The establishment of oceanic andesites tectonic environment discrimination diagrams with big data method.
-
摘要:
岩浆岩的地球化学元素往往对其构造环境具有一定的指示作用,前人使用构造环境判别图描述二者之间的关联关系。然而,安山岩因其岩石成因的复杂性和构造环境的"单调性",在判别图研究领域并未受到重视。收集了GEOROC和PetDB两个数据库中的全球新生代洋中脊安山岩(MORA)、洋岛安山岩(OIA)和岛弧安山岩(IAA)。使用43个元素组成的924个比值建立超过42万个直角坐标系,将三类安山岩数据投入坐标系中,并通过MATLAB计算三者之间的交叠率筛选出4个最佳判别图:lg(Ga/Cs)-lg(Ba/Nb)、lg(TFeO/Ga)-lg(Eu/Pb)、lg(K2O/Nb)-lg(Ga/Cs)和lg(MnO/Pb)-lg(Cs/Nb)。利用核密度曲线对比图分析判别图中的元素及元素比值,结果表明:①LILE(大离子亲石元素)与HFSE(高场强元素)的比值关系能有效区分MORA和IAA;②LILE与其他元素的比值关系则更有利于从三者中识别出OIA;③LILE在一定程度上比HFSE更易于判别大洋安山岩的构造环境。研究表明,安山岩可以成为一种使用范围更广泛的构造环境指示剂,其判别效果甚至优于玄武岩判别图。这也进一步说明,安山岩的成因虽然比玄武岩复杂,但是大数据方法是提取出具有构造环境指示意义的相关关系的有效途径。
Abstract:Geochemical elements of magmatic rocks often indicate their tectonic environments. Previous geologists used tectonic environment discriminant diagrams to describe their correlation. However, it is too challenging to apply discriminant diagrams to identifying the tectonic environment of andesites because of their complexity of petrogenesis and the unicity of their tectonic environment. Based on the GEOROC and PetDB databases, the authors intergrated the global Cenozoic oceanic andesites with three categories:mid-oceanic ridge andesites (MORA), oceanic island andesites (OIA) and island arc andesites (IAA). With 924 element ratios consisting of any two of 43 elements, the authors built more than 420, 000 rectangular coordinate systems. 4 optimal discriminant diagrams were sifted by calculating overlap ratios among the three types of oceanic andesites:lg(Ba/Nb) versus lg(Ga/Cs), lg(Eu/Pb) versus lg(TFeO/Ga), lg(Ga/Cs) versus lg(K2O/Nb) and lg(Cs/Nb) versus lg(MnO/Pb). The elements and element ratios were analyzed by comparing the kernel densities of the three types of andesites, with some conclusions reached:(1) The ratio of LILE and HFSE can effectively differentiate MORA and IAA; (2) the ratio of LILE and other elements is useful to identifying OIA from the other two types; (3) in a certain degree, LILE is more appropriate for determining tectonic environments of oceanic andesites than HFSE. This study presents that andesite is likely to be a widely used indicator of tectonic environments, which might be more appropiate than basalt discriminant diagram. It further indicates that even the andesite genesis is much more complicated than basalt, big data method is an effective approach to extract the correlation with tectonic discriminant significant.
-
Key words:
- andesite /
- tectonic environment /
- big data /
- geochemistry
-
图 5 元素比值核密度曲线对比图(代号同图 4)
Figure 5.
图 6 元素核密度曲线对比图(代号同图 4)
Figure 6.
表 1 全球岩石地球化学数据库信息(截至2018年12月)
Table 1. General information for global rock geochemistry databases (by December 2018)
数据库名称 所属机构或系统 主要功能 数据保有量/件 网址 GEOROC MPG 大陆和海洋岩石地球化学数据库 845310 http://georoc.mpch-mainz.gwdg.de/georoc PetDB EarthChem 海底岩石地球化学数据库 90108 http://www.earthchem.org/petdb NAVDAT EarthChem 北美火山岩和侵入岩数据库 64985 http://www.navdat.org MetPetDB NSF 变质岩岩石学数据库 27011 http://metpetdb.rpi.edu/ PANGAEA ICSU 地球和环境科学数据库 18536 http://pangaea.de/ -
[1] 赵振华.关于岩石微量元素构造环境判别图解使用的有关问题[J].大地构造与成矿学, 2007, 31(1):92-103. doi: 10.3969/j.issn.1001-1552.2007.01.011
[2] Pearce J A, Cann J R. Ophiolite origin investigated by discriminant analysis using Ti, Zr and Y[J]. Earth & Planetary Science Letters, 1971, 12(3):339-349. http://cn.bing.com/academic/profile?id=57f2211f5be9c3545a834bed450200ea&encoded=0&v=paper_preview&mkt=zh-cn
[3] Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth & Planetary Science Letters, 1973, 19(2):290-300. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0012-821X(73)90129-5/
[4] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984, 25(4):956-983. doi: 10.1093/petrology/25.4.956
[5] 李曙光.蛇绿岩生成构造环境的Ba-Th-Nb-La判别图[J].岩石学报, 1993, (2):146-157. doi: 10.3321/j.issn:1000-0569.1993.02.005
[6] Mullen E D. MnO/TiO2/P2O5:a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis[J]. Earth & Planetary Science Letters, 1983, 62(1):53-62.
[7] Byers C D, Muenow D W, Garcia M O. Volatiles in basalts and andesites from the Galapagos Spreading Center, 85° to 86° W[J]. Geochimica Et Cosmochimica Acta, 1983, 47(9):1551-1558. doi: 10.1016/0016-7037(83)90181-3
[8] Byerly G R, Melson W G, Vogt P R. Rhyodacites, andesites, ferrobasalts and ocean tholeiites from the galapagos spreading center[J]. Earth & Planetary Science Letters, 1976, 30(2):215-221. http://www.sciencedirect.com/science/article/pii/0012821X7690248X
[9] Gill J B. Organic Andesites and Plate Tectonics[M]. Berlin Heidelberg:Springer-Verlag, 1981:1-314.
[10] Bailey J C. Geochemical criteria for a refined tectonic discrimination of orogenic andesites[J]. Chemical Geology, 1981, 32:139-154. doi: 10.1016/0009-2541(81)90135-2
[11] Condie K C. Geochemical changes in basalts and andesites across the Archean-Proterozoic boundary:Identification and significance[J]. Lithos, 1989, 23(1):1-18.
[12] Condie K C. Geochemistry and Tectonic Setting of Early Proterozoic Supracrustal Rocks in the Southwestern United States[J]. The Journal of Geology, 1986, 94(6):845-864. doi: 10.1086/629091
[13] Verma S P, Verma S K. First 15 probability-based multidimensional tectonic discrimination diagrams for intermediate magmas and their robustness against post emplacement compositional changes and petrogenetic processes[J]. Turkish Journal of Earth Sciences, 2013, 22:931-995. doi: 10.3906/yer-1204-6
[14] Williamson B J, Hodgkinson M, Imai A, et al. Testing the Plagioclase Discriminator on the GEOROC Database to Identify Porphyry-Fertile Magmatic Systems in Japan[J]. Resource Geology, 2018, 126(2):1-6.
[15] Nielsen S G, Marschall H R. Geochemical evidence for mélange melting in global arcs[J]. Science Advances, 2017, 3(e16024024):1-7.
[16] Chapman J B, Ducea M N, Decelles P G, et al. Tracking changes in crustal thickness during orogenic evolution with Sr/Y:An example from the North American Cordillera[J]. Geology, 2015, 43(10):919-922. doi: 10.1130/G36996.1
[17] White W M. Oceanic Island Basalts and Mantle Plumes:The Geochemical Perspective[J]. Annual Review of Earth & Planetary Sciences, 2010, 38(38):133-160. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0215786240/
[18] 杨婧, 王金荣, 张旗, 等.全球岛弧玄武岩数据挖掘——在玄武岩判别图上的表现及初步解释[J].地质通报, 2016, 35(12):1937-1949. doi: 10.3969/j.issn.1671-2552.2016.12.001 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20161201&flag=1
[19] 王金荣, 陈万峰, 张旗, 等. N-MORB和E-MORB数据挖掘——玄武岩判别图及洋中脊源区地幔性质的讨论[J].岩石学报, 2017, (3):993-1005. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201703023
[20] 张旗, 袁方林, 焦守涛, 等.雷达图在地球科学研究中的应用及其意义[J].科学通报, 2017, (1):79-89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201701011
[21] 刘欣雨, 张旗, 张成立, 等.中新世全球重要事件及其意义:数据挖掘的启示[J].科学通报, 2017, (15):1645-1654. http://www.cnki.com.cn/Article/CJFDTotal-KXTB201715010.htm
[22] 王文松.测量列中离群值的判断[J].电测与仪表, 1992, (11):5-10. http://www.cnki.com.cn/Article/CJFDTotal-DCYQ199211000.htm
[23] Vermeesch P. Tectonic discrimination diagrams revisited[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(6):1-55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2005GC001092
[24] Pearce J A, Alabaster T, Shelton A W, et al. The Oman Ophiolite as a Cretaceous Arc-Basin Complex:Evidence and Implications[J]. Philosophical Transactions of the Royal Society. A:Mathematical, Physical and Engineering Sciences, 1981, (1454):299-317. http://petrology.oxfordjournals.org/external-ref?access_num=10.1098/rsta.1981.0066&link_type=DOI
[25] 李存华, 孙志挥, 陈耿, 等.核密度估计及其在聚类算法构造中的应用[J].计算机研究与发展, 2004, 41(10):1712-1719. http://d.old.wanfangdata.com.cn/Periodical/jsjyjyfz200410016
[26] Condie K C. Incompatible element ratios in oceanic basalts and komatiites:Tracking deep mantle sources and continental growth rates with time[J]. Geochemistry Geophysics Geosystems, 2003, 4(1):1-28. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-2002GC000333/
[27] 朱弟成, 廖忠礼, 潘桂棠, 等.正确使用构造判别图解和地球化学数据的一些建议[J].地球与环境, 2001, 29(3):152-157. http://d.old.wanfangdata.com.cn/Periodical/dzdqhx200103027
[28] Kelemen P B. Genesis of high Mg# andesites and the continental crust[J]. Contributions to Mineralogy & Petrology, 1995, 120(1):1-19. http://d.old.wanfangdata.com.cn/Periodical/dqxb201803009
[29] 唐功建, 王强.高镁安山岩及其地球动力学意义[J].岩石学报, 2010, (8):2495-2512. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201008021
[30] Straub S M, Gomez-Tuena A, Stuart F M, et al. Formation of hybrid arc andesites beneath thick continental crust[J]. Earth & Planetary Science Letters, 2011, 303(34):337-347. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=07593123878ec953aa721155663fa4fa
[31] Annen C, Sparks R S J. Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust[J]. Earth & Planetary Science Letters, 2002, 203(3):937-955. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8c10bb222efb7e3951e0cd485532ee29
[32] Zhu M S, Miao L C, Yang S H. Genesis and evolution of subduction-zone andesites:evidence from melt inclusions[J]. International Geology Review, 2013, 55(10):1179-1190. doi: 10.1080/00206814.2013.767527
[33] Depaolo D J. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization[J]. Earth and Planetary Science Letters, 1981, 53(2):189-202. doi: 10.1016/0012-821X(81)90153-9
[34] Beier C, Haase K M, Brandl P A, et al. Primitive andesites from the Taupo Volcanic Zone formed by magma mixing[J]. Contributions to Mineralogy & Petrology, 2017, 172(5):33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=20d3cca856c242891c5edd6cb154263f
[35] Streck M J, Leeman W P, Chesley J. High-magnesian andesite from Mount Shasta:A product of magma mixing and contamination, not a primitive mantle melt[J]. Geology, 2007, 35(1):351-354. http://cn.bing.com/academic/profile?id=266ab1df365daab78ff04fb3daf6d2d5&encoded=0&v=paper_preview&mkt=zh-cn