Determination of Late Paleozoic metamorphic event in the Langshan area, western Inner Mongolia: New evidence from LA-ICP-MS zircon U-Pb dating of the Wulashan Group
-
摘要:
乌拉山岩群是狼山地区最重要的前寒武纪变质基底之一,准确测定其原岩成岩与变质时代,对于进一步探讨狼山地区前寒武纪地质演化具有重要的意义。对狼山地区乌拉山岩群角闪黑云斜长片麻岩及其伴生的花岗质浅色脉体进行了岩石学和锆石U-Pb年代学研究。碎屑锆石U-Pb定年和野外地质调查表明,狼山地区乌拉山岩群角闪黑云斜长片麻岩碎屑锆石年龄介于2591~1800Ma之间,其中最小一组碎屑锆石年龄为1873Ma,结合其约270Ma的变质年龄,初步限定乌拉山岩群角闪黑云斜长片麻岩的原岩沉积年龄为1873~270Ma。综合新的研究资料,认为狼山地区乌拉山岩群除存在新太古代-古元古代变质岩外,可能还存在中元古代-晚古生代变沉积岩。锆石阴极发光图像与U-Pb定年结果综合表明,角闪黑云斜长片麻岩中发育大量变质锆石,获得的206Pb/238U年龄加权平均值为269±4Ma,代表狼山地区乌拉山岩群遭受晚古生代末期角闪岩相变质作用的时代,可能与华北板块与西伯利亚板块晚古生代末期碰撞造山作用有关。此外,采用预剥蚀方法,在乌拉山岩群高硅花岗质浅色脉体高U锆石中,获得的206Pb/238U年龄加权平均值为264±3Ma,被解释为乌拉山岩群花岗质浅色脉体的形成时代,代表本区晚古生代造山作用由同碰撞挤压向碰撞后伸展转换的时限。
Abstract:Wulashan Group is one of the important parts of the Precambrian basement in the Langshan area, and accurate determination of the diagenetic and metamorphic timing of the Wulashan Group is of great scientific significance for further discussing the Precambrian geological evolution of the Langshan area. In this paper, the authors carried out a detailed study of the petrological observation and zircon U-Pb dating of hornblende biotite plagioclase gneisses and related granitic leucosomes from Wulashan Group. The result of detrital zircon U-Pb dating and geological investigation of the hornblende biotite plagioclase gneisses indicates that the age of detrital zircons of the gneisses of the Wulashan Group in Langshan area ranges from 2591Ma to 1800Ma, and the youngest group age of detrital zircons is circa 1873Ma. Combined with its metamorphic age of circa 270Ma, it is preliminarily considered that the sedimentary age of the gneisses ranges from 1873Ma to 270Ma. The above and latest studies indicate that, besides Neoarchaean-Paleoproterozoic metamorphic rocks, there are also Mesoproterozoic-Late Paleozoic metasedimentary rocks within the Wulashan Group. The result of cathodoluminescence image analysis and U-Pb dating of zircons indicates that a large number of metamorphic zircons exist in the hornblende biotite plagioclase gneisses. They record a 206Pb/238U weighted average age of 269±4Ma, which represents the timing of the late Paleozoic amphibolite-facies metamorphism of the Wulashan Group in the Langshan area, probably in response to the Late Paleozoic collisional orogenesis between the North China Plate and Siberian Plate. In addition, a reliable 206Pb/238U weighted average age of 264±3Ma of the high-U zircons from the high-silica granitic leucosomes was obtained by pre-ablation dating method. The age (264±3Ma) is interpreted as the diagenetic timing of high-silica granitic leucosomes in the Wulashan Group, which represents the timing of the transformation for the collisional extrusion to post-collisional extension during late Paleozoic orogenesis.
-
Key words:
- Langshan /
- Wulashan Group /
- Late Paleozoic metamorphic event /
- zircon U-Pb dating
-
表 1 狼山地区乌拉山岩群黑云角闪斜长片麻岩LA-ICP-MS锆石U-Th-Pb定年结果
Table 1. LA-ICP-MS zircons U-Th-Pb analyses from biotite amphibole plagioclase gneiss of the Wulashan Group in the Langshan area
样品点 同位素含量/10-6 Th/U 同位素比值 年龄/Ma Total Pb Common Pb 232Th 238U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb σ 207Pb/235U 1σ 206Pb/238U 1σ 第一组:碎屑锆石: 2591 ± 28~1115 ± 26Ma AZ20-1-1-71 22.44 0.00 15.70 41.97 0.37 0.1735 0.0029 9.6445 0.1847 0.4037 0.0051 2591 28 2401 18 2186 24 AZ20-1-1-65 25.98 22.02 32.05 46.41 0.69 0.1573 0.0022 7.8380 0.1036 0.3627 0.0028 2428 24 2213 12 1995 13 AZ20-1-1-08 61.98 38.11 86.33 188.50 0.46 0.1259 0.0016 4.4638 0.0571 0.2556 0.0016 2043 22 1724 11 1467 8 AZ20-1-1-69 55.03 49.44 89.74 120.17 0.75 0.1185 0.0016 4.9556 0.0671 0.3033 0.0025 1944 24 1812 12 1708 12 AZ20-1-1-67 264.52 0.00 373.65 738.36 0.51 0.1185 0.0012 4.4044 0.0486 0.2689 0.0021 1944 17 1713 9 1535 11 AZ20-1-1-45 107.18 2.89 75.62 391.51 0.19 0.1169 0.0011 3.9682 0.0455 0.2446 0.0019 1910 17 1628 9 1411 10 AZ20-1-1-41 16.00 36.68 9.47 62.88 0.15 0.1156 0.0020 3.9194 0.0868 0.2444 0.0037 1889 32 1618 18 1410 19 AZ20-1-1-38 33.84 22.45 39.19 82.43 0.48 0.1145 0.0013 5.1500 0.0593 0.3247 0.0017 1873 22 1844 10 1812 9 AZ20-1-1-07 146.16 42.92 90.03 647.87 0.14 0.1121 0.0012 3.2061 0.0337 0.2063 0.0011 1835 20 1459 8 1209 6 AZ20-1-1-57 73.96 34.63 101.25 360.37 0.28 0.1102 0.0012 2.5557 0.0311 0.1673 0.0014 1802 19 1288 9 997 8 AZ20-1-1-04 115.99 83.21 172.23 432.38 0.40 0.1061 0.0010 3.1921 0.0362 0.2170 0.0015 1800 19 1455 9 1266 8 AZ20-1-1-36 41.60 1.86 112.79 132.55 0.85 0.1088 0.0013 3.2205 0.0383 0.2142 0.0013 1780 23 1462 9 1251 7 AZ20-1-1-33 21.80 42.87 34.68 184.73 0.19 0.1085 0.0023 1.5920 0.0624 0.0984 0.0026 1774 6 967 24 605 15 AZ20-1-1-56 106.04 0.00 71.67 433.75 0.17 0.1083 0.0012 3.3155 0.0333 0.2207 0.0012 1772 20 1485 8 1285 6 AZ20-1-1-63 7.03 8.90 21.31 19.29 1.11 0.1079 0.0027 3.3967 0.0880 0.2329 0.0035 1765 46 1504 20 1350 18 AZ20-1-1-10 2.81 24.63 11.67 19.15 0.61 0.1058 0.0036 1.2781 0.0396 0.0892 0.0011 1729 63 836 18 551 6 AZ20-1-1-26 135.84 44.40 162.79 603.29 0.27 0.1056 0.0010 2.8577 0.0324 0.1952 0.0014 1724 18 1371 9 1149 8 AZ20-1-1-68 74.54 18.15 130.63 213.38 0.61 0.1052 0.0012 3.7976 0.0503 0.2610 0.0023 1717 21 1592 11 1495 12 AZ20-1-1-62 19.84 20.74 126.88 73.37 1.73 0.1004 0.0017 1.9869 0.0357 0.1438 0.0015 1631 33 1111 12 866 8 AZ20-1-1-11 2.12 0.00 6.54 11.23 0.58 0.1000 0.0038 1.8701 0.0697 0.1383 0.0018 1625 70 1071 25 835 10 AZ20-1-1-48 39.21 9.50 66.84 347.72 0.19 0.0934 0.0013 1.3598 0.0358 0.1030 0.0020 1498 27 872 15 632 12 AZ20-1-1-22 53.91 22.41 182.15 165.62 1.10 0.0922 0.0012 2.7376 0.0401 0.2145 0.0017 1472 21 1339 11 1253 9 AZ20-1-1-14 2.88 0.00 9.69 33.49 0.29 0.0886 0.0041 0.8394 0.0358 0.0713 0.0011 1396 88 619 20 444 6 AZ20-1-1-24 7.89 3.31 50.76 85.87 0.59 0.0788 0.0023 0.7293 0.0206 0.0676 0.0006 1169 62 556 12 422 4 AZ20-1-1-47 141.30 0.00 280.23 1863.43 0.15 0.0785 0.0009 0.7564 0.0117 0.0691 0.0006 1159 23 572 7 430 3 AZ20-1-1-17 7.91 0.00 6.97 81.54 0.09 0.0782 0.0024 0.9617 0.0472 0.0801 0.0025 1151 61 684 24 496 15 AZ20-1-1-01 49.01 0.00 75.61 614.72 0.12 0.0767 0.0010 0.7547 0.0097 0.0712 0.0004 1115 26 571 6 443 2 第二组:变质锆石: 269 ± 4 Ma(MSWD=9.5, n=11) AZ20-1-1-34 17.53 19.80 31.03 404.89 0.08 0.0527 0.0010 0.3194 0.0058 0.0438 0.0003 317 45 281 4 276 2 AZ20-1-1-66 74.13 75.80 142.45 1770.21 0.08 0.0515 0.0006 0.3119 0.0040 0.0438 0.0002 265 32 276 3 276 2 AZ20-1-1-43 3.34 13.79 1.39 75.94 0.02 0.0554 0.0023 0.3310 0.0130 0.0438 0.0004 432 88 290 10 276 3 AZ20-1-1-44 6.09 13.24 2.39 144.21 0.02 0.0529 0.0016 0.3169 0.0093 0.0435 0.0004 328 69 280 7 275 2 AZ20-1-1-19 149.04 0.00 37.45 3801.18 0.01 0.0521 0.0006 0.3096 0.0034 0.0430 0.0003 287 31 274 3 271 2 AZ20-1-1-72 116.14 0.00 20.09 2934.17 0.01 0.0531 0.0007 0.3152 0.0040 0.0429 0.0003 332 30 278 3 271 2 AZ20-1-1-21 10.34 28.28 2.65 251.55 0.01 0.0507 0.0013 0.2948 0.0076 0.0424 0.0003 228 61 262 6 268 2 AZ20-1-1-03 18.98 35.71 5.02 467.90 0.01 0.0520 0.0010 0.3014 0.0054 0.0421 0.0003 283 43 268 4 266 2 AZ20-1-1-12 15.60 34.53 6.27 379.74 0.02 0.0533 0.0010 0.3081 0.0057 0.0419 0.0003 343 43 273 4 265 2 AZ20-1-1-50 66.94 0.00 14.87 1740.25 0.01 0.0527 0.0006 0.3043 0.0036 0.0418 0.0002 322 26 270 3 264 1 AZ20-1-1-18 90.61 2.61 264.05 2182.45 0.12 0.0528 0.0006 0.3048 0.0034 0.0417 0.0002 320 26 270 3 263 1 注: TotalPb表示放射性成因Pb含量总和;CommonPb表示普通铅204Pb含量 表 2 狼山地区乌拉山岩群花岗质浅色脉体LA-ICP-MS锆石U-Th-Pb定年结果
Table 2. LA-ICP-MS zircons U-Th-Pb analyses from granitic leucosome of the Wulashan Group in the Langshan area
样品点 同位素含量/10-6 Th/U 同位素比值 年龄/Ma Total Pb Common Pb 232Th 238U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ AZ20-2-1-12 328.20 280.57 64.67 4403.67 0.01 0.0523 0.0035 0.3028 0.0221 0.0429 0.0013 302 156 269 17 271 8 AZ20-2-1-11 491.34 302.71 374.56 8571.13 0.04 0.0534 0.0007 0.3002 0.0039 0.0406 0.0003 343 25 267 3 257 2 AZ20-2-1-18 351.36 173.59 227.37 12754.06 0.02 0.0514 0.0006 0.2909 0.0034 0.0408 0.0003 261 26 259 3 258 2 AZ20-2-1-08 187.00 0.00 173.97 8714.89 0.02 0.0520 0.0006 0.2947 0.0036 0.0409 0.0003 287 32 262 3 258 2 AZ20-2-1-16 362.94 0.00 165.39 9284.15 0.02 0.0509 0.0006 0.2884 0.0035 0.0410 0.0004 239 28 257 3 259 2 AZ20-2-1-23 347.22 63.53 148.24 8446.56 0.02 0.0514 0.0006 0.2930 0.0035 0.0412 0.0003 261 26 261 3 260 2 AZ20-2-1-05 311.94 93.89 248.15 6958.49 0.04 0.0529 0.0007 0.3045 0.0042 0.0415 0.0004 324 28 270 3 262 2 AZ20-2-1-01 334.70 185.86 246.09 12917.98 0.02 0.0501 0.0006 0.2895 0.0033 0.0418 0.0003 198 31 258 3 264 2 AZ20-2-1-03 499.83 115.73 315.59 8973.66 0.04 0.0518 0.0006 0.2998 0.0034 0.0418 0.0003 276 26 266 3 264 2 AZ20-2-1-24 273.59 193.65 180.18 7509.80 0.02 0.0536 0.0007 0.3137 0.0043 0.0422 0.0004 354 30 277 3 267 2 AZ20-2-1-06 514.92 66.80 216.46 12871.60 0.02 0.0508 0.0006 0.2971 0.0036 0.0423 0.0004 232 26 264 3 267 2 AZ20-2-1-22 302.30 131.66 136.86 5667.06 0.02 0.0535 0.0008 0.3159 0.0048 0.0427 0.0004 350 33 279 4 270 2 AZ20-2-1-20 231.22 31.66 213.66 7709.46 0.03 0.0504 0.0006 0.2989 0.0039 0.0428 0.0003 213 30 266 3 270 2 AZ20-2-1-19 371.12 328.95 267.15 8937.70 0.03 0.0538 0.0007 0.3211 0.0044 0.0431 0.0004 365 23 283 3 272 2 AZ20-2-1-21 340.67 82.38 330.99 8424.34 0.04 0.0506 0.0007 0.3031 0.0043 0.0432 0.0003 220 31 269 3 273 2 注: TotalPb表示放射性成因Pb含量总和;CommonPb表示普通铅204Pb含量 -
[1] 任纪舜, 姜春发, 张正坤, 等.中国大地构造及其演化[M].北京:科学出版社, 1980:1-124.
[2] 李春昱, 王荃, 刘雪亚, 等.亚洲大地构造图(1:800万)及其说明书[M].北京:地图出版社, 1982:1-95.
[3] 内蒙古自治区地质矿产局.内蒙古自治区区域地质志[M].北京:地质出版社, 1991:1-200.
[4] 王楫, 李双庆, 王保良, 等.狼山-白云鄂博裂谷系[M].北京:北京大学出版社, 1992:1-136.
[5] Zhai M G, Santosh M. The Early Precambrian odyssey of North China Craton:A synoptic overview[J]. Gondwana Research, 2011, 20(1):6-25. doi: 10.1016/j.gr.2011.02.005
[6] Zhao G C, Cawood P A, Li S Z, et al. Amalgamation of the North China Craton:key issues and discussion[J]. Precambrian Research, 2012, 222/223:56-76. http://cn.bing.com/academic/profile?id=737c054a78e8593721d41436602e9b49&encoded=0&v=paper_preview&mkt=zh-cn
[7] Wang Z Z, Han B F, Feng L X, et al. Tectonic attribution of the Langshan area in western Inner Mongolia and implications for the Neoarchean-Paleoproterozoic evolution of the western North China Craton:evidence from LA-ICP-MS zircon U-Pb dating of the Langshan basement[J]. Lithos, 2016, 261:278-295. doi: 10.1016/j.lithos.2016.03.005
[8] 初航, 王惠初, 魏春景, 等.内蒙古狼山巴音前达门地区黑云斜长片麻岩年代学研究及板块归属[J].地质学报, 2018, 92(12):2410-2419. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201812003
[9] 胡骁, 许传诗, 牛树银.华北地台北缘早古生代大陆边缘演化[M].北京:北京大学出版社, 1990:1-215.
[10] 彭润民, 翟裕生, 王建平, 等.内蒙狼山新元古代酸性火山岩的发现及其地质意义[J].科学通报, 2010, 55(26):2611-2620. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201026008
[11] Chen Y, Wei C, Zhang J, et al. Metamorphism and zircon U-Pb dating of garnet amphibolite in the Baoyintu Group, Inner Mongolia[J]. Science Bulletin, 2015, 60(19):1698-1707. doi: 10.1007/s11434-015-0890-0
[12] Wang Z Z, Han B F, Feng L X, et al. Geochronology, geochemistry and origins of the Paleozoic-Triassic plutons in the Langshan area, western Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 2015, 97(B):337-351. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8f4ae3595f23f841c3f99fbf2b41e60b
[13] Darby B J, Ritts B D. Mesozoic structural architecture of the Lang Shan, North-Central China:Intraplate contraction, extension, and synorogenic sedimentation[J]. Journal of Structural Geology, 2007, 29(12):2006-2016. doi: 10.1016/j.jsg.2007.06.011
[14] 田健, 辛后田, 滕学建, 等.内蒙古狼山地区石炭纪-三叠纪岩浆作用及其构造意义[J].地球科学, 2019, 44(1):206-219. http://d.old.wanfangdata.com.cn/Periodical/dqkx201901015
[15] Shi X J, Wang T, Zhang L, et al. Timing, petrogenesis and tectonic setting of the Late Paleozoic gabbro-granodiorite-granite intrusions in the Shalazhashan of northern Alxa:Constraints on the southernmost boundary of the Central Asian Orogenic Belt[J]. Lithos, 2014, 208/209:158-177. doi: 10.1016/j.lithos.2014.08.024
[16] 邵济安, 何国琦, 唐克东.华北北部二叠纪陆壳演化[J].岩石学报, 2015, 31(1):47-55. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501003
[17] Hu J, Gong W, Wu S, et al. LA-ICP-MS zircon U-Pb dating of the Langshan Group in the northeast margin of the Alxa block, with tectonic implications[J]. Precambrian Research, 2014, 255:756-770. doi: 10.1016/j.precamres.2014.08.013
[18] Xu B, Charvet J, Chen Y, et al. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China):framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 23(4):1342-1364. doi: 10.1016/j.gr.2012.05.015
[19] 内蒙古自治区地质矿产局.内蒙古自治区岩石地层[M].武汉:中国地质大学出版社, 1996:1-344.
[20] 徐备, 刘树文, 王长秋, 等.内蒙古西北部宝音图群Sm-Nd和Rb-Sr地质年代学研究[J].地质论评, 2000, 46(1):86-90. http://d.old.wanfangdata.com.cn/Periodical/dzlp200001012
[21] 孙立新, 赵凤清, 王惠初, 等.内蒙古狼山地区宝音图地块变质基底的锆石U-Pb年龄及构造意义[J].地质学报, 2013, 87(2):197-207. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201302005
[22] 滕飞, 滕学建, 刘洋, 等.内蒙古宝音图-霍各乞地区宝音图岩群的时代约束及构造属性[J].地球科学, 2019, 44(1):161-178. http://d.old.wanfangdata.com.cn/Periodical/dqkx201901012
[23] 李怀坤, 苏文博, 周红英, 等.中-新元古界标准剖面蓟县系首获高精度年龄制约——蓟县剖面雾迷山组和铁岭组斑脱岩锆石SHRIMPU-Pb同位素定年研究[J].岩石学报, 2014, 30(10):2999-3012. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201410015.htm
[24] 孙立新, 张云, 胡晓佳, 等.内蒙狼山北部古元古代变质花岗岩地球化学特征、锆石U-Pb年代学——哥伦比亚超大陆裂解事件的岩浆记录[J].岩石学报, 2018, 34(10):3116-3136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201810018
[25] 罗军, 云金表, 何治亮, 等.内蒙古查干凹陷毛11井发现中元古代晚期变质岩:锆石U-Pb定年证据[J].中国地质, 2018, 45(3):3116-3136. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201803018
[26] 付星辉, 赵红格, 周义军, 等.内蒙古狼山地区侏罗系LA-ICPMS碎屑锆石U-Pb定年及其物源意义[J].地质通报, 2016, 35(12):2063-2075. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20161214&flag=1
[27] 郭硕, 滕学建, 刘洋, 等.内蒙古狼山西北缘乌兰敖包地区"阿木山组"沉积时限、物源特征及其地质意义[J].地球科学, 2019, 44(1):193-205. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201901014
[28] 张云, 孙立新, 张天福, 等.内蒙古狼山北部早古生代岩浆岩年代学、地球化学特征及构造意义[J].地球科学, 2019, 44(1):179-192. http://d.old.wanfangdata.com.cn/Periodical/dqkx201901013
[29] 滕学建, 田健, 刘洋, 等.内蒙古狼山地区早志留世石英闪长岩体的厘定及其地质意义[J].地球科学, 2019, 44(4):1236-1247. http://d.old.wanfangdata.com.cn/Periodical/dqkx201904013
[30] 胡鸿飞, 张永全, 胡华斌, 等.内蒙古滴水沟闪长岩体地球化学特征及其地质意义[J].现代地质, 2013, 27(6):1308-1315. http://d.old.wanfangdata.com.cn/Periodical/xddz201306005
[31] 田健, 滕学建, 刘洋, 等.内蒙古狼山地区早石炭世角闪辉长岩、花岗闪长岩的岩石成因及构造意义[J].岩石矿物学杂志, 2018, 37(5):754-770. http://d.old.wanfangdata.com.cn/Periodical/yskwxzz201805004
[32] 皮桥辉, 刘长征, 陈岳龙, 等.内蒙古霍各乞海西期侵入岩形成时代、成因及其与铜矿体的关系[J].矿床地质, 2010, 29(3):437-451. http://d.old.wanfangdata.com.cn/Periodical/kcdz201003006
[33] 于延秋, 郭守钰, 王立峰.内蒙古狼山浩日格山海西期花岗岩体特征与形成环境[J].世界地质, 2011, 30(3):345-351. http://d.old.wanfangdata.com.cn/Periodical/sjdz201103004
[34] Peng R M, Zhai Y S, Li C S, et al. The Erbutu Ni-Cu deposit in the Central Asian Orogenic Belt:a Permian magmatic sulfide deposit related to boninitic magmatism in an arc setting[J]. Ore Geology Reviews, 2013, 108:1879-1888. http://cn.bing.com/academic/profile?id=5859ccf601eae16c464731786f5fde06&encoded=0&v=paper_preview&mkt=zh-cn
[35] Peng R, Li C, Zhai Y, et al. Geochronology, petrology and geochemistry of the Beiligaimiao magmatic sulfide deposit in a Paleozoic active continental margin, North China[J]. Ore Geology Reviews, 2017, 90:607-617. doi: 10.1016/j.oregeorev.2017.05.004
[36] 吴亚飞, 曾键年, 曹建劲, 等.内蒙古东升庙海西期岩体锆石UPb年龄及Hf同位素特征[J].地质科技情报, 2013, 32(6):22-30. http://www.cnki.com.cn/article/cjfdtotal-dzkq201306005.htm
[37] 王文龙, 滕学建, 刘洋, 等.内蒙古狼山地区浩日格山二长花岗岩的地球化学特征、LA-ICP-MS锆石U-Pb定年及Hf同位素组成[J].地质学报, 2018, 92(11):2227-2247. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201811004
[38] Darby B J, Ritts B D. Mesozoic structural architecture of the Lang Shan, North-Central China:Intraplate contraction, extension, and synorogenic sedimentation[J]. Journal of Structural Geology, 2007, 29(12):2006-2016. doi: 10.1016/j.jsg.2007.06.011
[39] 公王斌, 胡健民, 吴素娟, 等.内蒙古狼山左行走滑韧性剪切带变形特征、时间及意义[J].地学前缘, 2017, 24(3):263-275. http://d.old.wanfangdata.com.cn/Periodical/dxqy201703024
[40] 田荣松, 解国爱, 张进, 等.内蒙古狼山地区新元古代狼山群变形特征及区域构造意义[J].地质论评, 2017, 63(5):1180-1192. http://d.old.wanfangdata.com.cn/Periodical/dzlp201705005
[41] 邹雷, 刘平华, 田忠华, 等.东阿拉善地块前寒武纪变质基底中晚古生代变质杂岩:来自波罗斯坦庙杂岩LA-ICP-MS锆石UPb定年的新证据[J].地球科学, 2019, 44(4):1406-1423. http://d.old.wanfangdata.com.cn/Periodical/dqkx201904024
[42] Liu Y S, Hu Z C, Zong Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15):1535-1546. doi: 10.1007/s11434-010-3052-4
[43] Whitney D L, Evans B W. Abbreviations for names of rockforming minerals[J]. American Mineralogist, 2010, 95(1):185-187. doi: 10.2138/am.2010.3371
[44] 周士旭, 朱弟成, 张亮亮, 等.藏东同普二叠纪高分异花岗岩的锆石U-Pb年龄和岩石成因[J].岩石学报, 2017, 33(8):2509-2522. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201708012
[45] 王思源, 杨海明.狼山造山带喷溢成矿研究[M].武汉:中国地质大学出版社, 1993:1-165.
[46] Ni Z, Zhai M, Wang R, et al. Late Paleozoic retrograded eclogites from within the northern margin of the North China Craton:evidence for subduction of the Paleo-Asian ocean[J]. Gondwana Research, 2006, 9(1/2):209-224. http://cn.bing.com/academic/profile?id=469d37e308e764d32e6cb705bc252890&encoded=0&v=paper_preview&mkt=zh-cn
[47] 王惠初, 初航, 相振群, 等.华北克拉通北缘崇礼-赤城地区的红旗营子(岩)群:一套晚古生代的变质杂岩[J].地学前缘, 2012, 19(5):100-113. http://www.cqvip.com/QK/98600X/201205/44087865.html
[48] 初航, 王惠初, 魏春景, 等.冀北赤城地区古生代变质作用年代学研究及地质意义[J].地质学报, 2013, 87(9):1233-1246. http://d.old.wanfangdata.com.cn/Conference/8246112
[49] 李秋立.离子探针锆石U-Pb定年的"高U效应"[J].矿物岩石地球化学通报, 2016, 35(3):405-412. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201603001
[50] Farnan I, Balan E, Pickard C J, et al. The effect of radiation damage on local structure in the crystalline fraction of ZrSiO4:investigating the 29Si NMR response to pressure in zircon and reidite[J]. American Mineralogist, 2015, 88(11/12):1663-1667. http://www.researchgate.net/publication/263974084_The_effects_of_radiation_on_local_structure_in_the_crystalline_fraction_of_ZrSiO4_Investigating_the_29Si_NMR_response_to_pressure_in_zircon_and_reidite
[51] Krogh T E. Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique[J]. Geochimica et Cosmochimica Acta, 1982, 46(4):637-649. doi: 10.1016/0016-7037(82)90165-X
[52] 张允平, 李景春.华北及其以北地区晚古生代-早中生代构造格架主体特点[J].中国地质, 2010, 37(4):916-930. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201004008
[53] Zhang J, Wei C, Hang C. Multiple metamorphic events recorded in the metamorphic terranes in central Inner Mongolia, Northern China:implication for the tectonic evolution of the Xing'an Inner Mongolia Orogenic Belt[J]. Journal of Asian Earth Sciences, 2018, 167:52-67. doi: 10.1016/j.jseaes.2018.04.007
[54] 田健, 滕学建, 张永, 等.内蒙古狼山地区晚志留世石英闪长岩的发现及其地质意义[J].地质通报, 2019, 38(7):1158-1169. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20190709&flag=1
[55] 张维, 简平.内蒙古达茂旗北部早古生代花岗岩类SHRIMP UPb年代学[J].地质学报, 2008, 82(6):778-787. http://www.cnki.com.cn/Article/CJFDTotal-DZXE200806008.htm
[56] Jian P, Liu D, Shi Y, et al. Time scale of an early to midPalaeozoic orogenic cycle of long-lived Central Asian Orogenic Belt, Inner Mongolia of China:implications for continental growth[J]. Lithos, 2008, 101(3):233-259. http://cn.bing.com/academic/profile?id=2f4c8d1da271fa9a3bc7b9285fa8e413&encoded=0&v=paper_preview&mkt=zh-cn
[57] Zhang W, Jian P, Kröner A, et al. Magmatic and metamorphic development of an early to mid-Paleozoic continental margin arc in the southernmost Central Asian Orogenic belt, Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 2013, 72(4):63-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d8389815332903d0031c5655e2776f34
[58] 秦亚, 梁一鸿, 邢济麟, 等.内蒙古正镶白旗地区早古生代O型埃达克岩的厘定及其意义[J].地学前缘, 2013, 20(5):106-114. http://d.old.wanfangdata.com.cn/Periodical/dxqy201305008
[59] 裴福萍, 王志伟, 曹花花, 等.吉林省中部地区早古生代英云闪长岩的成因:锆石U-Pb年代学和地球化学证据[J].岩石学报, 2014, 30(7):2009-2019. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201407014
[60] 李锦轶, 高立明, 孙桂华, 等.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J].岩石学报, 2007, 23(3):565-582. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200703004
[61] Xiao W J, Windley B F, Han C M, et al. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth-Science Reviews, 2018, 186:84-128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=01d8c0dd8b7005c62e7be74b90a2311d
[62] 张拴宏, 赵越, 刘建民, 等.华北地块北缘晚古生代-早中生代岩浆活动期次、特征与构造背景[J].岩石矿物学杂志, 2010, 29(6):824-842. http://www.cqvip.com/Main/Detail.aspx?id=35849260
[63] Chen B, Jahn B, Wilde S, et al. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China; petrogenesis and tectonic implications[J]. Tectonophysics, 2000, 328(1):157-182. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-S0040-1951(00)00182-7/
[64] Chen B, Jahn B. M, Tian W. Evolution of the Solonker suture zone:Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction-and collision-related magmas and forearc sediments[J]. Journal of Asian Earth Sciences, 2009, 34(3):245-257. doi: 10.1016/j.jseaes.2008.05.007
[65] Zhang S H, Zhao Y, Kröner A, et al. Early Permian plutons from the northern North China Block:constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt[J]. International Journal of Earth Sciences, 2009, 98(6):1441-1467. doi: 10.1007/s00531-008-0368-2
[66] Zhang S H, Zhao Y, Song B, et al. Contrasting late carboniferous and late Permian-middle Triassic intrusive suites from the northern margin of the North China Craton:Geochronology, petrogenesis, and tectonic implications[J]. Geological Society of America Bulletin, 2009, 121(1/2):181-200. http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=abull&resid=121/1-2/181
[67] 冷福荣, 刘旺盛, 苏英.华北地台北缘海西期花岗岩类地球化学特征及构造环境探讨[J].内蒙古地质, 1996, 24(Z1):18-25. http://www.cnki.com.cn/Article/CJFDTotal-NMGZ6Z1.002.htm
[68] Li J Y. Permian geodynamic setting of Northeast China and adjacent regions:closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26(3):207-224. http://cn.bing.com/academic/profile?id=e77fd6a5ce2d0c1b863e92f716eaa12f&encoded=0&v=paper_preview&mkt=zh-cn
[69] 张青伟, 刘正宏, 柴社立, 等.内蒙古乌拉特中旗乌兰地区含石榴石花岗岩锆石U-Pb年龄及地质意义[J].吉林大学学报(地球科学版), 2011, 41(3):745-752. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201103016
[70] 王秀萍, 李睿, 杨志猛, 等.辽宁省清源县放牛沟含榴白云母花岗岩地质特征及构造环境探讨[J].吉林地质, 2005, 24(3):1-4. http://d.old.wanfangdata.com.cn/Periodical/jldz200503001
[71] 张晋瑞, 初航, 魏春景, 等.内蒙古中部构造混杂带晚古生代-早中生代变质基性岩的地球化学特征及其大地构造意义[J].岩石学报, 2014, 30(7):1935-1947. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201407009
[72] 徐备, 王志伟, 张立杨, 等.兴蒙陆内造山带[J].岩石学报, 2018, 34(10):2819-2844. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201810002
[73] Jian P, Liu D, Kröner A, et al. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia[J]. Lithos, 2010, 118:169-190. doi: 10.1016/j.lithos.2010.04.014
[74] Jian P, Kröner A, Windley B F, et al. Carboniferous and Cretaceous mafic-ultramafic massifs in Inner Monolia (China):A SHRIMP zircon and geochemical study of the previously presumed integral "Hegenshan ophiolite"[J]. Lithos, 2012, 142/143:48-66. doi: 10.1016/j.lithos.2012.03.007
[75] Chen C, Zhang Z C, Guo Z J, et al. Geochronology, geochemistry, and its geological significance of the Permian Mandula mafic rocks in Damaoqi, Inner Mongolia[J]. Science China Earth Science, 2012, 55(1):39-52. doi: 10.1007/s11430-011-4277-z
[76] Miao L, Fan W, Liu D, et al. Geochronology and geochemistry of the Hegenshan ophiolitic complex:Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China[J]. Journal of Asian Earth Sciences, 2008, 32(5/6):348-370.
[77] Feng J Y, Xiao W J, Windley B F, et al. Field geology, geochronology and geochemistry of mafic-ultramafic rocks from Alxa, China:implications for Late Permian accretionary tectonics in the southern Altaids[J]. Journal of Asian Earth Sciences, 2013, 78:114-142. doi: 10.1016/j.jseaes.2013.01.020
[78] Zheng R, Wu T, Zhang, W, et al. Late Paleozoic subduction system in the northern margin of the Alxa block, Altaids:geochronological and geochemical evidences from ophiolites[J]. Gondwana Research, 2014, 25:842-858. doi: 10.1016/j.gr.2013.05.011
[79] 李钢柱, 王玉净, 李成元, 等.内蒙古索伦山蛇绿岩带早二叠世放射虫动物群的发现及其地质意义[J].科学通报, 2017, 62:400-406. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201705007
[80] 胡骁.内蒙地槽区的蓝闪片岩及其地质特征[J].石家庄经济学院学报, 1983, 6(1):16-29. http://www.cnki.com.cn/Article/CJFDTotal-HBDX198301002.htm
[81] Tang K. Tectonic development of Paleozoic foldbelts at the north margin of the Sino-Korean Craton[J]. Tectonics, 1990, 9(2):249-260. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-TC009i002p00249/
[82] Tang K D, Yan Z Y. Regional metamorphism and tectonic evolution of the Inner Mongolian suture zone[J]. Journal of Metamorphic Geology, 1993, 11(4):511-522. doi: 10.1111/j.1525-1314.1993.tb00168.x
[83] Yan Z Y, Tang K D, Bai J W, et al. High pressure metamorphic rocks and their tectonic environment in Northeastern China[J]. Journal of Asian Earth Sciences, 1989, 3(1/4):303-313. http://cn.bing.com/academic/profile?id=a0c0013b8f7ad7d4cacc6b4c63ffb0f5&encoded=0&v=paper_preview&mkt=zh-cn
[84] 张晋瑞, 魏春景, 初航.兴蒙造山带构造演化的新模式:来自内蒙古中部四期不同类型变质作用的证据[J].岩石学报, 2018, 34(10):2857-2872. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201810004
[85] 陶继雄, 胡凤翔, 陈志勇.华北陆块北缘印支期S型花岗岩带特征及其构造环境[J].岩石矿物学杂志, 2003, 22(2):112-118. http://d.old.wanfangdata.com.cn/Periodical/yskwxzz200302002
[86] 许立权, 邓晋福, 陈志勇.内蒙古中部印支期强过铝质花岗岩的相平衡约束及动力学背景[J].地质通报, 2004, 23(8):790-794. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=200408145&flag=1
[87] 王鑫琳, 张臣, 刘树文, 等.河北康保地区花岗岩独居石电子探针定年[J].岩石学报, 2007, 23(4):817-822. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200704012
[88] 孟祥化, 葛铭.中国华北地台二叠纪前陆盆地的发现及其证据[J].地质科技情报, 2001, 20(1):8-14. http://d.old.wanfangdata.com.cn/Periodical/dzkjqb200101002
① 天津地质矿产研究所.内蒙古1: 5万那仁宝力格幅(K48E018018)、瑙云乌苏幅(K48E018019)、希宁乌苏庙幅(K48E019018)、玻璃庙幅(K48E019019)区调地质调查报告. 2011.
② 内蒙古自治区地质调查院.内蒙古1: 25万白云鄂博幅区域地质调查报告. 2003.