西藏改则县拉果错蛇绿岩构造属性:来自岩石学、地球化学、年代学及Lu-Hf同位素的制约

徐建鑫, 李才, 范建军, 王明, 解超明. 西藏改则县拉果错蛇绿岩构造属性:来自岩石学、地球化学、年代学及Lu-Hf同位素的制约[J]. 地质通报, 2018, 37(8): 1541-1553.
引用本文: 徐建鑫, 李才, 范建军, 王明, 解超明. 西藏改则县拉果错蛇绿岩构造属性:来自岩石学、地球化学、年代学及Lu-Hf同位素的制约[J]. 地质通报, 2018, 37(8): 1541-1553.
XU Jianxin, LI Cai, FAN Jianjun, WANG Ming, XIE Chaoming. Tectonic property of the Laguocuo ophiolite in Gerze County, Tibet: Constrains from petrology, geochemistry, LA-ICP-MS zircon U-Pb dating and Lu-Hf isotope[J]. Geological Bulletin of China, 2018, 37(8): 1541-1553.
Citation: XU Jianxin, LI Cai, FAN Jianjun, WANG Ming, XIE Chaoming. Tectonic property of the Laguocuo ophiolite in Gerze County, Tibet: Constrains from petrology, geochemistry, LA-ICP-MS zircon U-Pb dating and Lu-Hf isotope[J]. Geological Bulletin of China, 2018, 37(8): 1541-1553.

西藏改则县拉果错蛇绿岩构造属性:来自岩石学、地球化学、年代学及Lu-Hf同位素的制约

  • 基金项目:
    国家自然科学基金项目《青藏高原羌塘南部埃迪卡拉纪地层研究》(批准号:41602230)、《班公湖-怒江洋早白垩世演化:来自复理石沉积的制约》(批准号:41702227)和中国地质调查局项目《班公湖-怒江成矿带铜多金属矿资源基地调查》(编号:DD20160026)、《冈底斯-喜马拉雅铜矿资源基地调查》(编号:DD20160015)
详细信息
    作者简介: 徐建鑫(1989-), 男, 硕士, 工程师, 构造地质学专业。E-mail:xujianxin8888@163.com
    通讯作者: 李才(1953-), 男, 教授, 博士生导师, 从事青藏高原大地构造与区域地质研究。E-mail:licai010@126.com
  • 中图分类号: P588.12

Tectonic property of the Laguocuo ophiolite in Gerze County, Tibet: Constrains from petrology, geochemistry, LA-ICP-MS zircon U-Pb dating and Lu-Hf isotope

More Information
  • 拉果错蛇绿岩是狮泉河-阿索-嘉黎蛇绿岩带中出露最完整的蛇绿岩组合之一,对恢复和反演该缝合带所代表洋盆演化具有重要意义。然而,目前拉果错蛇绿岩的成因及构造环境还不清楚,时代也存在争议。选择拉果错蛇绿岩中的斜长花岗岩和堆晶辉长岩作为研究对象,开展了野外勘查及剖面的测制,以及地球化学、LA-ICP-MS锆石U-Pb定年及Lu-Hf同位素研究,并结合区域地层、岩浆岩等相关资料,探讨了拉果错蛇绿岩的构造属性。拉果错斜长花岗岩和辉长岩野外呈整合接触,地球化学特征表明二者具有同源性,具有与E-MORB(富集大洋中脊玄武岩)相似的稀土元素配分形式和微量特征; Lu-Hf同位素显示岩浆源区为亏损地幔,由多种组分组成,可能来源于亏损地幔和Ⅱ型富集地幔二组分混合的地幔源区; 斜长花岗岩和辉长岩LA-ICP-MS锆石U-Pb定年分别获得184.1±0.79Ma和183.5±2.2Ma的谐和年龄,代表了拉果错蛇绿岩的形成时代。研究表明,拉果错蛇绿岩形成于具有强烈大洋中脊玄武岩特征的弧后盆地环境。

  • 加载中
  • 图 1  西藏拉果错地区地质简图

    Figure 1. 

    图 2  西藏改则县拉果错蛇绿岩构造剖面

    Figure 2. 

    图 图版Ⅰ   

    Figure 图版Ⅰ. 

    图 3  拉果错斜长花岗岩和辉长岩的稀土元素配分曲线(a、c)和微量元素原始地幔标准化蛛网图(b、d)

    Figure 3. 

    图 4  拉果错斜长花岗岩和辉长岩锆石阴极发光(CL)图像

    Figure 4. 

    图 5  拉果错斜长花岗岩锆石206Pb/238U年龄

    Figure 5. 

    图 6  拉果错辉长岩锆石206Pb/238U年龄

    Figure 6. 

    图 7  拉果错辉长岩构造判别图解

    Figure 7. 

    表 1  拉果错斜长花岗岩主量、微量和稀土元素分析结果

    Table 1.  Major, trace and rare earth elements data for the Laguocuo plagioclase granite

    样品号 L13T1H5 L13T1H4 L13T1H3 L13T1H2 L13T1H1 L14T1H1 L14T1H2 L14T1H3 L14T1H4 L14T1H5 L14T1H6 L14T1H7 L14T1H8 L14T1H9 L14T1H10
    SiO2 74.47 74.24 75.45 74.03 74.30 76.46 77.58 74.37 71.96 74.36 75.44 79.75 69.70 75.01 72.43
    TiO2 0.23 0.20 0.21 0.24 0.22 0.19 0.15 0.25 0.21 0.22 0.22 0.15 0.47 0.21 0.25
    Al2O3 12.95 12.83 12.41 12.69 12.86 11.16 10.34 12.47 13.87 12.74 10.99 9.40 13.84 11.77 13.20
    Fe2O3 3.44 3.10 2.72 4.04 3.45 2.98 2.38 2.70 3.23 3.24 3.30 2.72 5.07 3.24 3.75
    MnO 0.06 0.03 0.04 0.10 0.07 0.04 0.04 0.04 0.06 0.07 0.06 0.05 0.26 0.07 0.10
    MgO 0.84 0.33 0.55 0.36 0.55 1.00 0.58 0.99 0.78 0.62 0.93 0.33 1.52 0.59 0.82
    CaO 0.91 1.58 1.43 1.63 1.43 0.76 1.55 1.70 1.84 1.10 1.20 2.27 1.77 2.56 1.77
    Na2O 6.74 6.31 6.18 5.92 5.99 6.20 6.04 6.13 6.66 6.72 6.93 3.78 5.47 5.39 6.31
    K2O 0.05 0.05 0.04 0.05 0.06 0.05 0.29 0.12 0.24 0.06 0.07 0.13 0.36 0.19 0.12
    P2O5 0.04 0.04 0.04 0.04 0.04 0.03 0.02 0.06 0.04 0.05 0.07 0.03 0.11 0.04 0.08
    LOl 0.92 0.96 0.71 0.60 0.71 0.74 0.65 0.80 0.78 0.45 0.41 0.58 1.10 0.57 0.81
    Li 3.96 5.60 3.36 4.13 5.18 3.91 3.22 7.82 9.01 3.38 4.01 4.12 14.42 4.77 5.89
    Sc 148.00 136.00 146.00 129.00 164.00 182.70 157.80 271.30 204.40 258.00 314.90 189.50 455.10 210.10 349.20
    V 438.00 690.00 597.00 746.00 840.00 648.50 2520.00 1176.30 2055.60 728.70 904.50 1300.00 3004.20 1647.90 1175.40
    Cr 13.54 11.39 12.19 15.22 13.40 11.99 7.29 4.92 11.18 11.91 10.14 11.50 14.69 11.34 15.12
    Co 1499.00 1282.00 1413.00 1526.00 1468.00 1481.20 1013.50 1801.80 1439.20 1576.40 1737.40 1052.10 3334.80 1447.60 1846.60
    Ni 11.85 5.72 6.61 4.12 4.99 16.57 100.91 22.56 11.29 4.51 12.71 39.65 33.73 60.62 10.02
    Cu 9.51 3.14 2.07 1.57 3.95 7.85 5.86 2.72 3.33 1.98 5.69 9.82 3.96 3.29 2.69
    Zn 368.40 209.00 300.00 738.00 508.00 399.40 304.30 311.40 526.20 622.20 584.40 482.60 2381.60 585.90 934.30
    Ga 1.84 1.67 1.55 0.57 0.82 1.60 2.66 3.20 1.69 0.81 0.92 0.50 3.98 0.99 1.14
    Rb 2.83 2.05 1.06 2.26 2.59 3.24 2.58 1.70 1.64 1.42 3.33 5.54 1.94 1.01 1.59
    Sr 3.46 26.56 9.72 1.57 7.41 25.17 2.89 42.92 18.96 1.37 1.33 0.48 29.08 1.17 5.49
    Y 67.94 16.71 25.44 61.26 56.06 43.18 12.31 25.51 40.10 54.63 64.19 22.10 229.50 27.86 78.68
    Zr 194.86 213.15 232.80 188.24 184.54 151.33 106.32 99.06 158.10 133.43 159.44 140.99 99.71 119.03 121.74
    Nb 4.13 5.57 5.67 4.16 4.86 3.63 2.63 1.30 4.66 3.46 4.29 3.83 3.39 3.17 3.66
    Cs 1.78 4.45 3.33 1.56 1.50 0.34 1.76 0.47 5.82 1.52 0.65 2.05 4.55 2.36 1.46
    Ba 18.54 10.10 16.07 47.84 25.80 12.26 17.73 46.53 20.70 6.89 13.63 14.75 126.37 8.97 22.09
    La 10.07 12.02 10.26 9.47 10.06 7.62 8.09 6.12 11.08 8.07 9.28 9.41 9.94 7.71 9.81
    Ce 25.14 23.81 26.48 24.58 25.26 19.50 19.44 13.03 27.86 20.40 23.77 23.65 22.05 19.58 22.90
    Pr 3.42 3.76 3.55 3.46 3.61 2.57 2.52 1.63 3.60 2.81 3.08 3.43 2.89 2.78 3.10
    Nd 15.69 16.33 15.73 16.32 16.96 10.96 10.19 6.44 14.72 12.25 13.00 15.10 11.70 12.14 12.95
    Sm 4.49 4.37 4.52 4.94 5.02 3.17 2.66 1.38 3.94 3.59 3.54 4.46 3.06 3.57 3.58
    Eu 1.14 1.12 1.06 1.35 1.39 0.71 0.70 0.55 0.85 0.93 0.93 1.30 0.87 0.94 0.97
    Gd 5.74 5.36 5.58 6.30 6.35 3.92 3.15 1.48 4.72 4.42 4.35 5.65 3.67 4.58 4.40
    Tb 1.00 0.97 1.01 1.11 1.12 0.76 0.58 0.25 0.85 0.82 0.81 1.03 0.65 0.86 0.79
    Dy 6.93 6.90 7.01 7.72 7.71 5.05 3.79 1.58 5.56 5.43 5.43 6.68 4.23 5.71 5.10
    Ho 1.52 1.56 1.55 1.69 1.69 1.16 0.87 0.37 1.26 1.25 1.25 1.53 0.95 1.31 1.16
    Er 4.69 4.92 4.85 5.19 5.14 3.46 2.59 1.20 3.68 3.67 3.70 4.49 2.78 3.87 3.40
    Tm 0.69 0.73 0.73 0.77 0.76 0.54 0.41 0.20 0.58 0.57 0.56 0.70 0.42 0.59 0.52
    Yb 4.73 5.07 5.05 5.28 5.23 3.56 2.64 1.45 3.77 3.68 3.69 4.45 2.82 3.85 3.45
    Lu 0.71 0.76 0.76 0.80 0.78 0.56 0.42 0.25 0.60 0.58 0.57 0.69 0.45 0.60 0.54
    Hf 5.16 4.94 5.29 4.49 4.41 3.32 2.52 2.11 3.42 3.02 3.38 3.62 2.39 2.95 2.83
    Ta 0.25 0.37 0.33 0.47 0.27 0.26 0.30 0.08 1.04 0.31 0.26 0.25 0.21 0.19 0.36
    Pb 0.97 2.35 2.16 1.57 1.67 0.68 2.21 1.30 3.94 0.66 1.32 2.49 1.85 2.42 1.31
    Th 3.14 4.94 4.94 2.70 2.74 2.47 2.67 0.81 3.80 2.11 2.94 2.24 3.26 2.03 2.72
    U 0.58 1.01 0.91 0.55 0.60 0.59 0.68 0.23 0.99 0.51 0.67 0.49 0.80 0.54 0.64
    注:主量元素含量单位为%,微量和稀土元素含量为10-6
    下载: 导出CSV

    表 2  拉果错堆晶辉长岩主量、微量和稀土元素分析结果

    Table 2.  Major, trace and rare earth element data for the Laguocuo gabbro cumulates

    样品号 L13T2H3 L13T2H2 L13T2H1 L14T2H1 L14T2H2 L14T2H3 L14T2H4 L14T2H5 L14T2H7 L14T2H8 L14T2H9 L14T2H10
    SiO2 50.98 53.17 54.33 42.32 44.70 54.94 53.25 46.42 45.90 46.02 43.41 45.07
    TiO2 0.94 1.02 1.38 0.69 0.65 0.98 1.48 0.94 0.90 0.90 0.74 0.71
    Al2O3 17.33 17.53 15.83 24.00 19.02 16.52 17.22 15.33 18.82 19.40 19.93 19.54
    Fe2O3 11.51 10.37 11.51 9.64 10.12 9.97 10.88 9.67 10.62 10.57 10.62 10.16
    MnO 0.20 0.20 0.21 0.12 0.17 0.18 0.20 0.22 0.18 0.18 0.17 0.18
    MgO 5.46 4.39 3.78 5.92 9.42 5.47 3.95 7.29 8.30 8.02 9.24 9.52
    CaO 4.88 4.55 3.64 9.77 7.57 3.93 5.44 7.20 7.20 6.52 8.50 6.80
    Na2O 5.57 6.17 7.07 3.09 4.23 6.16 5.89 3.52 4.79 5.61 4.17 4.24
    K2O 0.49 0.18 0.26 1.43 1.23 0.15 0.21 0.91 0.92 0.38 0.99 1.17
    P2O5 0.07 0.11 0.19 0.03 0.04 0.07 0.19 0.11 0.05 0.07 0.05 0.04
    烧失量 1.26 1.09 0.85 2.49 2.28 0.80 0.49 8.20 1.70 1.67 1.60 1.99
    Li 9.69 12.62 8.32 40.68 43.07 16.85 11.80 16.82 25.06 24.97 31.44 39.51
    Sc 269.00 384.00 723.00 153.50 220.50 305.30 733.00 492.50 217.70 285.70 246.20 225.40
    V 4144.00 1601.00 2156.00 10854.10 10180.00 1640.00 2107.00 8124.80 6981.00 3613.90 8695.00 10010.00
    Cr 43.26 35.04 32.70 33.03 38.93 26.32 30.32 43.70 31.25 34.53 40.50 38.93
    Co 6118.00 6320.00 8382.00 3785.80 3786.00 5580.00 8454.00 7334.00 4747.20 5303.10 4522.80 4341.60
    Ni 388.40 314.00 263.00 416.30 282.40 283.90 261.20 347.40 301.80 284.20 319.00 315.20
    Cu 18.32 4.93 2.89 58.38 116.48 131.04 8.90 42.33 55.98 68.16 98.59 89.96
    Zn 1514.80 1436.40 1532.20 851.00 1291.00 1311.70 1510.60 1953.30 1212.40 1403.40 1384.50 1426.10
    Ga 32.82 22.04 22.18 43.35 49.64 27.49 21.00 40.22 41.40 44.65 50.78 50.97
    Rb 7.87 3.15 1.48 21.36 40.52 40.91 4.08 39.50 27.54 32.04 37.16 34.94
    Sr 10.15 156.18 11.92 2.28 35.95 22.84 9.91 38.22 57.47 35.44 40.86 40.83
    Y 85.80 208.20 90.58 38.38 66.87 97.79 59.27 100.28 70.31 80.51 73.28 72.81
    Zr 44.81 67.76 86.50 14.71 25.92 117.88 76.68 69.52 44.28 45.60 31.91 27.11
    Nb 1.55 2.05 1.73 0.39 0.59 2.91 2.54 1.17 0.64 0.74 0.78 0.76
    Cs 4.25 3.46 5.59 9.70 2.26 1.47 3.47 2.72 1.68 1.25 4.88 4.90
    Ba 75.86 51.74 23.16 109.85 274.14 37.69 28.49 195.18 149.65 43.71 198.00 268.92
    La 3.06 5.48 5.32 1.93 2.42 7.25 5.97 4.31 2.52 2.48 2.46 2.10
    Ce 8.57 12.83 14.76 4.73 6.02 18.48 14.59 11.24 7.08 6.87 6.39 5.48
    Pr 1.21 1.92 2.23 0.67 0.84 2.67 2.20 1.70 1.10 1.08 0.91 0.79
    Nd 6.08 9.05 11.31 3.19 3.88 12.34 10.56 7.84 5.64 5.52 4.31 3.78
    Sm 1.99 2.68 3.44 0.96 1.20 3.64 3.19 2.27 1.89 1.84 1.39 1.21
    Eu 0.82 0.94 1.44 0.40 0.56 1.11 1.40 0.81 0.82 0.80 0.63 0.57
    Gd 2.82 3.32 4.50 1.25 1.66 4.80 4.34 2.87 2.68 2.68 1.95 1.72
    Tb 0.49 0.57 0.76 0.22 0.30 0.88 0.75 0.51 0.49 0.49 0.35 0.31
    Dy 3.37 3.75 5.04 1.38 1.89 5.61 4.78 3.30 3.16 3.07 2.22 1.97
    Ho 0.73 0.80 1.07 0.30 0.42 1.25 1.06 0.74 0.69 0.68 0.50 0.44
    Er 2.20 2.44 3.21 0.91 1.23 3.73 3.09 2.11 2.07 2.01 1.45 1.27
    Tm 0.32 0.35 0.46 0.13 0.18 0.56 0.46 0.31 0.30 0.30 0.21 0.19
    Yb 2.16 2.36 3.06 0.87 1.21 3.83 3.11 1.94 2.00 1.98 1.44 1.30
    Lu 0.32 0.35 0.45 0.13 0.18 0.58 0.48 0.30 0.30 0.30 0.21 0.20
    Hf 1.30 1.80 2.10 0.40 0.67 3.21 2.10 1.78 1.28 1.21 0.83 0.71
    Ta 0.10 0.14 0.11 0.02 0.03 0.17 0.14 0.07 0.04 0.04 0.06 0.07
    Pb 2.77 8.97 1.62 0.61 0.89 2.54 2.14 2.18 0.69 0.97 0.73 0.77
    Th 1.11 2.23 0.92 0.19 0.62 1.91 1.61 0.74 0.48 0.48 0.73 0.61
    U 0.29 0.44 0.27 0.06 0.12 0.30 0.28 0.21 0.10 0.17 0.13 0.13
    注:主量元素含量单位为%,微量和稀土元素含量为10-6
    下载: 导出CSV

    表 3  拉果错斜长花岗岩锆石U-Th-Pb同位素测年数据(L13T1)

    Table 3.  Zircon U-Th-Pb data of the Laguocuo plagioclase granite (L13T1)

    点号 含量/10-6 Th/U 同位素比值 年龄/Ma
    Pbrad 232Th 238U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
    比值 比值 比值 年龄 年龄 年龄
    01 2 77 54 0.7038 0.0498 0.0066 0.2009 0.0263 0.0293 0.0007 185 249 186 22 186 4
    02 3 104 71 0.6849 0.0544 0.0068 0.2185 0.0270 0.0291 0.0007 387 236 201 23 185 4
    03 3 99 60 0.6017 0.0496 0.0049 0.1978 0.0192 0.0289 0.0006 178 180 183 16 184 4
    04 6 171 98 0.5740 0.0498 0.0032 0.2107 0.0135 0.0307 0.0006 187 109 194 11 195 4
    05 3 86 45 0.5268 0.0498 0.0055 0.2013 0.0222 0.0293 0.0006 184 207 186 19 186 4
    06 4 126 92 0.7368 0.0498 0.0039 0.1951 0.0151 0.0284 0.0006 183 138 181 13 181 3
    07 3 93 53 0.5654 0.0499 0.0044 0.2001 0.0174 0.0291 0.0006 191 157 185 15 185 4
    08 10 265 301 1.1371 0.0499 0.0026 0.1998 0.0103 0.0290 0.0005 190 87 185 9 184 3
    09 4 133 104 0.7847 0.0497 0.0051 0.1980 0.0202 0.0289 0.0006 181 191 183 17 184 4
    10 4 132 103 0.7838 0.0498 0.0049 0.2023 0.0197 0.0294 0.0006 188 180 187 17 187 4
    11 2 67 41 0.6066 0.0498 0.0094 0.2002 0.0376 0.0291 0.0008 187 317 185 32 185 5
    12 3 99 62 0.6289 0.0495 0.0066 0.1903 0.0253 0.0279 0.0007 170 249 177 22 177 4
    13 2 73 42 0.5747 0.0499 0.0099 0.1980 0.0389 0.0288 0.0008 191 328 183 33 183 5
    14 3 109 56 0.5146 0.0499 0.0064 0.2029 0.0257 0.0295 0.0007 189 235 188 22 187 5
    15 13 517 19 0.0362 0.0497 0.0022 0.1932 0.0087 0.0282 0.0005 180 73 179 7 179 3
    16 6 168 165 0.9812 0.0496 0.0047 0.2026 0.0191 0.0296 0.0006 176 173 187 16 188 4
    17 5 148 102 0.6905 0.0500 0.0051 0.2093 0.0211 0.0304 0.0007 193 187 193 18 193 4
    18 2 50 29 0.5817 0.0496 0.0175 0.1963 0.0692 0.0287 0.0010 175 548 182 59 182 6
    19 7 201 204 1.0147 0.0495 0.0046 0.1953 0.0181 0.0286 0.0006 173 170 181 15 182 4
    20 3 96 57 0.5957 0.0498 0.0096 0.1919 0.0366 0.0279 0.0007 186 321 178 31 178 5
    21 3 89 44 0.4947 0.0499 0.0087 0.1997 0.0344 0.0290 0.0008 190 300 185 29 184 5
    22 7 187 299 1.5995 0.0500 0.0054 0.1990 0.0212 0.0289 0.0006 193 201 184 18 184 4
    23 2 74 36 0.4929 0.0501 0.0078 0.2014 0.0309 0.0291 0.0008 201 276 186 26 185 5
    24 5 150 129 0.8643 0.0494 0.0054 0.1912 0.0208 0.0281 0.0006 167 204 178 18 178 4
    下载: 导出CSV

    表 4  拉果错堆晶辉长岩锆石U-Th-Pb同位素测年数据(L13T2)

    Table 4.  Zircon U-Th-Pb data of the Laguocuo gabbro cumulates (L13T2)

    点号 含量/10-6 Th/U 同位素比值 年龄/Ma
    Pbrad 232Th 238U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
    比值 比值 比值 年龄 年龄 年龄
    01 5 132 140 0.9427 0.0497 0.0046 0.2031 0.0187 0.0295 0.00069 183 164 188 16 188 4
    02 2 27 59 0.4668 0.0494 0.0126 0.1925 0.0489 0.0281 0.00102 171 398 179 42 179 6
    03 2 0 71 0.0011656 0.0495 0.0155 0.1802 0.0563 0.0263 0.00095 173 481 168 48 168 6
    04 7 190 193 0.9860 0.0499 0.0083 0.2048 0.0339 0.0297 0.0007 192 296 189 29 189 4
    05 3 44 80 0.5486 0.0497 0.0109 0.2015 0.0437 0.0293 0.00099 183 348 186 37 186 6
    下载: 导出CSV

    表 5  拉果错斜长花岗岩锆石Hf同位素(LT13T1)

    Table 5.  Zircon Hf isotopic composition of the Laguocuo plagioclase granite (L13T1)

    点号 176Hf/177Hf 176Lu/177Hf 176Yb/177Hf 年龄/Ma εHf(t) TDM/Ma TDMC/Ma fLu/Hf
    1 0.282972 0.000052 0.002548 0.000015 0.121317 0.000900 195 11.0 413 487 -0.92
    2 0.282962 0.000032 0.002325 0.000009 0.107413 0.000537 186 10.5 424 507 -0.93
    3 0.282986 0.000039 0.002726 0.000016 0.131081 0.000911 177 11.1 394 466 -0.91
    4 0.283024 0.000041 0.002419 0.000017 0.116751 0.000859 187 12.7 334 384 -0.92
    5 0.283107 0.000044 0.002515 0.000008 0.114513 0.000501 186 15.6 211 220 -0.92
    6 0.283087 0.000045 0.002776 0.000013 0.129858 0.000425 181 14.8 243 264 -0.91
    7 0.283121 0.000035 0.002410 0.000007 0.111720 0.000187 185 16.1 191 193 -0.92
    8 0.283104 0.000043 0.002258 0.000002 0.104537 0.000259 184 15.5 215 226 -0.93
    9 0.283097 0.000067 0.003832 0.000049 0.183608 0.002230 187 15.1 236 250 -0.88
    下载: 导出CSV
  • [1]

    林文第, 陈德泉.藏北改则-色哇地区的蛇绿岩特征[J].成都地质学院学报, 1990, 17(2):17-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001169550

    [2]

    西藏自治区地质矿产局.西藏自治区区域地质志[M].北京:地质出版社, 1993.

    [3]

    肖序常.青藏高原的构造演化与隆升机制[M].广州:广东科技出版社, 2000.

    [4]

    张玉修.西藏改则南拉果错蛇绿岩中斜长花岗岩锆石SHRIMP U-Pb年代学及其成因研究[J].科学通报, 2007, 52(1):100-106. doi: 10.3321/j.issn:0023-074X.2007.01.017

    [5]

    潘桂棠, 陈智梁, 李兴振, 等.东特提斯地质构造形成演化[M].北京:地质出版社, 1997.

    [6]

    潘桂棠, 莫宣学, 侯增谦, 等.冈底斯造山带的时空结构及演化[J].岩石学报, 2006, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001

    [7]

    潘桂棠, 丁俊, 姚东生等, 青藏高原及邻区地质图[M].成都:成都地图出版社, 2003:1-47.

    [8]

    李金高, 德曲.措勤-纳木错缝合带特征及其找矿意义探讨[J].西藏地质, 1993, (2):38-45.

    [9]

    西藏自治区地质调查院. 1:25万改则县幅区域地质调查报告[M].北京:地质出版社, 2012.

    [10]

    王保弟, 许继峰, 曾庆高, 等.西藏改则地区拉果错蛇绿岩地球化学特征及成因[J].岩石学报, 2007, 23(6):1521-1530. doi: 10.3969/j.issn.1000-0569.2007.06.026

    [11]

    樊帅权, 史仁灯, 丁林, 等.西藏改则蛇绿岩中斜长花岗岩地球化学特征、锆石U-Pb年龄及构造意义[J].岩石矿物学杂志, 2010, 29(5):467-478. doi: 10.3969/j.issn.1000-6524.2010.05.002

    [12]

    徐建鑫.藏北班公湖-怒江缝合带侏罗纪洋岛型岩石组合; 来自岩石学和地球化学的证据[J].地质通报, 2014, 23(11):1793-1803. doi: 10.3969/j.issn.1671-2552.2014.11.015 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20141115&flag=1

    [13]

    于红.陕西商南松树沟橄榄岩矿物地球化学特征及成因机理示踪[D].中国地质大学(北京)硕士学位论文, 2011.

    [14]

    Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3):357-370. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-908X.2004.tb00755.x

    [15]

    Hu Z C, Liu Y S, Gao S, et al. Improved insitu Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27:1391-1399. doi: 10.1039/c2ja30078h

    [16]

    徐平, 吴福元, 谢烈文, 等. U-Pb同位素鼎年标准锆石的Hf同位素[J].科学通报, 2004, 49(14):1404-1410.

    [17]

    Schilling J G, Thompson G, Kingsley R, et al. Hotspot-migrating ridge interaction in the South Atlantic[J]. Nature, 1985, 313(5999):187-191. doi: 10.1038/313187a0

    [18]

    Hart S R. Heterogeneous mantle domains:signatures, genesis and mixing chronologies[J]. Earth and Planetary Science Letters, 1988, 90(3):273-296. doi: 10.1016/0012-821X(88)90131-8

    [19]

    Gasperini D, Blichert-Toft J, Bosch D, et al. Evidence from Sardinian basalt geochemistry for recycling of plume heads into the Earth's mantle[J]. Nature, 2000, 408(6813):701-704. doi: 10.1038/35047049

    [20]

    Tatsumi Y. Continental crust formation by crustal delamination in subduction zones and complementary accumulation of the enriched mantle I component in the mantle[J]. Geochemistry, Geophysics, Geosystems, 2000, 1(12):874-903. https://www.researchgate.net/publication/248820376_Continental_crust_formation_by_crustal_delamination_in_subduction_zones_and_complementary_accumulation_of_the_Enriched_Mantle_I_component_in_the_mantle

    [21]

    Niu Y, O'Hara M J. Origin of ocean island basalts:A new perspective from petrology, geochemistry, and mineral physics considerations[J]. Journal of Geophysical Research:Solid Earth, 2003, 108(B4), 2209:1-18. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-2002JB002048/

    [22]

    Donnelly K E, Goldstein S L, Langmuir C H, et al. Origin of enriched ocean ridge basalts and implications for mantle dynamics[J]. Earth and Planetary Science Letters, 2004, 226(3/4):347-366. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ027030456

    [23]

    Workman R K, Hart S R, Jackson M, et al. Recycled metasomatized lithosphere as the origin of the Enriched Mantle Ⅱ(EM2) endmember:Evidence from the Samoan volcanic Chain[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(4):1-44.

    [24]

    Lustrino M. How the delamination and detachment of lower crust can influence basaltic magmatism[J]. Earth-Science Reviews, 2005, 72(1/2):21-38. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.earscirev.2005.03.004/

    [25]

    Chauvel C, Lewin E, Carpentier M, et al. Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array[J]. Nature Geoscience, 2008, 1(1):64-67. doi: 10.1038/ngeo.2007.51

    [26]

    Jackson M G, Dasgupta R. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts[J]. Earth and Planetary Science Letters, 2008, 276(1/2):175-186. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ028941920

    [27]

    Willbold M, Stracke A. Formation of enriched mantle components by recycling of upper and lower continental crust[J]. Chemical Geology, 2010, 276(3/4):188-197. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0216534383

    [28]

    Shervais J W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J]. Earth and Planetary Science Letters, 1982, 59(1):101-118. doi: 10.1016/0012-821X(82)90120-0

    [29]

    Metzger E P, Miller R B, Harper G D. Geochemistry and tectonic setting of the ophiolitic ingalls complex, North Cascades, Washington:Implications for correlations of Jurassic Cordilleran ophiolites[J]. The Journal of Geology, 2002, 110(5):543-560. doi: 10.1086/341759

    [30]

    Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the NbZr-Y diagram[J]. Chemical Geology, 1986, 56:207-218. doi: 10.1016/0009-2541(86)90004-5

    西藏自治区地质调查院.中华人民共和国1: 5万拉过错幅区域地质调查报告.2013.

    四川省地质调查院. 1: 25万物玛幅区域地质调查报告. 2006.

  • 加载中

(8)

(5)

计量
  • 文章访问数:  1057
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2018-01-10
修回日期:  2018-04-20
刊出日期:  2018-08-15

目录