Geological characteristics and research progress of Apuseni-Banat-Timok-Srednogorie Cu-Au metallogenic belt in Southeast Europe
-
摘要:
东欧南部阿普塞尼-巴纳特-蒂莫克-斯雷德诺戈里斯基(ABTS)成矿带位于特提斯巨型成矿域的西段,矿床类型主要包括斑岩型铜-金-钼矿床、矽卡岩型钼-铁-铅-锌矿床、浅成低温热液型铜-金-银矿床等,成矿作用主要与晚白垩世钙碱性岩浆活动有关。整个成矿带的矿床形成于20Ma,为短期构造成矿。空间上,斯雷德诺戈里斯基地区成岩成矿年龄有自北向南减小的趋势。目前,该矿带成矿模型主要为板块折返模型,在板块俯冲的过程中,受非洲和欧洲板块之间的远程作用力的影响,俯冲角度逐渐变陡,导致上地幔和软流圈物质上涌,并伴随上盘的伸展,熔体上升到浅部层位形成相关的岩体和矿床。伴随着板块折返,岩浆侵位轨迹南移,导致斯雷德诺戈里斯基和蒂莫克地区自北向南成岩成矿年龄逐渐降低。该成矿带与国内冈底斯成矿带具有相似的矿床类型和成岩年龄空间分布特征,在成矿时代、成矿构造环境上不同。
Abstract:The ABTS belt is part of the Tethyan Eurasian Metallogenic belt and hosts Cu-Au-Mo porphyry (some with notable PGE abundances), Mo-Fe-Pb-Zn skarn, and Cu-Au-Ag epithermal deposits. These deposits are mainly associated with the late Cretaceous calc-alkaline magmatite. All the deposits in this belt were emplaced at 20Ma, indicating that the fundamental tectonic process was short-lived. In space, ages for magmatism and mineralization in Srednogorie decrease from north to south. At present, the main metallogenic model of this ore belt is plate roll back. According to the plate roll back model, steepening of the slab during roll-back led to an increased corner flow of upper lithospheric mantle and asthenospheric material, combined with extension of the upper plate, the melt rose to the shallow horizon and generated related magmatites and deposits. Continued slab rolling back shifted the locus of melt generation southward, resulting in the unequivocal age trend identified in Timok and Srednogorie. This belt is similar to Gangdise belt in deposit type and metallogenic age distribution, but there are some differences in metallogenic age and metallogenic tectonic setting.
-
图 1 阿尔卑斯-巴尔干-喀尔巴阡山-底纳瑞德(ABCD)造山成矿带地质简图(a)和巴尔干-喀尔巴阡山脉南部地区ABTS成矿带矿床分布图(b)[3]
Figure 1.
图 2 斯雷德诺戈里斯基东部及其周边构造地质图[11]
Figure 2.
图 3 埃拉奇特-切洛佩奇矿田地质图(a)和切洛佩奇矿床剖面(b)[13]
Figure 3.
图 4 埃拉奇特矿床地质图(a)和剖面图(b)[34]
Figure 4.
图 5 纳德费里-多格内恰矿田地质简图(a)和主要矿体地质简图(b)[41]
Figure 5.
图 6 奥纳德费里-多格内恰矿田S-N向剖面示意图(a)、外围矿体分带特征(b)和中央矿体分带特征(c)[42]
Figure 6.
表 1 ABTS矿带典型矿床地质特征
Table 1. Geological features of the typical deposits in ABTS ore belt
矿床 矿床类型 元素 吨位Mt /品位 成矿岩体 围岩蚀变 矿体特征 金属矿物 成矿阶段 参考
文献奥纳德费里-多格内恰 矽卡岩型 Fe, Cu 13/(30%~35% Fe; 0.5%Cu) 花岗闪长岩 由30多个矿体组成,矿体呈南北向 黄铁矿、黄铜矿、斑铜矿、磁铁矿、闪锌矿、钒铅矿、蓝辉铜矿、磁黄铁矿、铜蓝、针铁矿、辉铋矿等 [3, 15] 麦依丹佩克 斑岩型 Cu, Au 850~1000/(0.4% Cu; 0.25%Au) 闪长质和花岗闪长质斑岩 钾化和泥化 矿体受断层控制,呈瘦长、陡倾矿体,横纵比9:1 黄铜矿、黄铁矿、磁铁矿、赤铁矿、斑铜矿、辉钼矿、黝铜矿、银金矿 ①石英-黄铜矿-斑铜矿-磁铁矿-银金矿;②钙铁榴石-磁铁矿±矽卡岩;③石英-辉钼矿(±黄铁矿、黄铜矿、斑铜矿、黝铜矿);④石英-黄铁矿(±磁铁矿、黄铜矿、银金矿 [3, 16] 大克里韦利 斑岩型 Cu 750/(0.44% Cu) 钾化、绢云母化、青磐岩化 横截面上呈等轴或椭圆状 [3, 17] 丘卡-马林(Choka Marin) 高硫型浅成低温热液型 Zn, Cu 1%~3% Cu; 5%~8% Zn; 1% Pb; 5~10g/t Au 安山-英安质火山岩 泥化、绿泥石化、硅化 矿体呈非对称、陡倾透镜状,2.5~3km长、0.8~1km宽,矿石呈块状、网脉状、浸染状,局部脉状、平行细脉状 黄铁矿、黄铜矿、硫砷铜矿、白铁矿、As-硫钒铜矿、Ge-硫钒铜矿、锗石、方铅矿、闪锌矿 一期成矿。底部为黄铜矿-黄铁矿-斑铜矿,顶部为黄铁矿-黄铁矿-斑铜矿-重晶石-硬石膏 [3, 17, 18] 埃拉奇特 斑岩型 Cu-Au >300/(0.33% Cu; 0.25g/tAu) 古生界花岗闪长岩、辉绿岩 钾化、青磐岩化和绢英岩化 铜矿体呈椭圆体状,走向NW—SE,矿化呈脉状、不连续分布 黄铁矿、黄铜矿、斑铜矿、磁铁矿、赤铁矿、辉钼矿、闪锌矿、方铅矿、银金矿、砷黝铜矿-黝铜矿、白铁矿、磁黄铁矿、硒铅矿、碲银矿、自然金、碲钯矿 ①黄铁矿-斑铜矿-黄铜矿(含铂族元素和自然金);②脉状石英-黄铁矿-黄铜矿组合;③石英-方解石-沸石 [3, 19] 阿萨雷尔 斑岩型、顶部高硫型浅成低温热液矿化 Cu-Au 300/(0.44% Cu; 0.22g/t Au) 花岗闪长斑岩 钾化、钾化-青磐岩化、绢云母化、高级泥化 矿体呈圆锥体状、顶部向S或SW倾斜80~85°,横截面呈椭圆状,走向N—S方向 底部斑岩区:黄铁矿、磁铁矿、赤铁矿、黄铜矿、方铅矿、闪锌矿;顶部高硫浅成低温热液区:硫砷铜矿、含碲黝铜矿、硫钒铜矿、针硫铋铅矿、硫铋铜矿、碲银矿、辉碲铋矿 ①石英-磁铁矿-赤铁矿;②石英-辉钼矿;③石英-黄铜矿±黄铁矿;④石英-方铅矿-闪锌矿 [3, 19] 表 2 博尔高硫浅成低温热液矿床中央矿体中蚀变矿物横向和纵向上分带规律[23]
Table 2. Lateral and vertical zoning of hydrothermal alteration assemblages of the central orebody in Bor epithermal deposit
矿床 矿床类型 元素 吨位Mt /品位 成矿岩体 围岩蚀变 矿体特征 金属矿物 成矿阶段 参考
文献梅德特 斑岩型 Cu-Mo 200/0.34% Cu; 0.1% W 石英二长闪长岩和花岗闪长斑岩 外部青磐岩化、中部绢云母化、内部钾化 矿体呈似管状网脉岩NW—SE分布,矿化早期呈网脉状,晚期为脉状 黄铁矿、黄铜矿、磁铁矿、赤铁矿、辉钼矿、自然金、自然银 ①钾化蚀变+石英-磁铁矿-赤铁矿;②青磐岩化+含钛矿物(金红石、钛铁矿、锰钛铁矿、铁板钛矿、铈铀钛铁矿);③石英-黄铁矿-黄铜矿(含辉钼矿、钴–镍矿物和少量的铜–锡–钒矿物及铋-银-碲矿物);④石英-辉钼矿;⑤石英-黄铁矿;⑥石英-方铅矿-闪锌矿 [3, 19] Elshitsa 高硫型浅成低温热液型;底部为斑岩型 Cu, Au 10/(1.13% Cu; 1.5g/t Au; 15g/t Ag) 花岗闪长斑岩 内部钾化、中部石英-绢云母化、外部青磐岩化 矿体呈似透镜状、网脉状、透镜状、细脉状和片状,走向NE、倾向NW,倾角50°~80°,长50~300m,宽2~30m 黄铁矿、黄铜矿、辉钼矿、辉钴矿、硫钴矿、针硫镍矿、砷黝铜矿、闪锌矿、方铅矿、自然金、银金矿、辉钼矿 ①块状黄铁矿;②黄铜矿-砷黝铜矿±闪锌矿±方铅矿;③闪锌矿-方铅矿-黝铜矿-黄铜矿-重晶石;④脉状石英-黄铁矿-黄铜矿 [3, 20] Vlaykov Vruh 斑岩型 Cu 10/0.46% Cu 花岗闪长斑岩、石英二长斑岩 钾化、绢云母化、青磐岩化 沿SSW向和ENE向断层分布 -磁铁矿、辉钼矿、黄铜矿、黄铁矿、磁黄铁矿、闪锌矿、方铅矿等 ①长石-石英-磁铁矿-黑云母;②石英-金红石-辉钼矿;③石英-黄铜矿-磁铁矿±黄铁矿±磁黄铁矿;④石英-闪锌矿-方铅矿-黄铜矿±重晶石;⑤石英-黄铁矿-绿泥石-绢云母;⑥碳酸盐-沸石;⑦二次富集;8、表生氧化 [3, 19, 21] 切洛佩奇 高硫型浅成低温热液型、VMS Cu、Au 50~60/1.24% Cu; 3.38g/t Au 次火山安山岩 自内而外出现高级泥化、石英-高岭土化、石英-绢云母化和青磐岩化蚀变、晚期高级泥化 陡倾(65°~90°)块状、网脉状、不连续脉状 黄铁矿、黄铜矿、砷黝铜矿、硫砷铜矿、块状硫砷铜矿、斑铜矿、闪锌矿、方铅矿、黝铜矿、含碲黝铜矿、脆硫锑铜矿、蓝辉铜矿、铜蓝 ①黄铁矿-白铁矿-硬石膏,形成于浅海相环境;②含金铜–As–S矿物:黄铜矿-砷黝铜矿、硫砷铜矿-硫砷锑铜矿、石英-黄铁矿、斑铜矿-蓝辉铜矿;③闪锌矿-方铅矿-重晶石 [3, 13, 22] 克拉森(Krassen) 高硫型浅成低温热液型、VMS Cu 0.30Mt/(0.76% Cu; 0.69g/t Au) 安山质角烁岩 早期泥质蚀变、晚期绢英岩化和青磐岩化 透镜状矿体周围是浸染状矿化,矿体80~100m宽,倾向NE、倾角约50° 黄铁矿、黄铜矿、白铁矿、斑铜矿、闪锌矿、方铅矿、硫砷锡铜矿、硫砷铜矿、砷黝铜矿、蓝辉铜矿、铜蓝、黝铜矿、自然金和银金矿 ①石英-黄铁矿;②石英-黄铁矿-黄铜矿-斑铜矿-闪锌矿;③闪锌矿-方铅矿 [3, 19, 23] 拉德卡 浅成低温热液型、VMS Cu 30~40/(1.06% Cu; 0.5g/t Au; 25g/t Ag) 花岗闪长岩和流纹英安岩 自内向外:绢英岩化→石英-绿泥石-绢云母化→青磐岩化 矿体陡倾,呈透镜状、块状,矿体周围有脉状和浸染状的矿石晕 黄铁矿、黄铜矿、斑铜矿、砷黝铜矿、硫砷铜矿、闪锌矿、方铅矿、辉铜矿 ①石英-块状黄铁矿,形成于海底环境(VMS);②黄铜矿-黄铁矿;③硫砷铜矿-黄铁矿;④斑铜矿-砷黝铜矿;⑤闪锌矿-方铅矿;⑥晚期石英-黄铁矿;⑦黄铁矿-白铁矿;⑧硬石膏-石膏 [3, 24-26] 表 2 博尔高硫浅成低温热液矿床中央矿体中蚀变矿物横向和纵向上分带规律[18]
Table 2. Lateral and vertical zoning of hydrothermal alteration assemblages of the central orebody in Bor epithermal deposit
-
[1] Albrecht V Q, Moritz R, Peytcheva I, et al. Geochronology and geodynamics of Late Cretaceous magmatism and Cu-Au mineralization in the Panagyurishte region of the Apuseni-Banat-Timok -Srednogorie belt, Bulgaria[J]. Ore Geology Reviews, 2005, 27(1):95-126. http://cn.bing.com/academic/profile?id=a6057448fa2e218394bb4b6c11a8608b&encoded=0&v=paper_preview&mkt=zh-cn
[2] Zimmerman A, Stein H J, Hannah J L, et al. Tectonic configuration of the Apuseni-Banat-Timok-Srednogorie belt, Balkans-South Carpathians, constrained by high precision Re-Os molybdenite ages[J]. Miner Deposita, 2008, 43(1):1-21. doi: 10.1007/s00126-007-0149-z
[3] Handler R, Neubauer F, Velichkova S H, et al.40Ar/39Ar age constraints on the timing of magmatism and post-magmatic cooling in the Panagyurishte region, Bulgaria[J]. Schweizerische Mineralogische und Petrographische Mitteilungen, 2004, 84(1):119-132. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8253a6a87816ba22b205ab4d0fb8e097
[4] Ciobanu C L, Cook N J, Stein H. Regional setting and geochronology of the Late Cretaceous Banatitic Magmatic and Metallogenetic Belt[J]. Mineralium Deposita, 2002, 37(67):541-567. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b3ca2b7866772deae27f68067f2d0644
[5] Dixon C J, Pereira J. Plate Tectonics and Mineralization in the Tethyan Region[J]. Mineralium Deposita, 1974, 9(3):185-198. http://cn.bing.com/academic/profile?id=4ff4e488052a3291488c467752bb6aa9&encoded=0&v=paper_preview&mkt=zh-cn
[6] Berza T, Constantinescu E, Vlad S N, Upper Cretaceous Magmatic Series and Associated Mineralisation in the Carpathian-Balkan Orogen[J]. Resource Geology, 1998, 48(4):291-306. http://cn.bing.com/academic/profile?id=08e1b2a05f95678bed33a1c7655a5701&encoded=0&v=paper_preview&mkt=zh-cn
[7] Nicolescu S, Cornell D H, BojarA-V. Age and tectonic setting of BocsËa and Ocna de Fier ±Dognecea granodiorites (southwest Romania) and of associated skarn mineralisation[J]. Mineralium Deposita, 1999, 34(8):743-753. doi: 10.1007/s001260050235
[8] Willingshofer E, Andriessen P, Cloetingh S, et al. Detrital fission track thermochronology of Upper Cretaceous syn-orogenic sediments in the South Carpathians (Romania)[J]. Basin Research, 2001, 13(4):379-395. doi: 10.1046/j.0950-091x.2001.00156.x
[9] Robertson A H F, Trivic B, Deric N, et al.Tectonic development of the Vardar ocean and its margins:Evidence from the Republic of Macedonia and Greek Macedonia[J]. Tectonophysics, 2013, 595/596:25-54. doi: 10.1016/j.tecto.2012.07.022
[10] Shanov S, Spassov E, Georgiev T. Evidence for the existence of a paleosubduction zone beneath the Rhodopean massif (Central Balkans)[J]. Tectonophysics, 1992, 206(3):307-314. http://cn.bing.com/academic/profile?id=72c14a737f53f1df5307c7efcbf738a8&encoded=0&v=paper_preview&mkt=zh-cn
[11] Markovic M, Pavlovic R, Cupkovic T, et al. Structural pattern and neotectonic activity in the wider Majdanpek area (NE Serbia, Yugoslavia)[J]. Acta Montanistica Slovaca, 1996, 2:151-158. http://www.researchgate.net/publication/26401802_Structural_pattern_and_neotectonic_activity
[12] Georgiev S, von Quadt A, Heinrich C A. Time evolution of a rifted continental arc:Integrated ID-TIMS and LA-ICPMS study of magmatic zircons from the Eastern Srednogorie, Bulgaria[J]. Lithos, 2012, 154:53-67. doi: 10.1016/j.lithos.2012.06.020
[13] Bonev I K, Kerestedjian T, Atanassova R, et al. Morphogenesis and composition of native gold in the Chelopech volcanic-hosted Au-Cu epithermal deposit, Srednogorie zone, Bulgaria[J]. Mineralium Deposita, 2002, 37(67):614-629. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0b44bb08d9c5ffe1779770d53347ec32
[14] Jankovic S. The Copper Deposits and Geotectonic Setting of the Thethyan Eurasian Metallogenic Belt[J]. Mineralium Deposita, 1977, 12(1):37-47. doi: 10.1007/BF00204503
[15] Cook N J, Ciobanu C L. Paragenesis of Cu-Fe ores from Ocna de Fier-Dognecea (Romania), typifyingfluid plume mineralization in a proximal skarn setting[J]. Mineralogical Magazine, 2001, 65(3):351-372. doi: 10.1180/002646101300119457
[16] Clark A H, Ullrich T D. 40Ar-39Ar age data for andesitic magmatism and hydrothermal activity in the Timok Massif, eastern Serbia:implications for metallogenetic relationships in the Bor copper-gold subprovince[J]. Mineralium Deposita, 2004, 39(2):256-262. doi: 10.1007/s00126-003-0370-3
[17] Jankovic S. Types of copper deposits related to volcanic environment in the Bor district, Yugoslavia[J]. Geologische Rundschau, 1990, 79(2):467-478. doi: 10.1007/BF01830639
[18] Starostin V I. Bor and Maidanpek copper deposits in Yugoslavi[J]. International Geology Review, 1970, 12(4):370-380. doi: 10.1080/00206817009475244
[19] Strashimirov S, Petrunov R, Kanazirski M. Porphyry-copper mineralisation in the central Srednogorie zone, Bulgaria[J]. Mineralium Deposita, 2002, 37(67):587-598. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a69627d1a6b11eb260ebc6d98444cf7c
[20] Bogdanov K, Tsonev D, Kuzmanov K. Mineralogy of gold in the Elshitsa massive sulphide deposit, Sredna Gora zone, Bulgaria[J]. Mineralium Deposita, 1997, 32(3):219-229. doi: 10.1007/s001260050087
[21] Kouzmanov K, Moritz R, Quadt A von et al. Late Cretaceous porphyry Cu and epithermal Cu-Au association in the Southern Panagyurishte District, Bulgaria:the paired Vlaykov Vruh and Elshitsa deposits[J]. Miner Deposita., 2009, 44(6):611-646. doi: 10.1007/s00126-009-0239-1
[22] Chambefort I, Moritz R, von Quadt A. Petrology, geochemistry and U-Pb geochronology of magmatic rocks from the highsulfidation epithermal Au-Cu Chelopech deposit, Srednogorie zone, Bulgaria[J]. Mineralium Deposita, 2007, 42(7):665-690. doi: 10.1007/s00126-007-0126-6
[23] Moritz R, Kouzmanov K, Petrunov R. Late Cretaceous Cu-Au epithermal deposits of the Panagyurishte district, Srednogorie zone, Bulgaria[J]. Schweizerische Mineralogische und Petrographische Mitteilungen, 2004, 84(1):79-99. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ceedc94c547bb9315c336777a42be6ea
[24] Kouzmanov K, Bailly L, Ramboz C, et al. Morphology, origin and infrared microthermometry of fluid inclusions in pyrite from the Radka epithermal copper deposit, Srednogorie zone, Bulgaria[J]. Mineralium Deposita, 2002, 37(6/7):599-613. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dbf5381643a74897d27a86dc51c5e94b
[25] Kouzmanov K, Ramboz C. Genesis of high-sulfidation vinciennite-bearing Cu-As-Sn (-Au) assemblage age from the Radka epithermal copper deposit, Bulgaria:evidence from mineralogy and infrared microthermometry of enargite[J]. The Canadian Mineralogist, 2004, 42(5):1501-1521. doi: 10.2113/gscanmin.42.5.1501
[26] Popov K. Geochemical associations in Radka ore district[J]. Annual of the University of Mining and Geology "St. Ivan Rilski", 2002, 45(1):57-63. http://cn.bing.com/academic/profile?id=548c01dcebe764e2ad29714dd3e39247&encoded=0&v=paper_preview&mkt=zh-cn
[27] Dupont A, Auwera J V, Pin C, et al. Trace element and isotope (Sr, Nd) geochemistry of porphyry- and skarn-mineralising Late Cretaceous intrusions from Banat, western South Carpathians, Romania[J]. Mineralium Deposita, 2002, 37(67):568-586. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcea97abfb8ee63dbea840e8cdfdd564
[28] Nicolescu S. World Skarn Deposits:Skarns of Eastern Europe[J]. Society of Economic Geologists, Inc.Economic Geology 100th Anniversary Volume, 2005:1-4. https://www.researchgate.net/profile/Stefan_Nicolescu/publication/232751584_World_Skarn_Deposits_Skarns_of_Eastern_Europe/links/09e4150940b0322926000000/World-Skarn-Deposits-Skarns-of-Eastern-Europe.pdf
[29] Csontos L, Vörös A. Mesozoic plate tectonic reconstruction of the Carpathian region[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2004, 210(1):1-56. doi: 10.1016/j.palaeo.2004.02.033
[30] Chambefort I, Moritz R. Late Cretaceous structural control and Alpine overprint of the high-sulfidation Cu-Au epithermal Chelopech deposit, Srednogorie Belt, Bulgaria[J]. Mineralium Deposita, 2006, 41(3):259-280. doi: 10.1007/s00126-006-0056-8
[31] Stein H J, Markey R J, Morgan J W, et al. The remarkable Re-Os chronometer in molybdenite:how and why it works[J]. Terra Nova, 2001, 13(6):479-486. doi: 10.1046/j.1365-3121.2001.00395.x
[32] Stein H J. Low-rhenium molybdenite by metamorphism in northern Sweden:recognition, genesis, and global implications[J]. Lithos, 2006, 87(3):300-327. http://cn.bing.com/academic/profile?id=a75176722da9721f7a80a72b583c8300&encoded=0&v=paper_preview&mkt=zh-cn
[33] Jankovic S. The Carpatho-Balkanides and adjacent area:a sector of the Tethyan Eurasian metallogenic belt[J]. Mineralium Deposita, 1997b, 32(5):426-433. doi: 10.1007/s001260050110
[34] Tarkian M, Hunken U, Tokmakchieva M. Precious-metal distribution and fluid-inclusion petrography of the Elatsite porphyry copper deposit, Bulgaria[J]. Mineralium Deposita, 2003, 38(3):261-281. doi: 10.1007/s00126-002-0336-x
[35] Zimmerman A, Stein H, Markey R.Re-Os ages for the Elatsite Cu-Au deposit, Srednogorie zone, Bulgaria[J].Mineral Exploration and Sustainable Development, 2003:1253-1256. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026835139
[36] Georgiev G. A genetic model of the Elatsite porphyry copper deposit, Bulgaria[J]. Geochemistry Mineralogy and Petrology, 2008, 48:143-160. https://mrdata.usgs.gov/sir20105090z/show-sir20105090z.php?id=374
[37] Bogdanov K, Popov K. Cu-Au Epithermal Systems in the Southern Part of the Panaguyrishte Ore Region, Bulgaria[J]. Society of Economic Geologists, 2003, 36:91-114. https://www.academia.edu/29595820/Cu-Au_Epithermal_Systems_in_the_Southern_Part_of_the_Panaguyrishte_Ore_Region_Bulgaria
[38] Chambefort I, Moritz R. Subaqueous environment and volcanic evolution of the Late Cretaceous Chelopech Au-Cu epithermal deposit, Bulgaria[J]. Journal of Volcanology and Geothermal Research, 2014, 289:1-13. doi: 10.1016/j.jvolgeores.2014.10.013
[39] Moritz R, Chambefort I, Georgieva S. The Chelopech highsulphidation epithermal Cu-Au deposit[J]. Ore Geology Reviews, 2005, 27:130-131. doi: 10.1016/j.oregeorev.2005.07.021
[40] Georgieva S, Petrunov R, Moritz R. Temporal relationship between volcanism and the hydrothermal system in the region of Chelopech high-sul dation Cu-Au deposit:constraints from geochronological and mineralogical data[J]. Bulgarian Geological Society, Annual Scientic Conference "Geology 2004", 2004:21-23.
[41] Liana C, Nigel C, Cook J. Skarn textures and a case study:the Ocna de Fier-Dognecea orefield, Banat, Romania[J]. Ore Geology Reviews, 2004, 24(3):315-370. http://cn.bing.com/academic/profile?id=916b6b348f40e6326b165f6b6e656d8e&encoded=0&v=paper_preview&mkt=zh-cn
[42] Popov P N. Tectonics of the Banat-Srednogorie Rift[J]. Tectonophysics, 1987, 143(1):209-216. http://cn.bing.com/academic/profile?id=9fcee3a198ba0e077d66bf8faf4b61ca&encoded=0&v=paper_preview&mkt=zh-cn
[43] Lips A. Correlating magmatic-hydrothermal ore deposit formation over time with geodynamic processes in SE Europe[J]. Geological Society, London, Special Publications, 2002, 204(1):69-79. doi: 10.1144/GSL.SP.2002.204.01.05
[44] Wortel M J R, Spakman W. Subduction and Slab Detachment in the Mediterranean-Carpathian Region[J]. Science, 2000, 290(5498):1910-1917. doi: 10.1126/science.290.5498.1910
[45] Neubauer F. Contrasting Late Cretaceous with Neogene ore provinces in the Alpine-Balkan-Carpathian-Dinaride collision belt[C]//Blundell D J, Neubauer F, von Quadt A. The Timing and Location of Major Ore Deposits in an Evolving Orogen, 2002, 204(1): 81-102.
[46] 侯增谦, 郑远川, 杨志明, 等.大陆碰撞成矿作用:Ⅰ.冈底斯新生代斑岩成矿系统[J].矿床地质, 2012, 31(4):647-670. doi: 10.3969/j.issn.0258-7106.2012.04.002
[47] 唐菊兴, 多吉, 刘鸿飞, 等.冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究[J].地球学报, 2012, 33(4):393-410. doi: 10.3975/cagsb.2012.04.02
[48] 纪伟强, 吴福元, 锺孙霖, 等.西藏南部冈底斯岩基花岗岩时代与岩石成因[J].中国科学(D辑), 2009, (7):849-871. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200907002
[49] 侯增谦.大陆碰撞成矿论[J].地质学报, 2010, 84(1):30-58. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201001002
[50] Hou Z, Zheng Y, Yang Z, et al. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet[J]. Mineralium Deposita, 2013, 48(2):173-192. doi: 10.1007/s00126-012-0415-6
[51] 朱弟成, 莫宣学, 王立全, 等.西藏冈底斯东部察隅高分异Ⅰ型花岗岩的成因:锆石U-Pb年代学, 地球化学和Sr-Nd-Hf同位素约束[J].中国科学(D辑), 2009, (7):833-848. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200907001.htm
[52] 潘桂棠, 莫宣学, 侯增谦, 等.冈底斯造山带的时空结构及演化[J].岩石学报, 2006, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001
[53] Wen D R, Chung S L, Song B et al. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet:petrogenesis and tectonic implications[J]. Lithos, 2008, 105:1-11。 doi: 10.1016/j.lithos.2008.02.005
① Aurubis拟1.8亿欧元扩张保加利亚铜矿[EB/OL](2015-05-15) [2016-03-18]http://www.cfi.net.cn/p20150515000640.html?jdfwkey=mgaol.2015.
② 驻保加利亚经商参处.保加利亚成内蒙古铜矿砂主要进口来源地[EB/OL](2013-11-21)[2016-03-18]http://www.mofcom.gov.cn/article/i/jyjl/m/201311/20131100399490.shtml. 2013.
③ 五矿8亿美元采购保加利亚电解铜[EB/OL](2009-10-20)[2016-03-18]http://stock.sohu.com/20091020/n267531838.shtml.2009.