Geochemical, age and Hf-in-zircon isotopic characteristics and geological significance of granite and MME from the Mandelinwula pluton, northern Alxa block, Inner Mongolia
-
摘要:
内蒙古阿拉善地块北缘及其邻区广泛出露早古生代-早中生代侵入岩,其时空分布、源区物质组成及成因对研究阿拉善北部地区构造演化乃至整个中亚造山带南缘晚期的演化具有重要意义。曼德林乌拉岩体位于阿拉善地块北部雅布赖-诺尔公-洪古尔玉林带西段,岩体以二长花岗岩为主,广泛发育岩浆暗色包体。这些镁铁质包体为岩浆结构,大多具有塑性外形,并具有多种不平衡结构和矿物组合,如斜长石环带、针状磷灰石等。LA-ICP-MS锆石U-Pb测年结果显示,曼德林乌拉二长花岗岩年龄为271±3Ma,花岗岩中发育的包体年龄为271±2Ma,表明该岩体形成于二叠纪,而非之前认为的中生代。二长花岗岩的锆石εHf(t)值为-18.4~-10.1,相应的二阶段Hf模式年龄为1.8~2.3Ga;暗色包体中的13颗二叠纪锆石相应的εHf(t)值为-23.6~-9.1,相应的二阶段Hf模式年龄为1.7~2.5Ga。锆石Hf同位素特征表明,形成花岗岩和镁铁质暗色包体的这2种岩浆均来自以古老地壳物质为主的源区,这与东段诺尔公-红古尔玉林地区的中酸性侵入岩相同。曼德林乌拉岩体花岗质岩和镁铁质暗色包体的岩石学、地球化学及同位素研究表明,它们可能也具有岩浆混合成因。这为阿拉善地块北缘区域在二叠纪发生广泛的壳幔相互作用提供了进一步证据。
Abstract:Early Paleozoic to Early Mesozoic intrusive rocks are widely distributed in northern Alxa region, Inner Mongolia. The temporal and spatial distribution, magma source components and petrogenesis for these rocks are important for studying the tectonic evolution of northern Alxa, and even for studying the late stage evolution of the southern Central Asian orogenic belt. Mandelinwula pluton, located in the west part of the Yabulai-Nuoergong-Honggueryulin tectonic belt, is mainly composed of granite and monzogranite, and mafic microgranular enclaves (MME). The identified MME has fine-grained textures, sinuous margins and diffuse contacts with the host monzogranites, and various disequilibrium textures and mineral assemblages indicate mingling or mixing processes. LA-ICP-MS zircon U-Pb dating yielded ages of 271±3Ma and 271±2Ma for the monzogranite and MME, respectively, indicating that the Mandelinwula pluton was emplaced in Permian instead of in Early Mesozoic as suggested by previous researchers. Zircon εHf(t) values of the monzogranite and enclaves show a wide range and significant overlap from -18.4 to -10.1 (with TDM 1.8~2.3Ga) and -23.6 to -9.1 (with TDM 1.7~2.5Ga), respectively. The source characteristics are similar to those of the intermediate-felsic plutons in the east part of the Yabulai-Nuoergong-Honggueryulin belt of the northern Alxa block. Combined with petrology, geochemistry and Hf-in-zircon isotope studies, the authors propose a plausible magma mixing interpretation for the Mandelinwula monzogranite and MME.
-
Key words:
- zircon U-Pb age /
- Hf isotope /
- Alxa block /
- magma mixing
-
-
表 1 曼德林乌拉岩体中粒花岗岩及其镁铁质暗色包体LA-ICP-MS锆石U-Th-Pb年龄结果
Table 1. LA-ICP-MS zircon U-Th-Pb isotopic results for representative granites and MME from the Mandelinwula pluton
点号 元素含量/10-6 Th/U 同位素比值 同位素年龄/Ma Th U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 花岗岩 12LS80-01 101 214 0.5 0.04268 0.0013 0.3070 0.0290 0.0522 0.0050 293 205 272 23 269 8 12LS80-02 272 332 0.8 0.04331 0.0010 0.3115 0.0120 0.0522 0.0020 293 83 275 9 273 6 12LS80-03 98 176 0.6 0.05306 0.0013 0.3874 0.0203 0.0530 0.0028 327 114 332 15 333 8 12LS80-04 198 383 0.5 0.04731 0.0013 0.3450 0.0239 0.0529 0.0037 324 151 301 18 298 8 12LS80-0569110980.60.042560.00110.44120.01830.07520.003110748037113269712LS80-06 70 137 0.5 0.04312 0.0014 0.3081 0.0303 0.0518 0.0052 278 213 273 24 272 8 12LS80-07 92 180 0.5 0.04241 0.0016 0.3044 0.0388 0.0521 0.0068 288 272 270 30 268 10 12LS80-08 218 416 0.5 0.04263 0.0011 0.3065 0.0157 0.0522 0.0027 293 112 272 12 269 7 12LS80-09 123 211 0.6 0.04279 0.0014 0.3058 0.0323 0.0518 0.0056 278 229 271 25 270 9 12LS80-10 71 142 0.5 0.04354 0.0018 0.3125 0.0466 0.0521 0.0079 288 315 276 36 275 11 12LS80-11 185 332 0.6 0.04299 0.0011 0.3105 0.0143 0.0524 0.0024 302 100 275 11 271 7 12LS80-12 131 223 0.6 0.04263 0.0014 0.3154 0.0324 0.0537 0.0056 356 220 278 25 269 9 12LS80-13 105 191 0.5 0.04233 0.0015 0.3047 0.0343 0.0522 0.0060 295 241 270 27 267 9 12LS80-141152080.60.045150.00150.55390.04660.08900.0077140415744830285912LS80-15 99 182 0.5 0.04232 0.0013 0.3096 0.0274 0.0531 0.0048 332 191 274 21 267 8 12LS80-16 341 567 0.6 0.04303 0.0012 0.3085 0.0242 0.0520 0.0041 285 171 273 19 272 8 12LS80-17 108 183 0.6 0.04312 0.0012 0.3090 0.0232 0.0520 0.0039 284 164 273 18 272 7 12LS80-18 112 200 0.6 0.04323 0.0012 0.3116 0.0203 0.0523 0.0034 298 142 275 16 273 7 12LS80-19 137 306 0.4 0.0443 0.0013 0.3164 0.0283 0.0518 0.0047 277 194 279 22 279 8 12LS80-20 133 186 0.7 0.0436 0.0014 0.3125 0.0329 0.0520 0.0056 285 227 276 25 275 9 12LS80-21 97 165 0.6 0.04251 0.0016 0.3143 0.0394 0.0536 0.0068 355 265 278 30 268 10 12LS80-22 51 101 0.5 0.04312 0.0015 0.3143 0.0360 0.0529 0.0062 323 245 278 28 272 9 12LS80-23 90 151 0.6 0.04241 0.0020 0.3132 0.0567 0.0536 0.0099 353 371 277 44 268 12 12LS80-24 47 99 0.5 0.04254 0.0014 0.3180 0.0336 0.0542 0.0058 380 225 280 26 269 9 12LS80-25 166 458 0.4 0.04246 0.0010 0.3027 0.0129 0.0517 0.0022 272 93 269 10 268 6 暗色包体 12LS87-1 113 194 0.6 0.04367 0.0011 0.3116 0.0118 0.0520 0.0017 286 71 275 9 276 7 12LS87-2 117 191 0.6 0.04341 0.0011 0.3110 0.0111 0.0533 0.0016 342 67 275 9 274 7 12LS87-3 108 189 0.6 0.04273 0.0012 0.3126 0.0171 0.0523 0.0023 297 99 276 13 270 7 12LS87-4 258 287 0.9 0.04206 0.0015 0.3100 0.0386 0.0517 0.0052 273 213 274 30 266 9 12LS87-5 84 182 0.5 0.04369 0.0013 0.3118 0.0241 0.0512 0.0032 249 138 276 19 276 8 12LS87-6 130 193 0.7 0.04307 0.0015 0.3070 0.0400 0.0529 0.0056 326 222 272 31 272 9 12LS87-8 112 113 1.0 0.0525 0.0023 0.3999 0.0739 0.0573 0.0081 501 284 342 54 330 14 12LS87-9 185 197 0.9 0.04598 0.0013 0.3321 0.0260 0.0528 0.0033 321 136 291 20 290 8 12LS87-11 63 109 0.6 0.04324 0.0011 0.3094 0.0145 0.0516 0.0020 266 87 274 11 273 7 12LS87-12 207 253 0.8 0.04266 0.0011 0.3136 0.0127 0.0520 0.0018 284 76 277 10 269 7 12LS87-13 257 274 0.9 0.04302 0.0011 0.3112 0.0099 0.0539 0.0015 367 60 275 8 272 7 12LS87-14 112 230 0.5 0.04396 0.0012 0.3175 0.0213 0.0520 0.0028 283 120 280 16 277 8 12LS87-15 91 612 0.1 0.05612 0.0014 0.4152 0.0128 0.0546 0.0014 395 56 353 9 352 9 12LS87-16 82 187 0.4 0.2051 0.0054 2.3293 0.1570 0.0886 0.0029 1396 61 1221 48 1203 29 12LS87-17 283 345 0.8 0.04263 0.0012 0.3144 0.0209 0.0534 0.0029 346 118 275 16 269 7 12LS87-18 282 244 1.2 0.04494 0.0012 0.3305 0.0147 0.0537 0.0020 360 80 290 11 283 7 12LS87-19 1151 702 1.6 0.04292 0.0011 0.3144 0.0082 0.0536 0.0012 355 51 278 6 271 7 12LS87-20 124 279 0.4 0.04217 0.0011 0.3127 0.0121 0.0545 0.0018 392 70 276 9 266 7 12LS87-21 307 314 1.0 0.04391 0.0011 0.3148 0.0129 0.0532 0.0018 339 76 278 10 277 7 12LS87-22 162 232 0.7 0.04291 0.0011 0.3048 0.0143 0.0518 0.0020 275 86 270 11 271 7 12LS87-23 803 604 1.3 0.04225 0.0011 0.3067 0.0084 0.0541 0.0013 374 53 272 7 267 6 12LS87-24 292 263 1.1 0.04304 0.0011 0.3161 0.0117 0.0522 0.0016 293 69 279 9 272 7 12LS87-25 8 456 0.1 0.09453 0.0023 0.7824 0.0184 0.0607 0.0012 629 42 587 11 582 14 12LS87-26 299 661 0.5 0.04232 0.0011 0.3098 0.0093 0.0530 0.0014 329 58 274 7 267 6 12LS87-27 678 565 1.2 0.04283 0.0011 0.3168 0.0098 0.0530 0.0014 330 59 279 8 270 7 12LS87-28 391 404 1.0 0.04208 0.0011 0.3118 0.0113 0.0525 0.0016 308 68 276 9 266 7 12LS87-29 214 334 0.6 0.04249 0.0011 0.3041 0.0110 0.0528 0.0016 320 68 270 9 268 7 12LS87-30 523 508 1.0 0.04388 0.0012 0.3165 0.0173 0.0527 0.0023 315 98 279 13 277 7 注:带删除线数据为不列入年龄加权平均值计算的数据 表 2 曼德林乌拉岩体花岗岩和暗色包体锆石Lu-Hf同位素分析结果
Table 2. Zircon Hf isotopic compositions of granite and MME from the Mandelinwula pluton
测点 年龄/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ 176Hf/177Hfi εHf(0) εHf(t) TDM1 /Ma TDM2/Ma fLu/Hf 花岗岩 12LS80-01 271 0.035959 0.001406 0.282115 0.00003 0.282108 -23.23 -17.53 1618 2195 -0.96 12LS80-02 298 0.029953 0.001159 0.282079 0.00003 0.282072 -24.51 -18.2 1658 2254 -0.97 12LS80-03 333 0.025784 0.001013 0.282129 0.00002 0.282123 -22.75 -15.66 1583 2137 -0.97 12LS80-04 271 0.024158 0.000962 0.282203 0.00003 0.282198 -20.12 -14.35 1477 2015 -0.97 12LS80-05 271 0.037886 0.001512 0.282325 0.00003 0.282317 -15.82 -10.14 1327 1775 -0.95 12LS80-06 271 0.025582 0.001018 0.282172 0.00003 0.282167 -21.22 -15.46 1523 2078 -0.97 12LS80-07 271 0.030077 0.001177 0.282181 0.00003 0.282175 -20.91 -15.18 1517 2062 -0.96 12LS80-08 271 0.023316 0.000959 0.282206 0.00003 0.282201 -20.02 -14.25 1473 2009 -0.97 12LS80-09 271 0.022060 0.000882 0.282117 0.00004 0.282113 -23.16 -17.37 1593 2186 -0.97 12LS80-10 271 0.022063 0.000907 0.282135 0.00003 0.282130 -22.54 -16.75 1570 2152 -0.97 12LS80-11 271 0.018695 0.000753 0.282166 0.00003 0.282162 -21.45 -15.64 1521 2088 -0.98 12LS80-12 271 0.054338 0.002126 0.282292 0.00003 0.282281 -16.97 -11.4 1396 1847 -0.94 12LS80-13 271 0.027351 0.001048 0.282161 0.00003 0.282155 -21.61 -15.86 1540 2100 -0.97 12LS80-14 271 0.022858 0.000883 0.282177 0.00003 0.282173 -21.03 -15.24 1510 2066 -0.97 12LS80-15 271 0.022618 0.000822 0.282181 0.00003 0.282177 -20.89 -15.09 1502 2057 -0.98 12LS80-16 271 0.021927 0.000896 0.282088 0.00003 0.282083 -24.2 -18.41 1635 2246 -0.97 12LS80-17 271 0.027152 0.001013 0.282314 0.00003 0.282309 -16.19 -10.42 1324 1791 -0.97 暗色包体 12LS87-01 271 0.034046 0.001263 0.282232 0.00004 0.282226 -19.08 -13.36 1448 1959 -0.96 12LS87-02 271 0.029511 0.001099 0.282187 0.00004 0.282181 -20.69 -14.95 1505 2049 -0.97 12LS87-03 271 0.024021 0.000811 0.282351 0.00003 0.282347 -14.9 -9.09 1266 1715 -0.98 12LS87-04 271 0.096860 0.003059 0.282183 0.00003 0.282168 -20.82 -15.42 1593 2075 -0.91 12LS87-05 271 0.021981 0.000766 0.282278 0.00003 0.282274 -17.48 -11.67 1366 1862 -0.98 12LS87-06 330 0.049137 0.001569 0.282175 0.00003 0.282165 -21.11 -14.21 1541 2052 -0.95 12LS87-07 271 0.026684 0.000915 0.282283 0.00003 0.282278 -17.31 -11.53 1365 1854 -0.97 12LS87-08 271 0.051853 0.001690 0.282130 0.00003 0.282122 -22.7 -17.06 1610 2168 -0.95 12LS87-09 271 0.031102 0.001093 0.282110 0.00002 0.282105 -23.4 -17.65 1612 2203 -0.97 12LS87-10 1396 0.023575 0.000816 0.282085 0.00002 0.282063 -24.31 5.95 1636 1744 -0.98 12LS87-11 352 0.022408 0.000835 0.282196 0.00003 0.282191 -20.35 -12.82 1482 1990 -0.97 12LS87-12 271 0.053136 0.001838 0.282038 0.00002 0.282028 -25.97 -20.36 1747 2355 -0.94 12LS87-13 271 0.043279 0.001579 0.282057 0.00002 0.282049 -25.28 -19.62 1708 2314 -0.95 12LS87-14 271 0.066729 0.002402 0.281947 0.00003 0.281934 -29.19 -23.68 1905 2542 -0.93 12LS87-15 271 0.050055 0.001885 0.282046 0.00002 0.282036 -25.69 -20.08 1738 2339 -0.94 12LS87-16 271 0.047634 0.001746 0.281966 0.00002 0.281957 -28.51 -22.88 1844 2498 -0.95 12LS87-17 582 0.048090 0.001821 0.282058 0.00002 0.282038 -25.24 -13.14 1717 2185 -0.95 表 3 曼德林乌拉岩体花岗岩主量、微量和稀土元素含量
Table 3. Major, trace and rave earth elements composition of granites and MME from Mandelinwula pluton
元素 12LS80 12LS81 12LS87 12LS88 12LS89 12LS90 中粒花岗岩 中粒花岗岩 MME MME 中粗粒二长花岗岩 中粗粒二长花岗岩 SiO2 68.3 68.39 57.43 56.96 69.84 72.24 TiO2 0.4 0.38 0.74 0.77 0.31 0.26 Al2O3 15.03 15.08 16.43 16.7 14.76 13.88 Fe2O3 4.03 4.01 7.99 8.95 3.21 2.64 MgO 1.18 1.2 3.05 3.23 0.79 0.67 MnO 0.06 0.07 0.17 0.19 0.06 0.05 CaO 3.33 3.2 5.35 5.46 2.33 2.08 Na2O 3.75 3.61 3.87 4.42 3.46 3.2 K2O 2.83 3.11 3.42 1.94 4.18 4.33 P2O5 0.1 0.1 0.18 0.23 0.08 0.07 烧失量 0.8 0.7 1.1 0.9 0.8 0.4 总计 99.8 99.8 99.8 99.8 99.8 99.8 Sc 6 7 17 19 6 5 V 43 41 103 119 25 22 Co 7.4 6.6 16 19 4 3.7 Cu 3.9 1.5 16 29.9 1.5 0.8 Zn 44 42 56 65 37 31 Ga 16.8 15.3 17.9 19.1 16.3 13.9 Rb 99.2 97.3 129.6 105.2 142 137.7 Sr 319 306 303.6 303.9 268.5 253.8 Y 14.1 13 25.7 31.5 13.6 12.6 Zr 143.2 145.3 109.2 163.6 128.2 116.1 Nb 8.4 5.9 7.6 11 5.2 4.2 Cs 3.6 3.7 5.7 10.5 4.5 2.9 Ba 672 700 772 491 1008 1005 La 18.8 19.4 25.6 30.8 9 19.7 Ce 36.5 37.8 63.3 63.8 18.7 34.4 Pr 4.23 4.09 7.77 8.94 2.4 3.76 Nd 13.4 15.2 32.6 32.3 9.8 13.2 Sm 2.89 2.85 5.59 6.94 2.48 2.57 Eu 0.71 0.69 0.89 1 0.58 0.59 Gd 2.49 2.5 4.88 6.67 2.44 2.38 Tb 0.39 0.38 0.8 1.02 0.38 0.37 Dy 2.51 2.17 4.75 5.38 2.59 2.19 Ho 0.46 0.48 0.96 1.12 0.49 0.47 Er 1.49 1.31 2.75 3.65 1.54 1.32 Tm 0.2 0.2 0.42 0.52 0.23 0.18 Yb 1.56 1.41 2.88 3.69 1.44 1.4 Lu 0.23 0.21 0.44 0.56 0.24 0.21 Hf 4.1 4.3 3.1 6.6 3.4 3.2 Ta 0.4 0.4 0.5 0.8 0.4 0.3 Pb 2.9 5.6 5.5 3.6 5.6 4.3 Th 8.8 6.2 4.1 5.5 4.8 4.6 U 0.6 0 0.7 0.8 0.8 0.8 注:主量元素含量单位为%,微量和稀土元素含量单位为10-6;样品12LS90取样位置为39.89°N、103.75°E,其他样品采样位置为39.88°N、103.77°E -
[1] Petford N, Cruden A R, McCaffrey K J, et al. Granite magma formation, transport and emplacement in the Earth's crust[J]. Nature, 2000, 408(6813):669. doi: 10.1038/35047000
[2] Pitcher W S. The nature and origin of granite (Second edition)[M]. Springer Science & Business Media, London, 1997:1-401.
[3] 吴福元, 李献华, 杨进辉, 等.花岗岩成因研究的若干问题[J].岩石学报, 2007, 23(6):1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001
[4] 王涛, 王晓霞, 郭磊, 等.花岗岩与大地构造[J].岩石学报, 2017, 33(5):1459-1478. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201705006
[5] Zhang J J, Wang T, Castro A, et al. Multiple mixing and hybridization from magma source to final emplacement in the Permian Yamatu pluton, the Northern Alxa Block, China[J]. Journal of Petrology, 2016, 57(5):933-979. doi: 10.1093/petrology/egw028
[6] Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos, 1999, 46(3):605-626. doi: 10.1016/S0024-4937(98)00085-1
[7] Barbarin B. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California:nature, origin, and relations with the hosts[J]. Lithos, 2005, 80(1/4):155-177. http://cn.bing.com/academic/profile?id=ad926466618820ee2d4088e117807806&encoded=0&v=paper_preview&mkt=zh-cn
[8] Bateman R. The interplay between crystallization, replenishment and hybridization in large felsic magma chambers[J]. Earth-Science Reviews, 1995, 39(1/2):91-106. http://cn.bing.com/academic/profile?id=353df177d0489a0f4e0ca9b46ba9c595&encoded=0&v=paper_preview&mkt=zh-cn
[9] Castro A. Tonalite-granodiorite suites as cotectic systems:a review of experimental studies with applications to granitoid petrogenesis[J]. Earth-Science Reviews, 2013, 24:68-95. http://cn.bing.com/academic/profile?id=f6c74e9e5572061681525901e2e41167&encoded=0&v=paper_preview&mkt=zh-cn
[10] Jiang D S, Xu X S, Xia Y, et al. Magma mixing in a granite and related rock association:Insight from its mineralogical, petrochemical, and "reversed isotope" features[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(3):2262-2285. doi: 10.1002/2017JB014886
[11] Dan W, Wang Q, Wang X C, et al. Overlapping Sr-Nd-Hf-O isotopic compositions in Permian mafic enclaves and host granitoids in Alxa Block, NW China:Evidence for crust-mantle interaction and implications for the generation of silicic igneous provinces[J]. Lithos, 2015, 230:133-145. doi: 10.1016/j.lithos.2015.05.016
[12] Liu Q, Zhao G C, Han Y G, et al. Geochronology and geochemistry of Permian to Early Triassic granitoids in the Alxa Terrane:Constraints on the final closure of the Paleo-Asian Ocean[J]. Lithosphere, 2017, 9(4):665-680. http://cn.bing.com/academic/profile?id=b63d0553f51bf93ff258b5907242f88f&encoded=0&v=paper_preview&mkt=zh-cn
[13] 张磊, 史兴俊, 张建军, 等.内蒙古阿拉善北部陶豪托西圈辉长岩LA-ICP-MS锆石U-Pb年龄和地球化学特征[J].中国区域地质, 2013, 32(10):1536-1547. doi: 10.3969/j.issn.1671-2552.2013.10.005
[14] 吴泰然, 何国琦.阿拉善地块北缘的蛇绿混杂岩带及其大地构造意义[J].现代地质, 1992, 6(3):286-296.
[15] 吴泰然, 何国琦.内蒙古阿拉善地块北缘的构造单元[J].地质学报, 1993, 67:97-108.
[16] 王廷印, 张铭杰, 王金荣, 等.恩格尔乌苏冲断带特征及大地构造意义[J].地质科学, 1998, 33(4):385-394. doi: 10.3321/j.issn:0563-5020.1998.04.001
[17] 王廷印, 吴茂炳.阿拉善地区华北板块北部陆缘区成矿作用的研究[J].兰州大学学报:自然科学版, 1993, 29(4):252-256. http://www.cnki.com.cn/Article/CJFDTotal-LDZK199304055.htm
[18] 王廷印, 王士政, 王金荣.阿拉善北部恩格尔乌苏蛇绿混杂岩带的发现及其构造意义[J].兰州大学学报:自然科学版, 1992, 28(2):194-196.
[19] Zheng R, Wu T, Zhang W, et al. Late Paleozoic subduction system in the northern margin of the Alxa block, Altaids:geochronological and geochemical evidences from ophiolites[J]. Gondwana Research, 2014, 25(2):842-858. doi: 10.1016/j.gr.2013.05.011
[20] 王金荣, 宋春晖, 高军平, 等.阿拉善北部恩格尔乌苏蛇绿混杂岩的形成机制[J]兰州大学学报(自然科学版), 1995, 31:140-146. http://www.cnki.com.cn/Article/CJFDTotal-LDZK502.024.htm
[21] Dan W, Li X H, Guo J, et al. Paleoproterozoic evolution of the eastern Alxa Block, westernmost North China:evidence from in situ zircon U-Pb dating and Hf-O isotopes[J]. Gondwana Research, 2012, 21(4):838-864. doi: 10.1016/j.gr.2011.09.004
[22] Feng J Y, Xiao W J, Windley B, et al. Field geology, geochronology and geochemistry of mafic-ultramafic rocks from Alxa, China:implications for Late Permian accretionary tectonics in the southern Altaids[J]. Journal of Asian Earth Sciences, 2013, 78:114-142. doi: 10.1016/j.jseaes.2013.01.020
[23] Liu Q, Zhao G C, Sun M, et al. Early Paleozoic subduction processes of the Paleo-Asian Ocean:Insights from geochronology and geochemistry of Paleozoic plutons in the Alxa Terrane[J]. Lithos, 2016, 262:546-560. doi: 10.1016/j.lithos.2016.07.041
[24] Shi X J, Wang T, Zhang L, et al. Timing, petrogenesis and tectonic setting of the Late Paleozoic gabbro-granodiorite-granite intrusions in the Shalazhashan of northern Alxa:Constraints on the southernmost boundary of the Central Asian Orogenic Belt[J]. Lithos, 2014, 208:158-177. http://cn.bing.com/academic/profile?id=91d1a334a9ede59d2a611ac0613b0f89&encoded=0&v=paper_preview&mkt=zh-cn
[25] Zhang J J, Wang T, Zhang L, et al. Tracking deep crust by zircon xenocrysts within igneous rocks from the northern Alxa, China:Constraints on the southern boundary of the Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2015, 108:150-169. doi: 10.1016/j.jseaes.2015.04.019
[26] 史兴俊, 张磊, 王涛, 等.阿拉善北部宗乃山地区片麻岩锆石UPb年龄, Hf同位素特征及其构造归属探讨[J].岩石学报, 2016, 32(11):3518-3536. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201611021.htm
[27] 叶珂, 张磊, 王涛, 等.阿拉善雅布赖山二叠纪中酸性岩浆岩年代学, 地球化学, 锆石Hf同位素特征及构造意义[J].岩石矿物学杂志, 2016, 35(6):901-928. doi: 10.3969/j.issn.1000-6524.2016.06.001
[28] 霍雨佳, 张磊, 王毛毛, 等.阿拉善北大山乌布日布特地区晚古生代侵入岩的地球化学、锆石U-Pb年龄、Hf同位素特征及其地质意义[J].地质学报, 2019(待刊).
[29] 张建新, 宫江华.阿拉善地块性质和归属的再认识[J].岩石学报, 2018, 34(4):940-962. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201804006
[30] 王毛毛, 张磊, 霍雨佳, 等.龙首山-北大山北部的属性——来自海森楚鲁片麻岩锆石U-Pb年龄和Hf同位素的约束[J].岩石矿物学杂志, 2019, 38(5):1-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201905003
[31] Dan W, Li X H, Wang Q, et al. An Early Permian (ca. 280Ma) silicic igneous province in the Alxa Block, NW China:A magmatic flare-up triggered by a mantle-plume?[J]. Lithos, 2014, 204:144-158. doi: 10.1016/j.lithos.2014.01.018
[32] 史兴俊, 童英, 王涛, 等.内蒙古西部阿拉善地区哈里努登花岗岩LA-ICP-MS锆石U-Pb年龄和地球化学特征[J].地质通报, 2012, 31(5):662-670. doi: 10.3969/j.issn.1671-2552.2012.05.003 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20120503&flag=1
[33] 杨奇荻, 张磊, 王涛, 等.内蒙古阿拉善地块北缘沙拉扎山晚石炭世岩体地球化学特征与LA-ICP-MS锆石U-Pb年龄[J].地质通报, 2014, 33(6):776-787. doi: 10.3969/j.issn.1671-2552.2014.06.002 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20140602&flag=1
[34] Chen Y, Wu T R, Gan L S, et al. Provenance of the early to midPaleozoic sediments in the northern Alxa area:Implications for tectonic evolution of the southwestern Central Asian Orogenic Belt[J]. Gondwana Research, 2019, 67:115-130. doi: 10.1016/j.gr.2018.10.017
[35] Song D F, Xiao W J, Collins A S, et al. Final subduction processes of the Paleo-Asian Ocean in the Alxa Tectonic Belt (NW China):Constraints from field and chronological data of Permian arcrelated volcano-sedimentary rocks[J]. Tectonics, 2018, 37(6):1658-1687. doi: 10.1029/2017TC004919
[36] Zhang J, Li J Y, Xiao W X, et al. Kinematics and geochronology of multistage ductile deformation along the eastern Alxa block, NW China:New constraints on the relationship between the North China Plate and the Alxa block[J]. Journal of Structural Geology, 2013, 57:38-57. doi: 10.1016/j.jsg.2013.10.002
[37] Zhang Y, Zhang J, Chen X, et al. Late Palaeozoic tectonic setting of the southern Alxa Block, NW China:constrained by age and composition of diabase[J]. International Geology Review, 2017, 59(8):1028-1046. doi: 10.1080/00206814.2016.1253036
[38] Song D F, Xiao W J, Collins A S, et al. Late Carboniferous-early Permian arc magmatism in the south-western Alxa Tectonic Belt (NW China):Constraints on the late Palaeozoic subduction history of the Palaeo-Asian Ocean[J]. Geological Journal, 2018, 54:1046-1063.
[39] Shi G Z, Wang H, Liu E T, et al. Sr-Nd-Pb isotope systematics of the Permian volcanic rocks in the northern margin of the Alxa Block (the Shalazhashan Belt) and comparisons with the nearby regions:Implications for a Permian rift setting?[J]. Journal of Geodynamics, 2018, 115:43-56. doi: 10.1016/j.jog.2018.01.007
[40] 耿元生, 王新社, 沈其韩, 等.内蒙古阿拉善地区前寒武纪变质岩系形成时代的初步研究[J].中国地质, 2007, 34(2):251-261. doi: 10.3969/j.issn.1000-3657.2007.02.006
[41] 耿元生, 周喜文.阿拉善地区新元古代早期花岗岩的地球化学和锆石Hf同位素特征[J].岩石学报, 2011, 27(4):897-908. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201104001
[42] Dan W, Li X H, Guo J, et al. Paleoproterozoic evolution of the eastern Alxa Block, westernmost North China:evidence from in situ zircon U-Pb dating and Hf-O isotopes[J]. Gondwana Research, 2012, 21(4):838-864. doi: 10.1016/j.gr.2011.09.004
[43] Wu S J, Hu J M, Ren M H, et al. Petrography and zircon U-Pb isotopic study of the Bayanwulashan Complex:constrains on the Paleoproterozoic evolution of the Alxa Block, westernmost North China Craton[J]. Journal of Asian Earth Sciences, 2014, 94:226-239. doi: 10.1016/j.jseaes.2014.05.011
[44] Gong J H, Zhang J X, Wang Z Q, et al. Origin of the Alxa Block, western China:New evidence from zircon U-Pb geochronology and Hf isotopes of the Longshoushan Complex[J]. Gondwana Research, 2016, 36:359-375. doi: 10.1016/j.gr.2015.06.014
[45] 耿元生, 周喜文.阿拉善变质基底中的早二叠世岩浆热事件——来自同位素年代学的证据[J].岩石学报, 2012, 28(9):2667-2685. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201209001
[46] 包创, 陈岳龙, 李大鹏.阿拉善地块北缘朱拉扎嘎毛道晚二叠世火山岩的发现[J].地学前缘, 2012, 19(5):156-163. http://d.old.wanfangdata.com.cn/Periodical/dxqy201205016
[47] 邹雷, 刘平华, 田忠华, 等.东阿拉善地块前寒武纪变质基底中晚古生代变质杂岩:来自波罗斯坦庙杂岩LA-ICP-MS锆石UPb定年的新证据[J].地球科学, 2018, 44(4):1406-1423. http://d.old.wanfangdata.com.cn/Periodical/dqkx201904024
[48] 党智财, 李俊建, 赵泽霖, 等.内蒙古阿拉善左旗巴音诺尔公花岗岩体TIMS锆石U-Pb年龄[J].地质通报, 2016, 35(4):593-598. doi: 10.3969/j.issn.1671-2552.2016.04.015 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20160415&flag=1
[49] van Achterbergh E, Ryan C, Jackson S, et al. Data reduction software for LA-ICPMS. Laser-Ablation-ICPMS in the earth sciences-principles and applications[J]. Miner. Assoc. Can., 2001, 29:239-243.
[50] 侯可军, 李延河, 邹天人, 等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报, 2007, 23(10):2595-25604. doi: 10.3969/j.issn.1000-0569.2007.10.025
[51] Wu F Y, Yang Y H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology, 2006, 234(1/2):105-126. http://cn.bing.com/academic/profile?id=24086f166a5d00f31562408bac3ae1f4&encoded=0&v=paper_preview&mkt=zh-cn
[52] Chu N C, Taylor R N, Chavagnac V, et al. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry:an evaluation of isobaric interference corrections[J]. Journal of Analytical Atomic Spectrometry, 2002, 17(12):1567-1574. doi: 10.1039/b206707b
[53] Morel M L, Nebel O, Nebel-Jacobsen Y J, et al. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS[J]. Chemical Geology, 2008, 255(1/2):231-235. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1c7ffc35c732ec0b528043cdec4a2a69
[54] Elhlou S, Belousova E, Griffin W L, et al. Trace element and isotopic composition of GJ-red zircon standard by laser ablation[J]. Geochimica et Cosmochimica Acta Supplement, 2006, 70:A158. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.gca.2006.06.1383/
[55] Scherer E E, Whitehouse M J, Münker C. Zircon as a monitor of crustal growth[J]. Elements, 2007, 3:19-24. doi: 10.2113/gselements.3.1.19
[56] Bouvier A, Vervoort J D, Patchett P J. The Lu-Hf and Sm-Nd isotopic composition of CHUR:constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets[J]. Earth and Planetary Science Letters, 2008, 273:48-57. doi: 10.1016/j.epsl.2008.06.010
[57] Griffin W, Pearson N, Belousova E, et al. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64:133-147. doi: 10.1016/S0016-7037(99)00343-9
[58] Chauvel C, Garçon M, Bureau S, et al. Constraints from loess on the Hf-Nd isotopic composition of the upper continental crust[J]. Earth and Planetary Science Letters, 2014, 388:48-58. doi: 10.1016/j.epsl.2013.11.045
[59] Le Maitre R W. A classification of igneous rocks and glossary of terms (second edition)[M]. Cambridge University Press, 2002.
[60] Frost B R, Barnes C G, Collins W J, et al. A geochemical classification for granitic rocks[J]. Journal of petrology, 2001, 42(11):2033-2048. doi: 10.1093/petrology/42.11.2033
[61] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101:635-643 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[62] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[63] Gerya T V, Yuen D A. Rayleigh-Taylor instabilities from hydration and melting propel 'cold plumes' at subduction zones[J]. Earth and Planetary Science Letters, 2003, 212(1/2):47-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=35e3d8207d85c5f94669e973e3c42437
[64] Gerya T V, Yuen D A, Sevre E O. Dynamical causes for incipient magma chambers above slabs[J]. Geology, 2004, 32(1):89-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aa28ffc8f91052c8428c304820aac857
[65] Vogt K, Gerya T V, Castro A. Crustal growth at active continental margins:numerical modeling[J]. Physics of the Earth and Planetary Interiors, 2012, 192:1-20. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0225970108/
[66] Vogt K, Castro A, Gerya T V. Numerical modeling of geochemical variations caused by crustal relamination[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(2):470-487. doi: 10.1002/ggge.20072
[67] Castro A, Vogt K, Gerya T V. Generation of new continental crust by sublithosphericsilicic-magma relamination in arcs:a test of Taylor's andesite model[J]. Gondwana Research, 2013, 23(4):1554-1566. doi: 10.1016/j.gr.2012.07.004
[68] Castro A. Generation of I-type granitic rocks by melting of heterogeneous lower crust:Comment[J]. Geology. 2019, 47(3):e455. doi: 10.1130/G45797C.1
① 甘肃省地质局区域地质调查队.中华人民共和国1: 20万地质图, 阿贵庙幅(J-48-2). 1978.
-