-
摘要:
阿索蛇绿岩位于尼玛县阿索乡西南,大地构造上归属于狮泉河-永珠-嘉黎蛇绿岩带中段。蛇绿岩以岩片形式混杂在晚侏罗世-早白垩世复理石中,岩石组合较齐全,由下至上为蛇纹岩、辉石岩、堆晶辉长岩、席状岩墙及火山熔岩,同时存在蛇绿岩上覆沉积岩系。辉长岩获得LA-ICP-MS锆石U-Pb谐和年龄为117.5±0.5Ma,时代为早白垩世。狮泉河-永珠-嘉黎蛇绿岩带中的蛇绿岩形成于晚三叠世-早白垩世,主要分布在219~178Ma、165~149Ma和117~114Ma三个年龄段,代表了大洋演化的扩张、俯冲、弧后拉张3个阶段。
-
关键词:
- 青藏高原 /
- 狮泉河-永珠-嘉黎蛇绿岩带 /
- 阿索蛇绿岩 /
- 岩石学 /
- 锆石U-Pb定年
Abstract:Asuo ophiolite belongs to Shiquanhe-Yongzhu-Jiali ophiolite zone, located in southwestern Asuo County. The rock combination is complete, and consists from the bottom to the top of serentine, pyroxenite, cumulate gabbro, mafic dyke swarms and volcanic lava, with the existence of sedimentary rocks overlying ophiolite. In this paper, LA-ICP-MS U-Pb dating was carried out for the zircons of the gabbro dyke of Asuo ophiolite. LA-ICP-MS zircon U-Pb dating of gabbro dyke yielded a concordant age of 117.54±0.58Ma, indicating that it was formed in the Early Cretaceous.The ophiolite of Shiquanhe-Yongzhu-Jiali ophiolite zone was formed in Late Triassic to Early Cretaceous and mainly distributed in three age groups of 219~178Ma, 165~149Ma and 117~114Ma, representing the ocean expansion, subduction and back-arc extension respectively.
-
图 4 阿索蛇绿岩中辉长岩锆石稀土元素蛛网图(a)及Y-U/Yb成因判别图解(b)(标准化数据据参考文献[23])
Figure 4.
表 1 阿索蛇绿岩中辉长岩(N17T49)LA-ICP-MS锆石U-Th-Pb同位素测定结果
Table 1. LA-ICP-MS U-Th-Pb analyses of zircons from samples of the gabbro (N17T49)
测点 Th U Th/U 同位素比值 年龄/Ma /10-6 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 01 539 418 1.29 0.0484 0.0019 0.1225 0.0049 0.0184 0.0002 116 69 117 4 117 1 02 853 480 1.78 0.0489 0.0020 0.1239 0.0051 0.0184 0.0002 141 74 119 5 118 1 03 1198 501 2.39 0.0485 0.0020 0.1236 0.0051 0.0185 0.0002 126 75 118 5 118 1 04 2338 1030 2.27 0.0484 0.0011 0.1238 0.0029 0.0186 0.0002 117 34 119 3 119 1 05 1059 566 1.87 0.0483 0.0018 0.1222 0.0044 0.0184 0.0002 113 63 117 4 117 1 06 1094 610 1.79 0.0483 0.0017 0.1226 0.0044 0.0184 0.0002 115 62 117 4 117 1 07 694 476 1.46 0.0486 0.0020 0.1229 0.0049 0.0184 0.0002 127 71 118 4 117 1 08 1254 663 1.89 0.0484 0.0015 0.1223 0.0039 0.0183 0.0002 118 54 117 3 117 1 09 1833 1012 1.81 0.0519 0.0014 0.1314 0.0034 0.0184 0.0002 280 39 125 3 117 1 10 459 339 1.36 0.0484 0.0028 0.1227 0.0071 0.0184 0.0002 120 105 118 6 117 2 11 193 175 1.11 0.0484 0.0053 0.1222 0.0134 0.0183 0.0003 116 216 117 12 117 2 12 2688 1338 2.01 0.0493 0.0012 0.1251 0.0029 0.0184 0.0002 163 34 120 3 118 1 13 587 369 1.59 0.0484 0.0028 0.1229 0.0070 0.0184 0.0002 117 105 118 6 118 1 14 909 660 1.38 0.0481 0.0018 0.1218 0.0044 0.0184 0.0002 105 63 117 4 117 1 15 1580 898 1.76 0.0481 0.0015 0.1223 0.0037 0.0185 0.0002 103 50 117 3 118 1 16 5112 2216 2.31 0.0485 0.0010 0.1231 0.0025 0.0184 0.0002 124 28 118 2 117 1 17 547 425 1.29 0.0481 0.0021 0.1220 0.0052 0.0184 0.0002 106 74 117 5 117 1 18 725 505 1.43 0.0480 0.0019 0.1219 0.0046 0.0184 0.0002 101 65 117 4 118 1 19 268 215 1.25 0.0484 0.0039 0.1223 0.0099 0.0183 0.0003 118 155 117 9 117 2 20 554 350 1.59 0.0484 0.0028 0.1234 0.0072 0.0185 0.0002 120 109 118 6 118 1 表 2 阿索蛇绿岩中辉长岩锆石LA-ICP-MS原位微量、稀土元素分析结果
Table 2. Trace element and REE compositions of zircons in gabbro of Asuo ophiolite as measured by LA-ICP-MS
10-6 测点 1 2 3 4 5 6 7 8 9 10 Y 9824.58 15398.54 9284.82 13990.57 2505.87 4887.58 10160.05 2489.12 11917.05 10087.65 Nb 11.93 9.84 16.44 22.98 2.18 3.48 25.66 3.03 5.51 4.55 La 0.07 0.22 0.19 0.22 0.08 0.09 0.08 0.09 0.14 0.11 Ce 102.37 89.69 188.13 217.35 13.49 31.39 157.27 24.85 52.64 65.38 Pr 1.15 1.57 2.29 2.86 0.1 0.47 0.86 1.2 1.06 0.95 Nd 23.62 27.26 43.59 54.08 2.13 7.99 17.99 21.48 20.26 14.92 Sm 52.98 62.87 89.86 105.72 7.57 18.48 42.88 42.01 46.96 31.86 Eu 7.82 8.53 4.1 9.05 1.93 3.37 3.24 5.78 7.28 2.44 Gd 244.9 319.24 349.58 455.08 44.08 92.62 216.77 141.55 252.4 165.98 Tb 91.16 126.21 117.68 155.89 18 36.38 82.77 41.4 97.74 69.5 Dy 1061.86 1552.21 1155.24 1653.81 231.12 436.56 969.5 359.45 1193.66 893.98 Ho 371.91 553.57 330.66 508.31 88.24 162.35 333.05 91.17 428 338.55 Er 1514.42 2346.45 1127.33 1942.02 380.98 701.92 1342.41 290.28 1761.05 1499.71 Tm 342.79 544.65 222.75 383.68 94.57 174.76 297.02 55.27 408.11 361.82 Yb 3622.39 5721.35 2042.4 3565.22 1072.46 1966.76 2936.81 539.69 4350.33 3865.13 δEu 0.06 0.12 0.1 0.1 0.1 0.1 0.1 0.12 0.06 0.11 δCe 56.64 25.29 16.94 40.12 43.22 26.39 29.79 28.67 73.89 23.76 ΣREE 4285.5 7383.11 9952.55 5299.71 4586.49 7703.84 4571.58 8155.72 7815.5 3906.64 测点 11 12 13 14 15 16 17 18 19 20 Y 4789.46 3430.63 8233.49 2376.99 6835.81 6508.85 7409.12 16039.71 4906.82 6664.45 Nb 4.9 3.57 4.26 1.06 2.41 9.1 2.22 38.5 3.46 5 La 0.07 0.05 0.08 0.13 0.11 0.08 0.07 0.07 0.06 0.08 Ce 40.07 17.11 30.68 17.38 20.43 36.02 20.88 198.47 23.85 16.81 Pr 0.22 0.13 0.61 0.19 0.55 0.21 0.29 1.12 0.2 0.27 Nd 4.91 2.63 10 2.64 10.53 5.13 6 24.05 4.38 6.28 Sm 14.29 7.9 23.7 6.44 26.45 18.01 18.05 69.65 13.71 19.7 Eu 2.52 1.48 3.68 2.02 6.59 3.1 4.97 8.57 3.38 4.72 Gd 88.92 49.8 132.45 34.24 135.1 99.67 120.52 372.88 83.45 122.18 Tb 35.07 21.38 56.45 14.9 51.89 44.08 49.37 151.28 34.96 48.79 Dy 431.21 291.45 726.01 193.87 654.44 580.47 668.43 1774.79 439.24 633.91 Ho 159.24 114.13 274.97 78.27 244.29 224.5 261.27 588.24 162.89 229.03 Er 711.7 518.44 1223.12 376.76 1064.44 980.44 1131.95 2081.1 683.41 910.85 Tm 171.53 131.61 303.98 99.19 265.48 237.61 264.44 410.32 155.33 205.34 Yb 1849.8 1514.91 3381.98 1202.84 2953.94 2537.51 2662.4 3740.38 1591.12 2041.04 ΔEu 0.11 0.1 0.12 0.07 0.08 0.06 0.06 0.07 0.1 0.14 ΔCe 25.99 119.94 19.44 70.28 95.39 230.11 56.84 39.58 26.32 18.37 ΕREE 2547.44 6461.63 6408.46 3093.19 6894.38 11864.59 4553.28 4967.05 2846.32 5474.27 -
[1] Zhu D C, Zhao Z D, Niu Y, et al. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth[J]. Earth & Planetary Science Letters, 2011, 301(1/2):241-255. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.epsl.2010.11.005/
[2] Zhu D C, Li S M, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 2016, 245:7-17. doi: 10.1016/j.lithos.2015.06.023
[3] Zhu D C, Zhao Z D, Niu Y, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4):1429-1454. doi: 10.1016/j.gr.2012.02.002
[4] 徐梦婧.青藏高原狮泉河-永珠-嘉黎蛇绿混杂岩带的构造演化[D].吉林大学博士学位论文, 2014.
[5] Xu M, Li C, Zhang X, et al. Nature and evolution of the Neo-Tethys in central Tibet:synthesis of ophiolitic petrology, geochemistry, and geochronology[J]. International Geology Review, 2014, 56(9):1072-1096. doi: 10.1080/00206814.2014.919616
[6] 曹圣华, 罗小川, 唐峰林, 等.班公湖-怒江结合带南侧弧-盆系时空结构与演化特征[J].中国地质, 2004, 31(1):51-56. doi: 10.3969/j.issn.1000-3657.2004.01.007
[7] 王永胜, 曲永贵, 吕鹏, 等.西藏永珠蛇绿岩带地质特征[J].吉林地质, 2003, 22(2):1-14. doi: 10.3969/j.issn.1001-2427.2003.02.001
[8] 杨日红, 李才, 迟效国, 等.西藏永珠-纳木湖蛇绿岩地球化学特征及其构造环境初探[J].现代地质, 2003, 17(1):14-19. doi: 10.3969/j.issn.1000-8527.2003.01.003
[9] 和钟铧, 杨德明, 王天武.西藏嘉黎断裂带凯蒙蛇绿岩的年代学、地球化学特征及大地构造意义[J].岩石学报, 2006, 22(3):653-660. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603014
[10] 徐建鑫.西藏改则县拉果错蛇绿岩的构造属性[D].吉林大学硕士学位论文, 2015.
[11] 简平, 刘敦一, 张旗, 等.蛇绿岩及蛇绿岩中浅色岩的SHRIMP U-Pb测年[J].地学前缘, 2003, 10(4):439-456. doi: 10.3321/j.issn:1005-2321.2003.04.012
[12] 潘桂棠, 陈智樑, 李兴振, 等.东特提斯多弧-盆系统演化模式[J].岩相古地理, 1996(2):52-65. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600624367
[13] 李才, 黄小鹏, 翟庆国, 等.龙木错-双湖-吉塘板块缝合带与青藏高原冈瓦纳北界[J].地学前缘, 2006, 13(4):136-147. doi: 10.3321/j.issn:1005-2321.2006.04.011
[14] 潘桂棠, 莫宣学, 侯增谦, 等.冈底斯造山带的时空结构及演化[J].岩石学报, 2006, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001
[15] 谢国刚.西藏冈底斯-拉萨陆块中部构造格局及地质演化[D].中国地质大学(武汉)硕士学位论文, 2004.
[16] 唐峰林, 黄建村, 罗小川, 等.藏北阿索构造混杂岩的发现及其地质意义[J].东华理工大学学报(自然科学版), 2004, 27(3):245-250. doi: 10.3969/j.issn.1674-3504.2004.03.009
[17] 袁洪林, 吴福元, 高山, 等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报, 2003, 48(14):1511-1520. doi: 10.3321/j.issn:0023-074X.2003.14.008
[18] 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
[19] Belousova E, Griffin W, O'Reilly S Y, et al. Igneous zircon:trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy & Petrology, 2002, 143(5):602-622. http://link.springer.com/10.1007/s00410-002-0364-7
[20] Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2000, 18(4):423-439. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ026563309
[21] Grimes C B, John B E, Kelemen P B, et al. Trace element chemistry of zircons from oceanic crust:A method for distinguishing detrital zircon provenance[J]. Geology, 2007, 35(7):643-646. doi: 10.1130/G23603A.1
[22] Ludwig K R.User's manual for Isoplot 3.0:A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronogical Center Spec.Pub., 2003, 4:1-70.
[23] Sun S S, Mc Donoungh W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[C]//Saunders A D, Noryy M J. Magmatism in the Ocean Basins. Geological Society London Special Publications, 1989, 42: 313-345.
[24] Zhang K J, Xia B, Zhang Y X, et al. Central Tibetan Meso-Tethyan oceanic plateau[J]. Lithos, 2014, s210/211:278-288. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234761567/
[25] Yuan Y J, Yin Z X, Weiliang L, et al. Tectonic Evolution of the Meso-Tethys in the Western Segment of Bangonghu-Nujiang Suture Zone:Insights from Geochemistry and Geochronology of the Lagkor Tso Ophiolite[J]. Acta Geologica Sinica, 2015, 89(2):369-388. doi: 10.1111/1755-6724.12436
[26] Zhong Y, Xia B, Liu W L, et al. Geochronology, petrogenesis and tectonic implications of the Jurassic Namco-Renco ophiolites, Tibet[J]. International Geology Review, 2015, 57(4):508-528. doi: 10.1080/00206814.2015.1017776
[27] Zeng Y C, Xu J F, Chen J L, et al. Geochronological and geochemical constraints on the origin of the Yunzhug ophiolite in the Shiquanhe-Yunzhug-Namu Tso ophiolite belt, Lhasa Terrane, Tibetan Plateau[J]. Lithos, 2018, s300/301:250-260. https://www.sciencedirect.com/science/article/pii/S0024493717304103
[28] 郑有业, 许荣科, 马国桃, 等.锆石SHRIMP测年对狮泉河蛇绿岩形成和俯冲的时间约束[J].岩石学报, 2006, 22(4):895-904. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200604013
[29] Xu M J, Li C, Xu W, et al. Petrology, Geochemistry and Geochronology of Gabbros from the Zhongcang Ophiolitic Mélange, Central Tibet:Implications for an Intra-Oceanic Subduction Zone within the Neo-Tethys Ocean[J]. Journal of Earth Science, 2014, 25(2):224-240. doi: 10.1007/s12583-014-0419-5
[30] 肖庆辉, 李廷栋, 潘桂棠, 等.识别洋陆转换的岩石学思路—洋内弧与初始俯冲的识别[J].中国地质, 2016, 43(3):721-737. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201603003