Zircon U-Pb age and geochemistry of the Guangmashan monzonitic porphyry in Ninglang, Yunnan Province
-
摘要:
宁蒗光马山二长斑岩位于扬子陆块西缘、金沙江断裂带小金河断裂与宾川-程海断裂夹持部位。通过对宁蒗光马山二长斑岩进行锆石U-Pb定年,获得年龄为33.37±0.26Ma(MSWD=1.7,1σ),表明其形成时代为渐新世早期,与盐源-丽江富碱斑岩带主体侵位时代一致。岩石SiO2含量为61.55%~69.13%,全碱(Na2O+K2O)含量为8.85%~10.92%,N/K值为0.88~1.07,A/NK值为1.54~1.84,A/CNK值为1.23~1.72,属过铝质碱性石英二长斑岩。同时富集轻稀土元素、亏损重稀土元素,高La/Yb值,低Y、Yb和镁值(Mg# < 0.5),表明其具有大陆型或钾质C型埃达克岩的特征。该岩石可能形成于区内加厚地壳变泥质岩部分熔融,其起源演化受金沙江-红河走滑断裂系控制,是新生代印度-欧亚板块碰撞后伸展构造背景的产物。
Abstract:The Guangmashan monzonitic porphyry in Ninglang is located between Xiaojinhe and Binchuan-Chenhai faults in western Yangtze block. In this paper, the authors carried out LA-ICP-MS zircon U-Pb dating for the monzonite porphyry and obtained a weighted mean age of 33.37±0.26Ma, suggesting Oligocene, which is consistent with the main formation age of Lijiang-Beiya alkali-rich porphyritic belt. The monzonite porphyry shows peraluminous alkaline affinities, with SiO2 content of 61.55%~69.13%, (Na2O+K2O) content of 8.85%~10.92%, N/K ratio of 0.88~1.07, A/NK ratio of 1.54~1.84, and A/CNK ratio of 1.23~1.72. It is also enriched in LREE but depleted in HREE, with high ratio La/Yb, low Y and Yb content, and low values of Mg#(< 0.5). The porphyry shows continent-type potassium C-type adakite characteristics, and might have been derived by partial melting of the thickened lower crust caused by Jinshajiang-Red River strike-slip fault system, formed in an extensional setting at post-collisional stage, caused by the collision between the India and Eurasian blocks.
-
Key words:
- zircon U-Pb age /
- geochemistry /
- monzonitic porphyry /
- Ninglang
-
图 6 光马山二长斑岩体稀土元素配分模式图[21]
Figure 6.
表 1 光马山二长斑岩LA-ICP-MS锆石U-Th-Pb同位素分析结果
Table 1. LA-ICP-MS zircon U-Th-Pb dating data for the Guangmashan monzonitic porphyry
测点号 Th/10-6 U/10-6 Th/U Pb/10-6 普通铝(207法)校对后同位素比值 普通铝(207法)校对后表生年龄/Ma 207Pb/206Pb ±1σ 207Pb/U235 ±1σ 206Pb/238U ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ PM15b5-01 561 637 0.88 3.88 0.0477 0.0034 0.0325 0.0022 0.0050 0.0001 83.4 172 32.5 2.2 32.3 0.5 PM15b5-02 607 767 0.79 4.57 0.0494 0.0038 0.0330 0.0021 0.0050 0.0001 165 180 33.0 2.0 32.4 0.5 PM15b5-03 353 384 0.92 2.46 0.0504 0.0046 0.0346 0.0027 0.0052 0.0001 217 196 34.5 2.6 33.7 0.6 PM15b5-04 549 687 0.80 4.00 0.0469 0.0029 0.0317 0.0018 0.0050 0.0001 42.7 141 31.7 1.7 32.0 0.5 PM15b5-05 662 756 0.88 4.70 0.0477 0.0037 0.0326 0.0021 0.0051 0.0001 83.4 174 32.6 2.1 33.0 0.5 PM15b5-06 536 694 0.77 4.34 0.0483 0.0032 0.0346 0.0023 0.0053 0.0001 122 143 34.5 2.2 33.9 0.5 PM15b5-07 943 959 0.98 6.15 0.0472 0.0025 0.0333 0.0018 0.0051 0.0001 61.2 122 33.2 1.7 33.0 0.5 PM15b5-08 535 669 0.80 4.20 0.0472 0.0029 0.0340 0.0019 0.0053 0.0001 57.5 141 33.9 1.9 33.9 0.5 PM15b5-09 608 590 1.03 3.93 0.0468 0.0030 0.0330 0.0019 0.0052 0.0001 39.0 148 33.0 1.8 33.5 0.6 PM15b5-10 619 738 0.84 4.68 0.0486 0.0034 0.0338 0.0022 0.0052 0.0001 128 156 33.7 2.1 33.4 0.5 PM15b5-11 268 245 1.10 1.69 0.0494 0.0045 0.0346 0.0029 0.0053 0.0001 169 200 34.5 2.8 33.9 0.7 PM15b5-12 844 916 0.92 5.85 0.0475 0.0026 0.0326 0.0017 0.0050 0.0001 76.0 122 32.6 1.7 32.4 0.5 PM15b5-13 504 695 0.73 4.27 0.0468 0.0026 0.0327 0.0018 0.0051 0.0001 39.0 126 32.7 1.8 33.0 0.5 PM15b5-14 470 444 1.06 3.09 0.0489 0.0039 0.0344 0.0023 0.0054 0.0001 143 178 34.3 2.3 34.6 0.6 PM15b5-15 655 794 0.82 4.97 0.0474 0.0027 0.0340 0.0020 0.0052 0.0001 77.9 120 33.9 2.0 33.6 0.5 PM15b5-16 598 540 1.11 3.78 0.0483 0.0031 0.0350 0.0021 0.0053 0.0001 122 131 34.9 2.1 34.0 0.6 PM15b5-17 527 590 0.89 3.87 0.0483 0.0034 0.0344 0.0023 0.0053 0.0001 122 150 34.3 2.2 33.8 0.5 PM15b5-18 903 832 1.09 5.55 0.0478 0.0025 0.0334 0.0017 0.0051 0.0001 87.1 122 33.3 1.7 32.9 0.4 PM15b5-19 606 684 0.89 4.42 0.0473 0.0033 0.0335 0.0022 0.0051 0.0001 64.9 156 33.5 2.2 33.1 0.5 PM15b5-20 456 675 0.67 4.19 0.0479 0.0033 0.0337 0.0021 0.0052 0.0001 98.2 156 33.6 2.1 33.2 0.4 PM15b5-21 403 397 1.02 2.72 0.0491 0.0046 0.0349 0.0029 0.0054 0.0001 154 207 34.8 2.8 34.5 0.7 PM15b5-22 527 634 0.83 4.30 0.0480 0.0030 0.0357 0.0021 0.0054 0.0001 98.2 141 35.6 2.0 34.9 0.5 PM15b5-23 619 459 1.35 3.26 0.0480 0.0040 0.0345 0.0027 0.0053 0.0001 98.2 185 34.4 2.7 34.1 0.6 PM15b5-24 840 811 1.03 5.52 0.0482 0.0030 0.0342 0.0020 0.0052 0.0001 109 141 34.1 2.0 33.6 0.6 PM15b5-25 304 302 1.01 2.03 0.0473 0.0046 0.0329 0.0030 0.0051 0.0001 77.9 202 32.9 3.0 32.8 0.6 PM15b5-26 516 693 0.74 4.43 0.0470 0.0032 0.0331 0.0021 0.0052 0.0001 50.1 161 33.0 2.1 33.1 0.5 PM15b5-27 424 366 1.16 2.60 0.0500 0.0047 0.0349 0.0028 0.0053 0.0001 198 268 34.8 2.8 34.0 0.7 PM15b5-28 533 632 0.84 4.19 0.0474 0.0032 0.0340 0.0022 0.0053 0.0001 77.9 156 34.0 2.1 33.8 0.6 PM15b5-29 355 492 0.72 3.09 0.0481 0.0036 0.0344 0.0024 0.0052 0.0001 106 170 34.3 2.4 33.7 0.7 PM15b5-30 357 469 0.76 2.98 0.0475 0.0036 0.0331 0.0023 0.0052 0.0001 72.3 183 33.1 2.3 33.4 0.6 表 2 光马山二长斑岩主量、微量和稀土元素分析结果
Table 2. Analytical results of major, trace elements and REE of the Guangmashan monzonitic porphyry
样品编号 GMS1b1 PM15b1 PM15b2 PM15b3 PM15b4 PM15b5 SiO2 61.55 65.42 66.63 69.13 65.96 67.29 TiO2 0.47 0.38 0.38 0.24 0.36 0.21 Al2O3 16.94 16.10 16.28 15.86 15.89 16.96 Fe2O3 1.59 1.97 1.62 1.61 0.95 1.30 FeO 1.75 1.21 1.48 0.59 2.36 1.04 MnO 0.06 0.03 0.04 0.04 0.07 0.02 MgO 1.85 1.53 1.40 0.22 1.62 0.27 CaO 3.55 1.44 0.62 0.65 1.40 0.61 Na2O 4.78 5.14 4.37 5.27 4.73 5.38 K2O 5.42 4.80 4.48 5.03 4.49 5.54 P2O5 0.37 0.27 0.27 0.10 0.24 0.08 烧失量 1.09 1.33 2.09 0.86 1.65 1.02 总量 99.42 99.62 99.66 99.61 99.71 99.72 Na2O+K2O 10.20 9.94 8.85 10.30 9.22 10.92 Na2O/K2O 0.88 1.07 0.98 1.05 1.05 0.97 A/NK 1.66 1.62 1.84 1.54 1.72 1.55 A/CNK 1.23 1.41 1.72 1.45 1.50 1.47 Sc 6.66 5.33 3.65 1.62 2.89 1.38 Ni 22.80 23.10 22.20 22.10 21.90 22.60 Th 39.80 40.30 38.90 38.50 40.60 39.60 U 8.31 8.92 7.68 6.86 8.73 852.00 La 282.00 119.00 221.00 173.00 169.00 96.70 Ce 486.00 270.00 290.00 265.00 346.00 262.00 Pr 32.50 19.40 18.40 23.60 21.80 17.50 Nd 107.00 64.90 56.60 69.30 68.50 54.60 Sm 15.70 9.54 12.51 7.34 8.96 7.80 Eu 3.81 2.50 3.12 1.83 2.01 1.80 Gd 14.00 8.32 11.01 8.06 9.08 7.01 Tb 1.52 0.92 0.85 0.86 0.98 0.79 Dy 7.03 4.21 5.23 3.16 4.45 3.84 Ho 1.11 0.69 1.01 0.89 0.78 0.69 Er 3.00 1.90 2.58 2.01 2.21 2.03 Tm 0.38 0.24 0.33 0.29 0.36 0.31 Yb 2.16 1.53 1.89 1.73 1.68 2.00 Y 34.80 22.50 26.90 21.30 27.60 22.10 Lu 0.31 0.22 0.29 0.28 0.25 0.33 ∑REE 956.43 503.44 624.81 557.32 636.14 457.35 ∑LREE 927.01 485.34 601.63 540.07 616.27 440.40 ∑HREE 29.42 18.10 23.18 17.25 19.87 16.95 ∑LREE/SHREE 31.51 26.81 25.95 31.31 31.02 25.98 LaN/YbN 93.65 55.79 83.87 71.73 72.16 34.68 δEu 0.79 0.86 0.81 0.73 0.68 0.74 δCe 1.24 1.38 1.12 1.02 1.40 1.56 注:主量元素含量单位为%, 微量和稀土元素含量单位为10-6 表 3 盐源—丽江地区富碱斑岩年龄统计
Table 3. Age information of the alkali-rich porphyry in Yanyuan-Lijiang area
岩体 岩性 分析方法 年龄值/Ma 数据来源 西范坪 石英二长斑岩 LA—ICPMS锆石U—Pb 31.68±0.28 [12] 光马山 石英二长斑岩 LA—ICPMS锆石U—Pb 33.37±0.26 本文 分水岭 花岗闪长斑岩 LA—ICPMS锆石U—Pb 34.5±0.3 [13] 石支 花岗斑岩 LA—ICPMS锆石U—Pb 35.60±0.58 [10] 花岗斑岩 LA—ICPMS锆石U—Pb 35.9±0.5 [22] 老君山 正长岩 SHRIMP锆石U—Pb 34.8±1.6 [11] 正长岩 LA—ICPMS锆石U—Pb 34.56±0.66 [10] 小桥头 石英二长斑岩 LA—ICPMS锆石U—Pb 34.70±0.54 [10] 喇叭山 粗而斑岩 LA—ICPMS锆石U—Pb 34.74±0.70 [10] 桃花 花岗斑岩 SHRIMP锆石U—Pb 36.35±0.35 [23] 北衙 石英正长斑岩 LA—ICPMS锆石U—Pb 34.92±0.66 [8] 石英正长斑岩 LA—ICPMS锆石U—Pb 36.24±0.63 [14] 石英正长斑岩 LA—ICPMS锆石U—Pb 36.48±0.26 [15] -
[1] 侯增谦, 钟大赉, 邓万明.青藏高原东缘斑岩铜钼金成矿带的构造模式[J].中国地质, 2004, 31(1):1-13. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200401001
[2] 侯增谦, 潘桂堂, 王安建, 等.青藏高原碰撞造山带:晚碰撞转换成矿作用[J].矿床地质, 2006, 25(5):521-543. doi: 10.3969/j.issn.0258-7106.2006.05.001
[3] 莫宣学.青藏高原新生代碰撞-后碰撞火成岩[M].北京:地质出版社, 2009:1-396.
[4] Liang H Y, Campbell I H, Allen C, et al. Zircon Ce4+/Ce3+ ratios and ages for Yulong ore bearing porphyries in eastern Tibet[J]. Mineralium Deposita, 2006, 41(2):152-159. doi: 10.1007/s00126-005-0047-1
[5] 姜耀辉, 蒋少涌, 凌宏飞, 等.陆-陆碰撞造山环境下的含铜斑岩岩石成因——以藏东玉龙斑岩铜矿带为例[J].岩石学报, 2006, 22(4):697-706. http://www.cqvip.com/Main/Detail.aspx?id=23324723
[6] 徐受民, 莫宣学, 曾普胜, 等.滇西北衙富碱斑岩的特征及成因[J].现代地质, 2006, 20(4):527-535. doi: 10.3969/j.issn.1000-8527.2006.04.002
[7] 肖晓牛, 喻学惠, 莫宣学, 等.滇西洱海北部北衙地区富碱斑岩的地球化学、锆石SHRIMP U-Pb定年及成因[J].地质通报, 2009, 28(12):786-803. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20091211&flag=1
[8] 和文言, 莫宣学, 喻学惠, 等.滇西北衙煌斑岩的岩石成因及动力学背景:年代学、地球化学及Sr-Nd-Pb-Hf同位素约束[J].岩石学报, 2014, 30(11):3287-3300. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411014
[9] 毕献武, 胡瑞忠, 叶造军, 等. A型花岗岩类与铜成矿关系研究:以马厂箐铜矿为例[J].中国科学(D辑), 1999, 19(6):489-495. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd199906002
[10] 黄永高, 罗改, 张彤, 等.滇西丽江地区新生代富碱斑岩年代学、地球化学特征及其地质意义[J].现代地质, 2018, 32(1):28-44. http://d.old.wanfangdata.com.cn/Periodical/xddz201801003
[11] 万哨凯, 夏斌, 张玉泉.老君山正长岩锆石SHRIMP定年[J].大地构造与成矿学, 2005, 29(4):522-526. doi: 10.3969/j.issn.1001-1552.2005.04.013
[12] 黄景厚, 周清, 王宏, 等.四川盐源西范坪渐新世含矿二长斑岩成因浅析[J].地质学报, 2019, 93(3):622-632. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201903009
[13] 徐恒, 崔银亮, 周家喜, 等.云南永胜分水岭矿区富碱斑岩地球化学、锆石U-Pb年龄及其地质意义[J].大地构造与成矿学, 2016, 40(3):614-624. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201603017
[14] 和文言, 喻学惠, 莫宣学, 等.滇西北衙多金属矿田矿床成因类型及其与富碱斑岩关系初探[J].岩石学报, 2012, 28(5):1401-1412. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201205005
[15] 和文言, 莫宣学, 喻学惠, 等.滇西北衙金多金属矿床锆石U-Pb和辉钼矿Re-Os年龄及其地质意[J].岩石学报, 2013, 29(4):1301-1310. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201304016
[16] Ludwig K R. Isoplot 3.70:A Geochronological Toolkit for Microsoft Excel[M]. California:Berkeley Geochronology Center, 2008:1-74.
[17] 靳新娣, 朱和平.岩石样品中43种元素的高分辨等离子质谱测定[J].分析化学, 2000, 28(5):563-567. doi: 10.3321/j.issn:0253-3820.2000.05.008
[18] 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
[19] Wright J B. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis[J]. Geological Magazine, 1969, 106(4):370-384. doi: 10.1017/S0016756800058222
[20] Middlmost E. Naming materials in the magma/igneous rock system earth[J]. Science Reviews, 1994, 37(3/4):215-224. http://cn.bing.com/academic/profile?id=734bf86c098739b75858e5b7d1c062b4&encoded=0&v=paper_preview&mkt=zh-cn
[21] Boynton W V. Cosmochemistry of the rare earth elements: meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. Elsevier, Amsterdam, 1984: 63-114.
[22] 毛晓长, 尹福光, 廖世勇.金沙江-哀牢山构造带中段桃花村岩体的LA-ICP-MS U-Pb锆石U-Pb定年及地质意义[J].矿物岩石, 2012, 32(3):70-76. doi: 10.3969/j.issn.1001-6872.2012.03.010
[23] 洪涛, 游军, 吴楚, 等.滇西桃花花岗斑岩中新太古代-古元古代锆石年龄信息:对扬子板块西缘基底时代的约束[J].岩石学报, 2015, 31(9):2583-2596. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201509009
[24] 邓军, 杨立强, 王长明.三江特提斯复合造山与成矿作用研究进展[J].岩石学报, 2011, 27(9):2501-2509. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201109001
[25] Xiao L, Clemens J D. Origin of potassic (C-type) adakite magmas:Experimental and field constraints[J]. Lithos, 2007, 95(3/4):399-414. http://cn.bing.com/academic/profile?id=df495771f41de2fdcc3b0176ac34aa48&encoded=0&v=paper_preview&mkt=zh-cn
[26] 张旗, 王焰, 刘伟, 等.埃达克岩的特征及其意义[J].地质通报, 2002, 21(7):231-235. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=200207108&flag=1
[27] 张旗, 许继峰, 王焰, 等.埃达克岩的多样性[J].地质通报, 2004, 23(9/10):959-965. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=200409170&flag=1
[28] Kaygusuz A, Siebel W, Sen C. Petrochemistry and petrology of Itype granitoids in an arc setting:the composite Torul Pluton. Eastern Pontides, NE Turkey[J]. Internation Journal of Earth sciences, 2008, 97(4):739-764. doi: 10.1007/s00531-007-0188-9
[29] Altherr R, Siebel W. Ⅰ-type plutonism in a continental back-arc setting:Miocene granitoids and monzonites from the central Aegean Sea. Greece[J]. Contributions to Mineralogy and Petrology, 2002, 143(4):397-415. doi: 10.1007/s00410-002-0352-y
[30] Martin H. Adakite magmas:modern analogues of Archaean granitoids[J]. Lithos, 1999, 46:411-429. doi: 10.1016/S0024-4937(98)00076-0
[31] 潘桂棠, 徐强, 侯增谦, 等.西南"三江"多岛弧造山过程成矿系统与资源评价[M].北京:地质出版社, 2003:1-420.