A re-recognition of the main controlling factors for δ18O enrichment in deep geothermal water of Guanzhong Basin
-
摘要:
开展关中盆地腹部深层地下热水起源成因的研究,对推动研究区地下热水的可持续开发利用意义重大。中国大多数地下热水赋存地区的热水样点与现代循环水的关系密切,多属循环型热水,而关中盆地深层地下热水却远离大气降水线,δ18O漂移显著,对此,国内外学者专家对引起关中盆地地下热水δ18O富集的主要因素有不同的认识。应用同位素水文地球化学方法结合关中盆地地质构造演化,对关中盆地不同构造单元深层地下热水δ18O富集的主控因素进行探索性研究。研究结果表明,影响关中盆地深层地热水δ18O富集的因素是多元的,因热储环境开发度而异,在较封闭的热储条件下,其主控因素是水岩反应。热储蒸发实验的结果表明,深层地热水在进入地层前作为补给水源时,存在一定程度的蒸发作用,入渗后进入较封闭热储环境时则主要受控于水岩作用的影响,且受水岩反应的影响程度为固市凹陷>咸礼断阶东>咸礼断阶西及西安凹陷。
Abstract:The research on the origin of deep geothermal water in Guanzhong Basin has a great significance for promoting the sustainable development and utilization of geothermal water. Deep geothermal water, which is circulating geothermal water, is intimately related to modern circulating water in most regions of China, About this phenomenon, experts both in China and abroad have different opinions concerning the main factors for the enrichment of the δ18O in the deep geothermal water in Guanzhong Basin. In this paper, the authors combined tectonic evolution and isotope geochemistry approaches to explore the main factors for the enrichment of δ18O in different deep tectonic units in Guanzhong Basin. The results show the factors are diverse, because of the difference of thermal storage circumstance exploitation level, and the main factor is the water-rock interaction under relatively closed geothermal reservoir condition. The underground water evaporation experiments show that, before the geothermal water as the source pours into the geothermal reservoir, there usually occurs some degrees of evaporation. When the supplied water comes into the geothermal reservoir, the enrichment of δ18O has been affected by water-rock reaction, and the influence degree of water-rock interaction in different tectonic units is in order of Gushi depression > the east of Xianli terrace > Xi' an depression and the west of Xianli terrace.
-
Key words:
- Guanzhong Basin /
- geothermal water /
- enrichment of δ18O /
- water-rock reaction /
- evaporation
-
表 1 超滤实验渗滤液中δ18O及空白样中δ18O含量
Table 1. The content of δ18O in leachate of ultrafiltration experiments and blank sample
编号 温度/℃ δ18O/% 1 70 -9.1 2 70 -9.5 11 70 -8.3 空白样 / -10.3 表 2 固市凹陷氢氧同位素测定结果
Table 2. Hydrogen and oxygen isotope analyses of Gushi depression
井位 原始δD/‰ 修正δD/‰ 原始δ18O/‰ 修正δ18O/‰ 陕西省渭南市中医学校院内 -54.546 -64.546 -1.678 0.322 陕西省渭南市政府招待所 -56.380 -66.380 -2.704 -0.704 华阴县失镇051基地 -61.129 -71.129 -3.210 -1.210 -
[1] CIan D, Clark P F. Environmental Isotopes in Hydrogeololgy[M]. New York:Lewis Publishers, 1997:208-225.
[2] Bath A H, Darling W G, George I A, et al. 18O/16O and 2H/1H changes during progressive hydration of a Zechstein anhydrite formation[J].Geochimica et Cosmochimica Acta, 1987, 51(12):3113-3118. doi: 10.1016/0016-7037(87)90122-0
[3] Longstaffe D, Aqueous Environmental Geochemistry[M]. Prentice Hall, New Jersey, 1983.
[4] Bein A, DuttonA R.Origin, distribution, and movement of brine in the Permian Basin (U.S.A.):A model for displacement of connate brine[J]. Geological Society of America Bulletin, 1993, 105(6):918-934. https://www.mendeley.com/research-papers/origin-distribution-movement-brines-permian-basin-model-displacement-connate-brine/
[5] Musgrove M, Banner J L.Regional ground-water mixing and the origin of saline fluids:midcontinent, United States[J].Science, 1993, 259(5103):1877-1882. doi: 10.1126/science.259.5103.1877
[6] 马致远, 王心刚, 苏艳, 等.陕西关中盆地中部地下热水H、O同位素交换及其影响因素[J].地质通报, 2008, 27(6):888-894. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20080618&flag=1
[7] Aquilina L, Ladouche B, Doerfliger N, et al. Origin, evolution and residence time of saline thermal fluids (Balaruc springs, southern France):implications for fluid transfer across the continental shelf[J]. Chemical Geology, 2002, 192:1-21. doi: 10.1016/S0009-2541(02)00160-2
[8] Toran L, Harris RF. Interpretation of sulphur and oxygen isotopes in biological and abiological sulfide oxidation[J]. Geochimica et Cosmochimica Acta, 1989, 53:2341-2348. doi: 10.1016/0016-7037(89)90356-6
[9] Bachu S. Synthesis and model of formation-water flow, Alberta Basin, Canada[J]. AAPG Bulletin, 1995, 79(8):1159-1178. https://www.mendeley.com/research-papers/synthesis-model-formationwater-flow-alberta-basin-canada/
[10] 马致远, 何丹, 郑磊, 等.关中盆地腹部地下热水成因类型的同位素水文地球化学证据[J].第四纪研究, 2014, 34(5):1023-1035. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dsjj201405011&dbname=CJFD&dbcode=CJFQ
[11] Ma zhiyuan, Yu Juan, Su Yan, et al. δ18O shifts of geothermal water in the central of Weihe basin. NW China[J]. Environmental Earth Sciences, 2010, 59(5):995-1008. doi: 10.1007/s12665-009-0092-7
[12] Qin Dajun, Tao shuhua. Isotope constraints on the hydraulic relationship of ground waters between Quaternary and tertiary aquifer in Xi'an area, Shaanxi Province[J]. Science in China (Series E), 2001, 44(1):72-79. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200112002014.htm
[13] 安芷生, 吴锡浩, 卢演俦, 等. 最近两万年中国古环境变迁的初步研究[C]//刘东生. 黄土、第四纪地质、全球变化, 第二集. 北京: 科学出版社, 1990: 1-26.
[14] 包为民, 胡海英, 等.蒸发皿中水面蒸发氢氧同位素分馏的实验研究[J].科学进展, 2008, 9(3/4):780-785. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=skxj200806005&dbname=CJFD&dbcode=CJFQ
[15] Gonfianfini R. Environmental isotopes in lake studies In: Fritz P, Fontes. Handbook of environmental isotope geochemistry: The terrestrial environment[M]. Amsterdam Elsevier, 1986: 113-168.
[16] 王焰新, 文东光, 沈照理, 等.深部地下水的起源及成矿作用[J].地学前沿, 1996, 3(3/4):274-281. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy604.015&dbname=CJFD&dbcode=CJFQ