-N1-32 0.061 0.004 0.926 0.059 0.108 0.002 0.015 0.001 1.136 639 135 666 31 664 11 664
    PM02-N1-33 0.072 0.004 1.486 0.085 0.149 0.004 0.021 0.002 0.232 982 108 925 35 897 20 897
    PM02-N1-34 0.100 0.006 4.356 0.252 0.313 0.007 0.042 0.003 0.529 1631 103 1704 48 1757 32 1631
    PM02-N1-35 0.069 0.005 1.070 0.072 0.112 0.002 0.017 0.001 0.671 885 137 739 35 687 13 687
    PM02-N1-36 0.153 0.007 10.108 0.469 0.474 0.008 0.061 0.004 0.467 2377 76 2445 43 2503 34 2377
    PM02-N1-37 0.075 0.005 1.867 0.114 0.179 0.004 0.026 0.002 0.292 1070 118 1069 40 1060 22 1070
    PM02-N1-38 0.066 0.004 1.587 0.106 0.176 0.004 0.023 0.002 0.855 798 135 965 41 1044 22 798
    PM02-N1-39 0.077 0.006 1.489 0.107 0.140 0.003 0.019 0.001 0.680 1122 140 926 44 845 18 845
    PM02-N1-40 0.077 0.009 1.660 0.170 0.154 0.005 0.022 0.002 1.099 1122 200 993 65 924 29 924
    PM02-N1-41 0.081 0.006 2.023 0.136 0.189 0.005 0.026 0.002 2.000 1212 125 1123 46 1113 27 1212
    PM02-N1-42 0.074 0.004 1.958 0.115 0.189 0.003 0.028 0.002 0.538 1027 117 1101 40 1118 18 1027
    PM02-N1-43 0.065 0.005 0.735 0.050 0.082 0.002 0.011 0.001 0.855 783 141 559 29 510 10 510
    PM02-N1-44 0.074 0.006 0.988 0.074 0.096 0.002 0.013 0.001 1.923 1045 146 698 38 592 14 592
    PM02-N1-45 0.080 0.003 2.193 0.086 0.198 0.004 0.028 0.001 0.382 1186 71 1179 27 1164 19 1186
    PM02-N1-46 0.103 0.004 4.778 0.190 0.332 0.005 0.046 0.003 0.253 1675 69 1781 33 1847 26 1675
    PM02-N1-47 0.175 0.006 12.764 0.434 0.519 0.008 0.067 0.003 0.637 2605 52 2662 32 2695 33 2605
    PM02-N1-48 0.061 0.004 0.774 0.053 0.091 0.002 0.013 0.001 1.205 633 145 582 30 558 10 558
    PM02-N1-49 0.067 0.006 0.819 0.071 0.087 0.003 0.017 0.002 0.046 840 175 607 39 537 15 537
    PM02-N1-50 0.265 0.009 24.586 0.858 0.661 0.011 0.083 0.005 0.625 3275 50 3292 34 3270 41 3275
    PM02-N1-51 0.079 0.004 2.238 0.098 0.201 0.003 0.029 0.002 0.503 1173 82 1193 31 1181 18 1173
    PM02-N1-52 0.076 0.005 1.964 0.108 0.186 0.003 0.027 0.002 0.334 1106 107 1103 37 1097 17 1106
    PM02-N1-53 0.086 0.005 2.882 0.176 0.241 0.005 0.032 0.002 0.446 1336 114 1377 46 1389 27 1336
    PM02-N1-55 0.060 0.004 0.765 0.045 0.093 0.002 0.013 0.001 0.277 592 121 577 26 575 11 575
    PM02-N1-56 0.061 0.003 1.034 0.054 0.122 0.002 0.016 0.001 0.769 635 108 721 27 740 12 740
    PM02-N1-57 0.080 0.005 1.896 0.121 0.172 0.004 0.021 0.001 1.299 1186 121 1080 42 1025 21 1186
    PM02-N1-58 0.072 0.003 1.884 0.078 0.187 0.003 0.025 0.001 0.524 980 80 1075 27 1107 16 980
    PM02-N1-59 0.070 0.003 1.529 0.062 0.158 0.003 0.021 0.001 0.239 917 77 942 25 945 16 945
    PM02-N1-60 0.070 0.003 1.834 0.086 0.190 0.003 0.025 0.002 0.203 917 91 1058 31 1123 18 917
    PM02-N1-61 0.064 0.004 1.513 0.082 0.170 0.003 0.021 0.001 0.508 749 112 935 33 1013 15 749
    PM02-N1-62 0.055 0.003 0.703 0.045 0.091 0.002 0.012 0.001 0.208 395 141 540 27 564 9 564
    PM02-N1-63 0.192 0.009 12.970 0.544 0.492 0.010 0.054 0.003 0.578 2757 61 2677 40 2581 44 2757
    PM02-N1-64 0.086 0.008 0.997 0.087 0.087 0.003 0.012 0.001 0.595 1330 164 702 44 535 15 535
    PM02-N1-65 0.071 0.003 1.722 0.083 0.174 0.003 0.022 0.001 0.621 952 96 1017 31 1032 15 952
    PM02-N1-66 0.165 0.007 12.586 0.497 0.549 0.009 0.062 0.004 0.535 2505 62 2649 37 2822 38 2505
    PM02-N1-67 0.059 0.005 0.670 0.050 0.086 0.002 0.011 0.001 0.877 571 155 520 30 530 14 530
    PM02-N1-68 0.059 0.004 0.930 0.057 0.114 0.002 0.014 0.001 0.571 557 131 668 30 695 12 695
    PM02-N1-70 0.066 0.006 0.759 0.064 0.083 0.002 0.011 0.001 0.962 807 172 574 37 513 14 513
    PM02-N1-71 0.066 0.004 1.002 0.061 0.110 0.002 0.018 0.001 0.076 807 122 705 31 675 14 675
    PM02-N1-72 0.134 0.006 7.235 0.332 0.388 0.007 0.046 0.002 1.429 2147 76 2141 41 2113 32 2147
    PM02-N1-73 0.081 0.006 2.043 0.142 0.186 0.004 0.022 0.001 1.010 1221 134 1130 47 1097 22 1221
    PM02-N1-74 0.098 0.005 3.939 0.206 0.289 0.006 0.036 0.002 1.149 1589 91 1622 42 1639 31 1589
    PM02-N1-75 0.155 0.006 9.718 0.386 0.447 0.006 0.051 0.003 0.917 2404 65 2408 37 2383 27 2404
    PM02-N1-76 0.070 0.004 1.559 0.089 0.161 0.003 0.020 0.001 0.331 935 116 954 35 960 15 960
    PM02-N1-78 0.096 0.005 2.811 0.162 0.206 0.006 0.026 0.002 0.068 1546 98 1358 43 1210 30 1546
    PM02-N1-79 0.058 0.004 0.672 0.046 0.084 0.002 0.010 0.001 0.543 534 148 522 28 520 9 520
    PM02-N1-80 0.078 0.005 1.953 0.122 0.183 0.004 0.020 0.002 1.010 1145 120 1099 42 1085 22 1145
    PM02-N1-82 0.145 0.006 9.172 0.360 0.455 0.008 0.043 0.005 1.351 2287 61 2355 36 2415 36 2287
    PM02-N1-83 0.058 0.004 0.902 0.064 0.113 0.002 0.011 0.001 1.163 524 154 653 34 690 13 690
    PM02-N1-84 0.053 0.003 0.739 0.037 0.099 0.002 0.009 0.001 0.105 346 107 562 21 607 11 607
    PM02-N1-85 0.177 0.006 13.131 0.468 0.529 0.008 0.041 0.007 0.529 2627 55 2689 34 2736 34 2627
    PM02-N1-86 0.111 0.010 2.727 0.236 0.192 0.007 0.016 0.003 0.885 1813 145 1336 64 1133 40 1813
    PM02-N1-87 0.069 0.003 1.482 0.071 0.153 0.002 0.011 0.003 0.162 911 97 923 29 916 13 916
    PM02-N1-89 0.075 0.006 1.907 0.144 0.187 0.004 0.013 0.004 1.190 1067 150 1084 50 1106 22 1067
    PM02-N1-90 0.075 0.004 1.953 0.094 0.187 0.003 0.012 0.004 0.694 1065 93 1099 32 1106 17 1065
    注:大于1000Ma时选择207Pb/206Pb年龄;小于1000Ma时选择206Pb/238U
    下载: 导出CSV
  • [1]

    Chen J L, Xu J F, Zhao W X, et al. Geochemical variations in Miocene adakitic rocks from the western and eastern Lhasa terrane:Implications for lower crustal flow beneath the Southern Tibetan Plateau[J]. Lithos, 2011, 125(3):928-939. http://cn.bing.com/academic/profile?id=d064dc68fb2e20ca3aa18071fec8b108&encoded=0&v=paper_preview&mkt=zh-cn

    [2]

    Zhu D C, Mo X X, Niu Y L, et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 2009, 268(3/4):298-312. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=865643f3116ab967bfec663b81bae032

    [3]

    刘函, 王保弟, 陈莉, 等.拉萨地块西北日土花岗岩基锆石U-Pb年代学、地球化学及构造意义[J].大地构造与成矿学, 2015, 39(6):1141-1155. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201506014

    [4]

    Huang F, Xu J F, Chen J L, et al. Two Cenozoic tectonic events of N-S and E-W extension in the Lhasa Terrane:Evidence from geology and geochronology[J]. Lithos, 2016, 245:118-132. doi: 10.1016/j.lithos.2015.08.014

    [5]

    Mo X X, Niu Y L, Dong G C, et al. Contribution of syncollisional felsic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic Succession in southern Tibet[J]. Chemical Geology, 2008, 250(1):49-67. http://cn.bing.com/academic/profile?id=35a85948a54b344d61556500e54396af&encoded=0&v=paper_preview&mkt=zh-cn

    [6]

    张泽明, 王金丽, 董昕, 等.青藏高原冈底斯带南部的紫苏花岗岩:安第斯型造山作用的证据[J].岩石学报, 2009, 25(7):1707-1720. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200907015

    [7]

    Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth[J]. Earth & Planetary Science Letters, 2011, 301(1/2):241-255. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.epsl.2010.11.005/

    [8]

    董昕, 张泽明, 王金丽, 等.青藏高原拉萨地体南部林芝岩群的物质来源与形成年代:岩石学与锆石U-Pb年代学[J].岩石学报, 2009, 25(7):1678-1694. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200907013

    [9]

    Zhu D C, Zhao Z D, Niu Y L, et al. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 2011, 39(8):727-730. doi: 10.1130/G31895.1

    [10]

    Metcalfe I. Late Palaeozoic and Mesozoic tectonic and palaeogeographical evolution of SE Asia[J]. Gondwana Research, 2009, 9(1):24-46. http://cn.bing.com/academic/profile?id=b14717e31fdd5ba526491d466f420c53&encoded=0&v=paper_preview&mkt=zh-cn

    [11]

    Yin A, Harrison T M. Geologic Evolution of the HimalayanTibetan Orogen[J]. Annual Review of Earth & Planetary Sciences, 2003, 28(28):211-280. https://bioone.org/journals/journal-of-insect-science/volume-12/issue-115/031.012.11501/Biogeographical-Origin-and-Speciation-of-the-Anthocoris-nemorum-Group/10.1673/031.012.11501.full

    [12]

    Lin Y H, Zhang Z M, Dong X, et al. Precambrian evolution of the Lhasa terrane, Tibet:Constraint from the zircon U-Pb geochronology of the gneisses[J]. Precambrian Research, 2013, 237(7):64-77. http://cn.bing.com/academic/profile?id=fd3856b8d9e32485579b6e4cb9111f04&encoded=0&v=paper_preview&mkt=zh-cn

    [13]

    Lin Y H, Zhang Z M, Dong X, et al. Early Mesozoic metamorphism and tectonic significance of the eastern segment of the Lhasa terrane, south Tibet[J]. Journal of Asian Earth Sciences, 2013, 78(12):160-183. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=920caeaf6c8840a5a253e1249ec10d03

    [14]

    Audley-Charles M G. Reconstruction of eastern Gondwanaland[J]. Nature, 1983, 306(5938):48-50. doi: 10.1038/306048a0

    [15]

    Audley-Charles M G. Cold Gondwana, warm Tethys and the Tibetan Lhasa block[J]. Nature, 1984, 310(5973):165-166. doi: 10.1038/310165b0

    [16]

    潘桂棠, 莫学宣, 侯增谦, 等.冈底斯造山带的时空结构及演化[J].岩石学报, 2006, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001

    [17]

    王立全, 潘桂棠, 朱弟成, 等.西藏冈底斯带石炭纪-二叠纪岛弧造山作用:火山岩和地球化学证据[J].地质通报, 2008, 27(9):1509-1534. doi: 10.3969/j.issn.1671-2552.2008.09.012 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20080912&flag=1

    [18]

    Zhu D C, Zhao Z D, Niu Y L, et al. The origin and preCenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4):1429-1454. doi: 10.1016/j.gr.2012.02.002

    [19]

    Li G W, Sandiford M, Liu X H, et al. Provenance of Late Triassic sediments in central Lhasa terrane, Tibet and its implication[J]. Gondwana Research, 2014, 25(4):1680-1689. doi: 10.1016/j.gr.2013.06.019

    [20]

    耿全如, 王立全, 潘桂棠, 等.西藏冈底斯带石炭纪陆缘裂陷作用:火山岩和地层学证据[J].地质学报, 2007, 81(9):1259-1276. doi: 10.3321/j.issn:0001-5717.2007.09.011

    [21]

    刘函, 李奋其, 周放, 等.拉萨地块西段尼雄地区晚古生代地震事件及其地质意义[J].地球科学, 2018, 43(8):1-14. http://d.old.wanfangdata.com.cn/Periodical/dqkx201808017

    [22]

    李奋其, 刘伟, 张士贞, 等.冈底斯南部打加错地区鸭洼基性杂岩的年代学及地球化学特征[J].地质学报, 2012, 86(10):1592-1603. doi: 10.3969/j.issn.0001-5717.2012.10.004

    [23]

    Veevers J J, Saeed A, Belousova E A, et al. U-Pb ages and source composition by Hf-isotope and trace-element analysis of detrital zircons in Permian sandstone and modern sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgarn Craton[J]. Earth-Science Reviews, 2005, 68(3/4):245-279. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=270fc23b7e342563b3a34acbc9c7b749

    [24]

    Wang B Q, Wang W, Chen W T, et al. Constraints of detrital zircon U-Pb ages and Hf isotopes on the provenance of the Triassic Yidun Group and tectonic evolution of the Yidun Terrane, Eastern Tibet[J]. Sedimentary Geology, 2013, 289(1):74-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=358cc2f9995551b2da545bb90b1cebcf

    [25]

    张士贞, 向树元, 万俊, 等.西藏比如盆地碎屑锆石LA-ICPMS U-Pb测年及其地质意义[J].地质科学情报, 2010, 29(5):15-22.

    [26]

    胡修棉, 王建刚, 安慰, 等.利用沉积记录精确约束印度-亚洲大陆碰撞时间与过程[J].中国科学:地球科学, 2017, 47(3):261-283. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201703001

    [27]

    张予杰, 朱同兴, 张以春, 等.西藏申扎地区二叠系下拉组地层划分及其沉积(微)相[J].地质学报, 2014, 88(2):273-284. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201402010

    [28]

    周羽漩, 赵兵, 严亮, 等.藏改则地区昂拉仁错中-下二叠统昂杰组-下拉组地层古生物[J].地球科学与环境学报, 2014, 36(4):107-116. doi: 10.3969/j.issn.1672-6561.2014.04.010

    [29]

    仲昭, 纪占胜, 武桂春, 等.西藏班戈县保吉乡纳木错西下石炭统珊瑚动物群的发现及其意义[J].地质论评, 2017, 63(Supp.):333-334. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2017S1161.htm

    [30]

    Pan G T, Wang L Q, Li R S, al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53(2):3-14. https://www.researchgate.net/publication/258658273_Tectonic_evolution_of_the_Qinghai-Tibet_Plateau

    [31]

    张予杰, 张以春, 庞维华, 等.西藏申扎地区拉嘎组岩相/沉积相分析[J].沉积学报, 2013, 31(2):269-281. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201302007

    [32]

    安显银, 张予杰, 朱同兴, 等.西藏申扎地区下二叠统昂杰组CO同位素地球化学特征[J].地质通报, 2015, 34(2/3):347-353. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2015020311&flag=1

    [33]

    辛洪波, 曲晓明, 任立奎, 等.藏西措勤含铜岩系的物质来源与成因[J].地质学报, 2007, 81(7):939-945. doi: 10.3321/j.issn:0001-5717.2007.07.009

    [34]

    于玉帅, 杨竹森, 戴平云, 等.西藏措勤尼雄矿田日阿铜多金属矿床岩浆活动时代及成因[J].中国地质, 2015, 42(1):118-133. doi: 10.3969/j.issn.1000-3657.2015.01.010

    [35]

    范景年.西藏石炭系[M].重庆:重庆出版社, 1988:1-128.

    [36]

    林宝玉.西藏申扎地区古生代地层的新认识[J].地质论评, 1981, 27(4):353-354. doi: 10.3321/j.issn:0371-5736.1981.04.010

    [37]

    林宝玉.西藏申扎地区古生代地层[C]//青藏高原地质文集, 1983: 1-13.

    [38]

    林宝玉.西藏晚古生代若干床板珊瑚化石[C]//青藏高原地质文集, 1983: 249-265.

    [39]

    杨式溥, 范影年.西藏申扎地区石炭系及生物群特征[C]//青藏高原地质文集, 1982, (4): 46-69.

    [40]

    盛怀斌.藏北申扎县永珠早石炭世晚期菊石动物群[C]//青藏高原地质文集, 1983: 38-65.

    [41]

    纪占胜, 姚建新, 高联达, 等.藏北申扎地区下石炭统永珠组下部孢子组合的特征及意义[J].古生物学报, 2006, 45(3):399-409. doi: 10.3969/j.issn.0001-6616.2006.03.010

    [42]

    李勇, 张士贞, 李奋其, 等.拉萨地块中段查孜地区典中组火山岩锆石U-Pb年龄及地质意义[J].地球科学, 2018, 43(8):2755-2766. http://d.old.wanfangdata.com.cn/Periodical/dqkx201808016

    [43]

    何世平, 李荣社, 王超, 等.青藏高原拉萨地块发现古元古代地体[J].地球科学-中国地质大学学报, 2013, 38(3):519-528. http://d.old.wanfangdata.com.cn/Periodical/dqkx201303009

    [44]

    裴英茹, 杨竹森, 赵晓燕, 等.藏北商旭金矿床的碎屑锆石U-Pb年龄及其地质意义[J].地球学报, 2017, 38(5):711-722. http://d.old.wanfangdata.com.cn/Periodical/dqxb201705011

    [45]

    Huang T T, Xu J F, Chen J L, et al. Sedimentary record of Jurassic northward subduction of the Bangong-Nujiang Ocean:insights from detrital zircons[J]. International Geology Review, 2016, 59(2):166-184. http://cn.bing.com/academic/profile?id=af41d243151e46798826fd133337322a&encoded=0&v=paper_preview&mkt=zh-cn

    [46]

    胡道功, 吴珍汉, 江万, 等.西藏念青唐古拉岩群SHRIMP锆石U-Pb年龄和Nd同位素研究[J].中国科学:地球科学, 2005, 35(1):29-37. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200501003

    [47]

    Dong C Y, Li C, Wan Y S, et al. Detrital zircon age model of Ordovician Wenquan quartzite south of Lungmuco-Shuanghu Suture in the Qiangtang area, Tibet:Constraint on tectonic affinity and source regions[J]. Science China:Earth Sciences, 2011, 54(7):1034-1042. doi: 10.1007/s11430-010-4166-x

    [48]

    王洪浩, 李江海, 李维波, 等.冈瓦纳大陆古生代冰盖分布研究[J].中国地质, 2014, 41(6):2132-2143. doi: 10.3969/j.issn.1000-3657.2014.06.026

    [49]

    范建军, 李才, 王明, 等.青藏高原羌塘南部冈玛错地区展金组的沉积环境分析及碎屑锆石U-Pb定年[J].地质学报, 2014, 88(10):1820-1831. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201410004

    [50]

    Pullen A. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean[J]. Geology, 2008. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f623010eadc63566d9468cc13436e077

    [51]

    Myrow P M. Stratigraphic correlation of Cambrian-Ordovician deposits along the Himalaya:Implications for the age and nature of rocks in the Mount Everest region[J]. Geological Society of America Bulletin, 2009, 121(3/4):323-332. http://cn.bing.com/academic/profile?id=379a27918a2ea0fb185487fe27cb6b0b&encoded=0&v=paper_preview&mkt=zh-cn

    [52]

    董春艳, 李才, 万渝生, 等.西藏羌塘龙木错-双湖缝合带南侧奥陶纪温泉石英岩碎屑锆石年龄分布模式:构造归属及物源区制约[J].中国科学:地球科学, 2011, 41(3):299-308. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201103003.htm

    [53]

    李才, 黄小鹏, 翟庆国, 等.龙木错-双湖-吉塘板块缝合带与青藏高原冈瓦纳北界[J].地学前缘, 2006, 13(4):136-147. doi: 10.3321/j.issn:1005-2321.2006.04.011

    [54]

    Zhai Q G, Jahn B M, Su L, et al. SHRIMP zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of a mafic dyke swarm in the Qiangtang terrane, northern Tibet and geodynamic implications[J]. Lithos, 2013, 174(4):28-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7c0ed5a23431e2dabf3c768434b3d6ad

    [55]

    朱同兴, 潘桂棠, 冯心涛, 等.藏南喜马拉雅北坡色龙地区二叠系基性火山岩的发现及其构造意义[J].地质通报, 2002, 21(11):717-722. doi: 10.3969/j.issn.1671-2552.2002.11.004 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2002011162&flag=1

    江西省地质调查院. 西藏1: 250000邦多幅. 措麦区幅区域地质调查. 2002.

  • 加载中

(8)

(1)

计量
  • 文章访问数:  533
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2018-10-30
修回日期:  2019-01-07
刊出日期:  2019-06-15

目录