科马提岩与苦橄岩的区别及对若干晚古生代“科马提岩”的质疑

李振焕, 刘学龙, 朱月琴, 张旗, 罗应, 张昌振, 陈建航, 王帅帅, 杨富成. 科马提岩与苦橄岩的区别及对若干晚古生代“科马提岩”的质疑[J]. 地质通报, 2019, 38(12): 1971-1980.
引用本文: 李振焕, 刘学龙, 朱月琴, 张旗, 罗应, 张昌振, 陈建航, 王帅帅, 杨富成. 科马提岩与苦橄岩的区别及对若干晚古生代“科马提岩”的质疑[J]. 地质通报, 2019, 38(12): 1971-1980.
LI Zhenhuan, LIU Xuelong, ZHU Yueqin, ZHANG Qi, LUO Ying, ZHANG Changzhen, CHEN Jianhang, WANG Shuaishuai, YANG Fucheng. Difference between komatiites and picrites and a discussion on some Late Paleozoic 'komatiites'[J]. Geological Bulletin of China, 2019, 38(12): 1971-1980.
Citation: LI Zhenhuan, LIU Xuelong, ZHU Yueqin, ZHANG Qi, LUO Ying, ZHANG Changzhen, CHEN Jianhang, WANG Shuaishuai, YANG Fucheng. Difference between komatiites and picrites and a discussion on some Late Paleozoic "komatiites"[J]. Geological Bulletin of China, 2019, 38(12): 1971-1980.

科马提岩与苦橄岩的区别及对若干晚古生代“科马提岩”的质疑

  • 基金项目:
    中国地质调查局项目《云南省格咱铜多金属矿整装勘查区普朗斑岩型铜矿地质数据挖掘研究》(编号:KKF0201821043)、《国家地质大数据汇聚与管理》(编号:DD20190381A)、《资源环境重大问题综合区划与开发保护策略研究》(编号:DD20190463)、国家自然科学基金项目《滇西北中甸铜厂沟燕山期斑岩型Mo-Cu矿床热液蚀变分带结构及发育机制研究》(批准号:41862009)、昆明理工大学重点学科建设经费项目《地质资源与地质工程(省级一流学科)》(编号:1407839305)和云南省基础研究计划项目《滇西格咱斑岩铜钼矿带多期成矿作用研究》(编号:2019FA018)
详细信息
    作者简介: 李振焕(1988-), 女, 在读硕士生, 工程师, 矿床学专业, 从事矿床学研究。E-mail:18204143298@163.com
    通讯作者: 刘学龙(1983-), 男, 博士, 教授, 矿床学专业, 从事云南"三江"地区的地质矿产研究工作及矿床学教学工作。E-mail:xuelongliu@foxmail.com
  • 中图分类号: P588.14+6;P628

Difference between komatiites and picrites and a discussion on some Late Paleozoic "komatiites"

More Information
  • 以往学术界更多的关注科马提岩和苦橄岩的相似性,忽略其差异。通过全数据模式,采集数据库内全球的太古宙科马提岩、后太古宙低/高钛苦橄岩数据,对比三者之间的差异发现,科马提岩更富MgO、Cr、Ni、Cs、Pb、Co和Zn,其次为低钛苦橄岩(除Co和Zn),其余主量、微量元素的含量由高至低依次为高钛苦橄岩、低钛苦橄岩、科马提岩。依据元素间的差异(如Cr/Ga、MgO/Ga、MnO/Zr、Cr/Zr等),采用密度分布函数(Density Distribution)在Matlab软件中绘制出可有效区分3类岩石的等密度判别图,并用该图对若干晚古生代"科马提岩"的岩性重新厘定。结合岩相学和地球化学特征研究表明,晚古生代"科马提岩"中,印度东部为高钛苦橄岩,越南为化学成分与科马提岩类似的低钛苦橄岩,印度拉达克地区为低钛苦橄岩。

  • 加载中
  • 图 1  科马提岩、低钛苦橄岩和高钛苦橄岩微量元素原始地幔标准化蛛网图(A)及稀土元素球粒陨石标准化配分图(B)

    Figure 1. 

    图 2  太古宙科马提岩、后太古宙低钛苦橄岩和高钛苦橄岩等密度判别图

    Figure 2. 

    图 3  超镁铁质火山岩判别图(底图据参考文献[33],图中资料源据参考文献[37])

    Figure 3. 

    图 4  越南地区“科马提岩”样品投影图

    Figure 4. 

    图 5  越南样品与峨眉山玄武岩和苦橄岩稀土元素配分型式对比图[38]

    Figure 5. 

    表 1  全球太古宙科马提岩、后太古宙(高/低钛)苦橄岩与部分晚古生代科马提岩主量、微量和稀土元素平均值统计

    Table 1.  Statistical table of the means of major, trace and rare earth elements of Archaean komatiites, Post-Archaean picrites and some Late Palaeozoic komatiites

    元素 太古宙科马提岩 后太古宙低鈦苦橄岩 后太古宙高鈦苦橄岩 越南 印度东部 印度拉达克
    平均值 观测数 平均值 观测数 平均值 观测数
    SiO2 46.22 2305 46.24 3125 46.50 3710 43.35 31.68 43.81
    TiO2 0.33 2305 0.43 3125 1.95 3710 0.49 1.41 0.38
    Al2O3 5.76 2305 8.64 3119 10.08 3710 9.59 5.86 7.97
    Fe2O3 4.64 512 4.86 1328 5.82 1406 11.12 7.52
    FeO 7.94 486 8.50 2563 10.01 3070 13.22
    CaO 5.66 2304 7.44 3122 8.97 3710 8.65 5.02 4.43
    MgO 29.77 2305 24.22 3125 17.38 3710 21.61 43.59 28.63
    MnO 0.18 2241 0.16 3108 0.18 3693 0.17 0.12 0.26
    K2O 0.05 2258 0.20 3125 0.39 3710 0.03 0.42 0.52
    Na2O 0.23 2288 0.90 3125 1.52 3710 0.65 0.43 0.75
    P2O5 0.04 2097 0.07 2831 0.24 3664 0.03 0.18 0.05
    Sc 20.28 931 30.77 1384 27.38 1546 32.45 65.59 20.25
    V 128.3 1608 199.83 1629 235.12 2034 186.60 568.43
    Cr 2598.51 1947 1533.39 1807 1065.44 2212 2325.00 538.74 1887.25
    Co 103.96 1562 76.73 1225 80.16 1098 76.90 81.73 84.00
    Ni 1528.32 2111 737.04 1928 667.86 2301 986.80 119.04 962.25
    Cu 40.57 1393 73.36 1236 99.49 1182 95.40 113.95 132.75
    Zn 78.94 1291 73.93 1171 102.16 1683 74.00 355.11 103.50
    Ga 5.93 638 10.52 772 15.02 1164 39.83 7.00
    Rb 2.60 1466 7.83 1571 9.78 2272 2.58 226.56 14.75
    Sr 28.23 1616 128.66 1817 290.63 2386 40.84 58.04 76.25
    Y 6.61 1587 12.45 1789 20.2 2278 12.82 75.39 8.00
    Zr 16.16 1683 35.93 1787 128.7 2367 18.12 226.00 40.25
    Nb 2.31 1458 3.24 1529 17.44 2168 0.54 0.95 4.75
    Cs 3.51 678 1.25 598 0.78 603 13.33 20.25
    Ba 15.07 1167 73.14 1643 153.07 2302 20.07 104.65 253.50
    Hf 0.45 816 1.07 1011 3.25 1382 0.62 4.77
    Ta 0.04 718 0.23 950 1.13 1220 0.62
    Pb 3.53 958 1.89 804 1.53 1402 45.53 10.00
    Th 0.15 1065 0.77 1225 1.57 1648 0.06 4.11
    U 0.04 803 0.30 994 0.45 1357 0.02 0.66
    La 1.04 1386 4.00 1304 13.52 1558 0.71 15.81 5.98
    Ce 2.50 1117 9.84 1437 33.20 2051 1.97 39.30 11.24
    Pr 0.43 841 2.49 987 3.19 1182 0.34 6.00 1.16
    Nd 2.11 1090 6.09 1361 19.70 1768 2.00 28.92 5.06
    Sm 0.70 1143 1.70 1320 4.69 1698 0.83 8.20 1.33
    Eu 0.25 1087 0.59 1288 1.52 1643 0.38 2.87 0.51
    Gd 0.91 1015 2.00 1193 4.55 1355 1.53 10.56 1.23
    Tb 0.17 870 0.34 1111 0.71 1474 0.28 1.97 0.25
    Dy 1.12 1029 2.21 1159 3.90 1439 1.97 11.25 1.54
    Ho 0.23 823 0.46 1135 0.74 1226 0.44 2.61 0.35
    Er 0.69 1016 1.32 1161 1.90 1295 1.29 8.19 1.06
    Tm 0.10 694 0.20 950 0.26 1102 0.19 1.29 0.16
    Yb 0.67 1121 1.29 1310 1.54 1668 1.25 7.07 0.97
    Lu 0.10 985 0.19 1198 0.22 1563 0.19 1.09 0.16
    注:越南地区样品11个[18], 印度东部地区样品10个[21], 印度拉达克样品4个[20]。主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV
  • [1]

    Herzberg C, O' Hara M J. Phase equilibrium constraints on the origin of basalts, picrites, and komatiites[J]. Earth-Science Reviews, 1998, 44(1):39-79. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-S0012-8252(98)00021-X/

    [2]

    Depaolo D J. Crustal growth and mantle evolution-inferences from models of element transport and Nd and Sr isotopes[J]. Geochimica et Cosmochimica Acta, 1980, 44(8):1185-1196. doi: 10.1016/0016-7037(80)90072-1

    [3]

    Campbell I H, Griffiths R W, Hill R E T. Melting in an Archean mantle plume:Heads its basalts, tails its komatiites[J]. Nature, 1989, 339(6227):697-699. doi: 10.1038/339697a0

    [4]

    Nisbet E G, Cheadle N T, Arndt M J, et al. Constraining the potential temperature of the Archaean mantle:A review of the evidence from komatiites[J]. Lithos, 1993, 30(3/4):291-307. http://cn.bing.com/academic/profile?id=82600240d6ba82427ffb1c4e8f1e52f2&encoded=0&v=paper_preview&mkt=zh-cn

    [5]

    Bennett V C, Nutman A P, Esat T M. Constraints on mantle evolution from 187Os/188Os isotopic compositions of Archean ultrama ficrocks from southern west Greenland (3.8 Ga) and western Australia (3.46Ga)[J]. Geochimica et Cosmochimica Acta, 2002, 66(14):2615-2630. doi: 10.1016/S0016-7037(02)00862-1

    [6]

    Hanski E, Kamentsky V S. Chrome spinel-hosted melt inclusions in Paleoproterozoic primitive volcanic rocks, northern Finland:Evidence for coexistence and mixing of komatiitic and picritic magmas[J]. Chemical Geology, 2013, 343(3):25-37. http://cn.bing.com/academic/profile?id=80f06744b13589b827f2a0f3572a5bd7&encoded=0&v=paper_preview&mkt=zh-cn

    [7]

    Kerr A C. La isla de Gorgona, Colombia:A petrological enigma?[J]. Lithos, 2005, 84(12):77-101. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027181667/

    [8]

    Kusky T M, Polat A. Growth of granite-greenstone terranes at convergent margins, and stabilization of Archean cratons[J]. Tectonophysics, 1999, 305(13):43-73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5b0c1d23490535d28fdb9aad460e4e84

    [9]

    Atherton M, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 1993, 362(6416):144-146. doi: 10.1038/362144a0

    [10]

    Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid:Relationships and some implications for crustal evolution[J]. Lithos, 2005, 79(12):1-24. http://cn.bing.com/academic/profile?id=7371dfa5724c0893c0b1241c8ad6e418&encoded=0&v=paper_preview&mkt=zh-cn

    [11]

    Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth and Planetary Science Letters, 1973, 19(2):290-300. doi: 10.1016/0012-821X(73)90129-5

    [12]

    Moyen J F, Laurent O. Archaean tectonic systems:A view from igneous rocks[J]. Lithos, 2018, 302/303:99-125. doi: 10.1016/j.lithos.2017.11.038

    [13]

    关志红, 项红莉, 朱意萍, 等.澳大利亚伊尔岗克拉通科马提岩型镍矿成矿作用及找矿方法[J].地质通报, 2014, 33(2/3):238-246. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2014020310&flag=1

    [14]

    Anderson D L. A statistical test of the two-reservoir model for helium isotopes[J]. Earth and Planetary Science Letters, 2001, 193(12):77-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e61aafdd092f41ad481e32e62747c31a

    [15]

    张招崇, 郝艳丽, 王福生.大火成岩省中苦橄岩的研究意义[J].地学前缘(中国地质大学, 北京), 2003, 10(3):105-114. http://d.old.wanfangdata.com.cn/Periodical/dxqy200303010

    [16]

    姜常义, 钱壮志, 姜寒冰, 等.云南宾川-永胜-丽江地区低钛玄武岩和苦橄岩的岩石成因与源区性质[J].岩石学报, 2007, 23(4):777-792. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200704009

    [17]

    罗应, 袁方林, 金维浚, 等.全球苦橄岩与太古宙科马提岩对比:全数据模式的启示[J].地质科学, 2018, 53(4):1267-1284. http://d.old.wanfangdata.com.cn/Periodical/dzkx201804008

    [18]

    Hanski E, Walker R J, Huhma H, et al. Origin of the PermianTriassic komatiites, northwestern Vietnam[J]. Contrib Mineral Petrol., 2004, 147:453-469. doi: 10.1007/s00410-004-0567-1

    [19]

    Basilios T, Georgia P P I, David J W P, et al. Triassic rift-related komatiite, picrate and basalt, Pelagonian continental margin, Greece[J]. Lithos, 2008, 104:199-215. doi: 10.1016/j.lithos.2007.12.007

    [20]

    Rao R, Rai H. Permian komatiites and associated basalts from the marine sediments of Chhongtash Formation, southeast Karakoram, Ladakh, India[J]. Mineralogy and Petrology, 2007, 91:171-189. doi: 10.1007/s00710-007-0206-4

    [21]

    Prasad J, Bhattacharya D K. Geochemical Constraints on Cumulate Textured Ti-rich Al-depleted Komatiites from Chotanagpur Gneissic Complex, Eastern India[J]. Journal Geological Society of India, 2016, (87):429-438. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=49bddf95206de5fa99eee0b9901d298f

    [22]

    Parman S W, Grove T L, Dann J C. The production of Barberton komatiites in an Archean subduction zone[J]. Geophys. Res. Lett., 2001, 28:2513-2516. http://cn.bing.com/academic/profile?id=516ade31558970c1b6d023ba285b40d2&encoded=0&v=paper_preview&mkt=zh-cn

    [23]

    Richards M A, Duncan R A, Courtillot V E. Flood-basalts and hot spot tracks:Plume heads and tai ls[J]. Science, 1989, 246:103-107. doi: 10.1126/science.246.4926.103

    [24]

    Burke K. The geology of continental margins[J]. The Journal of Geology, 1976, 84(4):499-500. http://d.old.wanfangdata.com.cn/Periodical/dxqy-e201903010

    [25]

    赵海玲, 狄永军, 刘振文, 等.东南沿海地区新生代火山作用和地幔柱[J].地质学报, 2004, 78(6):781-788. doi: 10.3321/j.issn:0001-5717.2004.06.008

    [26]

    张招崇, 闫升好, 陈柏林, 等.阿尔泰造山带南缘中泥盆世苦橄岩及其大地构造和岩石学意义[J].地球科学(中国地质大学学报), 2005, 30(3):289-297. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200503004

    [27]

    桑隆康, 马昌前.岩石学[M].北京:地质出版社, 2009:141-142.

    [28]

    Anderson D L. Komatiites and picrites:Evidence that the 'plume' source is depleted[J]. Earth and Planetary Science Letters, 1994, 128(34):303-311.

    [29]

    Gibson S A. Major element heterogeneity in Archean to recent mantle plume starting-heads[J]. Earth and Planetary Science Letters, 2002, 195(1):59-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=67e98e70860fcc8cbc813380dfaad940

    [30]

    Polat A. The geochemistry of Neoarchen (ca.2700 Ma) tholeiitic basalts, transitional to alkaline basalts, and gabbros, Wawa Subprovinc, Canada; Implication for petrogentic and geodynamic processes[J]. Precambrian Research, 2009, 168(12):83-105.

    [31]

    Arndt N T, Lesher C M, Barnes S J. Komatiite[M]. Cambridge University Press, Cambridge, UK, 2008: 1-467.

    [32]

    Campbell I H, Griffiths R W. The changing nature of mantle hotspots through time; implications for the chemical evolution of the mantle[J]. Geology, 1992, 100:497-523. doi: 10.1086/629605

    [33]

    Mishkin M A, Vovna G M, Lennikov A M, et al. The lower crustal early Proterozoic metabasite-enderbite association of the Dzhugdzhur block (Aldan Shield):Its nature and origin of protoliths[J]. Doklady Earth Sciences, 2007, 412(1):43-48. doi: 10.1134/S1028334X07010102

    [34]

    Chung S L, Lee T Y, Lo C H, et al. Intraplate extention prior to continental extrusion along the Ailao Shan-Red River shear zone[J]. Geology, 1997, 25:311-314. doi: 10.1130/0091-7613(1997)025<0311:IEPTCE>2.3.CO;2

    [35]

    Chung S L, Jahn B M, Genyao W, et al. The Emeishan Flood Basalt in SW China: A mantle plume initiation model and its connection with continental breakup and mass extinction at the Permian-Triassic boundary[C]//Flower M F J, Chung S L, Lo C H, et al. Mantledynamics and plate tectonics in East Asia. AGU Geodynamics Series, 1998, 27: 47-58.

    [36]

    张招崇, Mahoney J, 王福生, 等.峨眉山大火成岩省西部苦橄岩及其共生玄武岩的地球化学:地幔柱头部熔融的证据[J].岩石学报, 2006, 22(6):1538-1552. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200606012

    [37]

    Kulikov V S, Kulikova V V."A new approach to the classification of high-magnesian rocks"[C]//Proceedings of the 2nd All-Russia Petrographic conference, Syktyvkar, 2000, 1: 111-112.

    [38]

    Chung S L, Jahn B M. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary[J]. Geology, 1995, 23:889-892 doi: 10.1130/0091-7613(1995)023<0889:PLIIGO>2.3.CO;2

  • 加载中

(5)

(1)

计量
  • 文章访问数:  512
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2019-04-20
修回日期:  2019-07-30
刊出日期:  2019-12-15

目录