Difference between komatiites and picrites and a discussion on some Late Paleozoic "komatiites"
-
摘要:
以往学术界更多的关注科马提岩和苦橄岩的相似性,忽略其差异。通过全数据模式,采集数据库内全球的太古宙科马提岩、后太古宙低/高钛苦橄岩数据,对比三者之间的差异发现,科马提岩更富MgO、Cr、Ni、Cs、Pb、Co和Zn,其次为低钛苦橄岩(除Co和Zn),其余主量、微量元素的含量由高至低依次为高钛苦橄岩、低钛苦橄岩、科马提岩。依据元素间的差异(如Cr/Ga、MgO/Ga、MnO/Zr、Cr/Zr等),采用密度分布函数(Density Distribution)在Matlab软件中绘制出可有效区分3类岩石的等密度判别图,并用该图对若干晚古生代"科马提岩"的岩性重新厘定。结合岩相学和地球化学特征研究表明,晚古生代"科马提岩"中,印度东部为高钛苦橄岩,越南为化学成分与科马提岩类似的低钛苦橄岩,印度拉达克地区为低钛苦橄岩。
Abstract:In the past, academia paid much attention to the similarity between komatiites and picrites, but ignored their differences. In this paper, the global data of Archaean komatiites and Post-Archaean low/high titanium picrites in the database were collected by full data model. Based on comparing the differences between them, the authors found that komatiites are richer in MgO, Cr, Ni, Cs, Pb, Co and Zn, followed by low-titanium picrites (except for Co and Zn). As for the other main and trace elements, high-titanium picrites has the highest content, followed by low-titanium picrites and then by komatiites. Based on the differences between elements such as Cr/Ga, MgO/Ga, MnO/Zr and Cr/Zr, the authors used density distribution to draw an isodensity discriminant map which can effectively distinguish the three types of rocks, and redefined the lithology of some Late Paleozoic "komatiites" with this diagram. The results of lithofacies and geochemical characteristics show that, in the Late Paleozoic "komatiites", the rocks in the eastern part of India are high-titanium picrites, those in Vietnam are low-titanium picrites with similar chemical composition to komatiites, and those in Ladak area of India are low-titanium picrites.
-
Key words:
- komatiites /
- low/high titanium picrites /
- discriminant maps /
- Late Paleozoic /
- redefine
-
图 5 越南样品与峨眉山玄武岩和苦橄岩稀土元素配分型式对比图[38]
Figure 5.
表 1 全球太古宙科马提岩、后太古宙(高/低钛)苦橄岩与部分晚古生代科马提岩主量、微量和稀土元素平均值统计
Table 1. Statistical table of the means of major, trace and rare earth elements of Archaean komatiites, Post-Archaean picrites and some Late Palaeozoic komatiites
元素 太古宙科马提岩 后太古宙低鈦苦橄岩 后太古宙高鈦苦橄岩 越南 印度东部 印度拉达克 平均值 观测数 平均值 观测数 平均值 观测数 SiO2 46.22 2305 46.24 3125 46.50 3710 43.35 31.68 43.81 TiO2 0.33 2305 0.43 3125 1.95 3710 0.49 1.41 0.38 Al2O3 5.76 2305 8.64 3119 10.08 3710 9.59 5.86 7.97 Fe2O3 4.64 512 4.86 1328 5.82 1406 11.12 7.52 FeO 7.94 486 8.50 2563 10.01 3070 13.22 CaO 5.66 2304 7.44 3122 8.97 3710 8.65 5.02 4.43 MgO 29.77 2305 24.22 3125 17.38 3710 21.61 43.59 28.63 MnO 0.18 2241 0.16 3108 0.18 3693 0.17 0.12 0.26 K2O 0.05 2258 0.20 3125 0.39 3710 0.03 0.42 0.52 Na2O 0.23 2288 0.90 3125 1.52 3710 0.65 0.43 0.75 P2O5 0.04 2097 0.07 2831 0.24 3664 0.03 0.18 0.05 Sc 20.28 931 30.77 1384 27.38 1546 32.45 65.59 20.25 V 128.3 1608 199.83 1629 235.12 2034 186.60 568.43 Cr 2598.51 1947 1533.39 1807 1065.44 2212 2325.00 538.74 1887.25 Co 103.96 1562 76.73 1225 80.16 1098 76.90 81.73 84.00 Ni 1528.32 2111 737.04 1928 667.86 2301 986.80 119.04 962.25 Cu 40.57 1393 73.36 1236 99.49 1182 95.40 113.95 132.75 Zn 78.94 1291 73.93 1171 102.16 1683 74.00 355.11 103.50 Ga 5.93 638 10.52 772 15.02 1164 39.83 7.00 Rb 2.60 1466 7.83 1571 9.78 2272 2.58 226.56 14.75 Sr 28.23 1616 128.66 1817 290.63 2386 40.84 58.04 76.25 Y 6.61 1587 12.45 1789 20.2 2278 12.82 75.39 8.00 Zr 16.16 1683 35.93 1787 128.7 2367 18.12 226.00 40.25 Nb 2.31 1458 3.24 1529 17.44 2168 0.54 0.95 4.75 Cs 3.51 678 1.25 598 0.78 603 13.33 20.25 Ba 15.07 1167 73.14 1643 153.07 2302 20.07 104.65 253.50 Hf 0.45 816 1.07 1011 3.25 1382 0.62 4.77 Ta 0.04 718 0.23 950 1.13 1220 0.62 Pb 3.53 958 1.89 804 1.53 1402 45.53 10.00 Th 0.15 1065 0.77 1225 1.57 1648 0.06 4.11 U 0.04 803 0.30 994 0.45 1357 0.02 0.66 La 1.04 1386 4.00 1304 13.52 1558 0.71 15.81 5.98 Ce 2.50 1117 9.84 1437 33.20 2051 1.97 39.30 11.24 Pr 0.43 841 2.49 987 3.19 1182 0.34 6.00 1.16 Nd 2.11 1090 6.09 1361 19.70 1768 2.00 28.92 5.06 Sm 0.70 1143 1.70 1320 4.69 1698 0.83 8.20 1.33 Eu 0.25 1087 0.59 1288 1.52 1643 0.38 2.87 0.51 Gd 0.91 1015 2.00 1193 4.55 1355 1.53 10.56 1.23 Tb 0.17 870 0.34 1111 0.71 1474 0.28 1.97 0.25 Dy 1.12 1029 2.21 1159 3.90 1439 1.97 11.25 1.54 Ho 0.23 823 0.46 1135 0.74 1226 0.44 2.61 0.35 Er 0.69 1016 1.32 1161 1.90 1295 1.29 8.19 1.06 Tm 0.10 694 0.20 950 0.26 1102 0.19 1.29 0.16 Yb 0.67 1121 1.29 1310 1.54 1668 1.25 7.07 0.97 Lu 0.10 985 0.19 1198 0.22 1563 0.19 1.09 0.16 注:越南地区样品11个[18], 印度东部地区样品10个[21], 印度拉达克样品4个[20]。主量元素含量单位为%,微量和稀土元素含量单位为10-6 -
[1] Herzberg C, O' Hara M J. Phase equilibrium constraints on the origin of basalts, picrites, and komatiites[J]. Earth-Science Reviews, 1998, 44(1):39-79. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-S0012-8252(98)00021-X/
[2] Depaolo D J. Crustal growth and mantle evolution-inferences from models of element transport and Nd and Sr isotopes[J]. Geochimica et Cosmochimica Acta, 1980, 44(8):1185-1196. doi: 10.1016/0016-7037(80)90072-1
[3] Campbell I H, Griffiths R W, Hill R E T. Melting in an Archean mantle plume:Heads its basalts, tails its komatiites[J]. Nature, 1989, 339(6227):697-699. doi: 10.1038/339697a0
[4] Nisbet E G, Cheadle N T, Arndt M J, et al. Constraining the potential temperature of the Archaean mantle:A review of the evidence from komatiites[J]. Lithos, 1993, 30(3/4):291-307. http://cn.bing.com/academic/profile?id=82600240d6ba82427ffb1c4e8f1e52f2&encoded=0&v=paper_preview&mkt=zh-cn
[5] Bennett V C, Nutman A P, Esat T M. Constraints on mantle evolution from 187Os/188Os isotopic compositions of Archean ultrama ficrocks from southern west Greenland (3.8 Ga) and western Australia (3.46Ga)[J]. Geochimica et Cosmochimica Acta, 2002, 66(14):2615-2630. doi: 10.1016/S0016-7037(02)00862-1
[6] Hanski E, Kamentsky V S. Chrome spinel-hosted melt inclusions in Paleoproterozoic primitive volcanic rocks, northern Finland:Evidence for coexistence and mixing of komatiitic and picritic magmas[J]. Chemical Geology, 2013, 343(3):25-37. http://cn.bing.com/academic/profile?id=80f06744b13589b827f2a0f3572a5bd7&encoded=0&v=paper_preview&mkt=zh-cn
[7] Kerr A C. La isla de Gorgona, Colombia:A petrological enigma?[J]. Lithos, 2005, 84(12):77-101. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027181667/
[8] Kusky T M, Polat A. Growth of granite-greenstone terranes at convergent margins, and stabilization of Archean cratons[J]. Tectonophysics, 1999, 305(13):43-73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5b0c1d23490535d28fdb9aad460e4e84
[9] Atherton M, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 1993, 362(6416):144-146. doi: 10.1038/362144a0
[10] Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid:Relationships and some implications for crustal evolution[J]. Lithos, 2005, 79(12):1-24. http://cn.bing.com/academic/profile?id=7371dfa5724c0893c0b1241c8ad6e418&encoded=0&v=paper_preview&mkt=zh-cn
[11] Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth and Planetary Science Letters, 1973, 19(2):290-300. doi: 10.1016/0012-821X(73)90129-5
[12] Moyen J F, Laurent O. Archaean tectonic systems:A view from igneous rocks[J]. Lithos, 2018, 302/303:99-125. doi: 10.1016/j.lithos.2017.11.038
[13] 关志红, 项红莉, 朱意萍, 等.澳大利亚伊尔岗克拉通科马提岩型镍矿成矿作用及找矿方法[J].地质通报, 2014, 33(2/3):238-246. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2014020310&flag=1
[14] Anderson D L. A statistical test of the two-reservoir model for helium isotopes[J]. Earth and Planetary Science Letters, 2001, 193(12):77-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e61aafdd092f41ad481e32e62747c31a
[15] 张招崇, 郝艳丽, 王福生.大火成岩省中苦橄岩的研究意义[J].地学前缘(中国地质大学, 北京), 2003, 10(3):105-114. http://d.old.wanfangdata.com.cn/Periodical/dxqy200303010
[16] 姜常义, 钱壮志, 姜寒冰, 等.云南宾川-永胜-丽江地区低钛玄武岩和苦橄岩的岩石成因与源区性质[J].岩石学报, 2007, 23(4):777-792. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200704009
[17] 罗应, 袁方林, 金维浚, 等.全球苦橄岩与太古宙科马提岩对比:全数据模式的启示[J].地质科学, 2018, 53(4):1267-1284. http://d.old.wanfangdata.com.cn/Periodical/dzkx201804008
[18] Hanski E, Walker R J, Huhma H, et al. Origin of the PermianTriassic komatiites, northwestern Vietnam[J]. Contrib Mineral Petrol., 2004, 147:453-469. doi: 10.1007/s00410-004-0567-1
[19] Basilios T, Georgia P P I, David J W P, et al. Triassic rift-related komatiite, picrate and basalt, Pelagonian continental margin, Greece[J]. Lithos, 2008, 104:199-215. doi: 10.1016/j.lithos.2007.12.007
[20] Rao R, Rai H. Permian komatiites and associated basalts from the marine sediments of Chhongtash Formation, southeast Karakoram, Ladakh, India[J]. Mineralogy and Petrology, 2007, 91:171-189. doi: 10.1007/s00710-007-0206-4
[21] Prasad J, Bhattacharya D K. Geochemical Constraints on Cumulate Textured Ti-rich Al-depleted Komatiites from Chotanagpur Gneissic Complex, Eastern India[J]. Journal Geological Society of India, 2016, (87):429-438. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=49bddf95206de5fa99eee0b9901d298f
[22] Parman S W, Grove T L, Dann J C. The production of Barberton komatiites in an Archean subduction zone[J]. Geophys. Res. Lett., 2001, 28:2513-2516. http://cn.bing.com/academic/profile?id=516ade31558970c1b6d023ba285b40d2&encoded=0&v=paper_preview&mkt=zh-cn
[23] Richards M A, Duncan R A, Courtillot V E. Flood-basalts and hot spot tracks:Plume heads and tai ls[J]. Science, 1989, 246:103-107. doi: 10.1126/science.246.4926.103
[24] Burke K. The geology of continental margins[J]. The Journal of Geology, 1976, 84(4):499-500. http://d.old.wanfangdata.com.cn/Periodical/dxqy-e201903010
[25] 赵海玲, 狄永军, 刘振文, 等.东南沿海地区新生代火山作用和地幔柱[J].地质学报, 2004, 78(6):781-788. doi: 10.3321/j.issn:0001-5717.2004.06.008
[26] 张招崇, 闫升好, 陈柏林, 等.阿尔泰造山带南缘中泥盆世苦橄岩及其大地构造和岩石学意义[J].地球科学(中国地质大学学报), 2005, 30(3):289-297. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200503004
[27] 桑隆康, 马昌前.岩石学[M].北京:地质出版社, 2009:141-142.
[28] Anderson D L. Komatiites and picrites:Evidence that the 'plume' source is depleted[J]. Earth and Planetary Science Letters, 1994, 128(34):303-311.
[29] Gibson S A. Major element heterogeneity in Archean to recent mantle plume starting-heads[J]. Earth and Planetary Science Letters, 2002, 195(1):59-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=67e98e70860fcc8cbc813380dfaad940
[30] Polat A. The geochemistry of Neoarchen (ca.2700 Ma) tholeiitic basalts, transitional to alkaline basalts, and gabbros, Wawa Subprovinc, Canada; Implication for petrogentic and geodynamic processes[J]. Precambrian Research, 2009, 168(12):83-105.
[31] Arndt N T, Lesher C M, Barnes S J. Komatiite[M]. Cambridge University Press, Cambridge, UK, 2008: 1-467.
[32] Campbell I H, Griffiths R W. The changing nature of mantle hotspots through time; implications for the chemical evolution of the mantle[J]. Geology, 1992, 100:497-523. doi: 10.1086/629605
[33] Mishkin M A, Vovna G M, Lennikov A M, et al. The lower crustal early Proterozoic metabasite-enderbite association of the Dzhugdzhur block (Aldan Shield):Its nature and origin of protoliths[J]. Doklady Earth Sciences, 2007, 412(1):43-48. doi: 10.1134/S1028334X07010102
[34] Chung S L, Lee T Y, Lo C H, et al. Intraplate extention prior to continental extrusion along the Ailao Shan-Red River shear zone[J]. Geology, 1997, 25:311-314. doi: 10.1130/0091-7613(1997)025<0311:IEPTCE>2.3.CO;2
[35] Chung S L, Jahn B M, Genyao W, et al. The Emeishan Flood Basalt in SW China: A mantle plume initiation model and its connection with continental breakup and mass extinction at the Permian-Triassic boundary[C]//Flower M F J, Chung S L, Lo C H, et al. Mantledynamics and plate tectonics in East Asia. AGU Geodynamics Series, 1998, 27: 47-58.
[36] 张招崇, Mahoney J, 王福生, 等.峨眉山大火成岩省西部苦橄岩及其共生玄武岩的地球化学:地幔柱头部熔融的证据[J].岩石学报, 2006, 22(6):1538-1552. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200606012
[37] Kulikov V S, Kulikova V V."A new approach to the classification of high-magnesian rocks"[C]//Proceedings of the 2nd All-Russia Petrographic conference, Syktyvkar, 2000, 1: 111-112.
[38] Chung S L, Jahn B M. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary[J]. Geology, 1995, 23:889-892 doi: 10.1130/0091-7613(1995)023<0889:PLIIGO>2.3.CO;2