西藏冈底斯带阿索构造混杂岩南侧亚布努马花岗斑岩地球化学特征及锆石U-Pb年龄

李航, 王明, 解超明, 曾孝文, 董宇超, 于云鹏, 罗安波. 西藏冈底斯带阿索构造混杂岩南侧亚布努马花岗斑岩地球化学特征及锆石U-Pb年龄[J]. 地质通报, 2018, 37(8): 1510-1518.
引用本文: 李航, 王明, 解超明, 曾孝文, 董宇超, 于云鹏, 罗安波. 西藏冈底斯带阿索构造混杂岩南侧亚布努马花岗斑岩地球化学特征及锆石U-Pb年龄[J]. 地质通报, 2018, 37(8): 1510-1518.
LI Hang, WANG Ming, XIE Chaoming, ZENG Xiaowen, DONG Yuchao, YU Yunpeng, LUO Anbo. Geochemistry and zircon U-Pb age of granite porphyry in the Yabunuma region close to the southern margin of the Asuo structural melange belt, Gangdise, Tibet[J]. Geological Bulletin of China, 2018, 37(8): 1510-1518.
Citation: LI Hang, WANG Ming, XIE Chaoming, ZENG Xiaowen, DONG Yuchao, YU Yunpeng, LUO Anbo. Geochemistry and zircon U-Pb age of granite porphyry in the Yabunuma region close to the southern margin of the Asuo structural melange belt, Gangdise, Tibet[J]. Geological Bulletin of China, 2018, 37(8): 1510-1518.

西藏冈底斯带阿索构造混杂岩南侧亚布努马花岗斑岩地球化学特征及锆石U-Pb年龄

  • 基金项目:
    中国地质调查局项目《班公湖-怒江成矿带铜多金属矿资源基地调查》(编号:DD20160026)、《冈底斯-喜马拉雅铜矿资源基地调查》(编号:DD20160015)和国家自然科学基金项目《青藏高原羌塘南部埃迪卡拉纪地层研究》(批准号:41602230)、《班公湖-怒江洋早白垩世构造演化:来自复理石沉积的制约》(批准号:41702227)
详细信息
    作者简介: 李航(1995-), 男, 在读硕士生, 构造地质学专业。E-mail:451675109@qq.com
    通讯作者: 王明(1984-), 男, 副教授, 硕士生导师, 从事青藏高原大地构造与区域地质研究。E-mail:wm609@163.com
  • 中图分类号: P588.12+1;P597

Geochemistry and zircon U-Pb age of granite porphyry in the Yabunuma region close to the southern margin of the Asuo structural melange belt, Gangdise, Tibet

More Information
  • 西藏中冈底斯北部尼玛县阿索乡亚布努马地区东侧出露一处花岗斑岩岩脉,LA-ICP-MS锆石U-Pb测年结果显示,该花岗斑岩的形成时代为晚侏罗世(161.2±5.9Ma)。全岩地球化学数据显示其高硅、富碱、富铝的特征,属于碱性准铝质花岗斑岩; 富集轻稀土元素,轻、重稀土元素分异明显,具有明显的负Eu异常,富集Rb、Pb等大离子亲石元素,亏损Ba、Sr元素及Nb、Ta、Ti、U等高场强元素,形成于岛弧环境。其源区可能为来自俯冲带增厚下地壳的深熔作用,结合区域上同时代的岩浆事件,亚布努马花岗斑岩应该形成于以班公湖-怒江洋南向俯冲为动力背景的陆缘弧环境。

  • 加载中
  • 图 1  冈底斯带[5](a)和亚布努马地区大地构造位置简图[5] (b)

    Figure 1. 

    图 2  亚布努马地区地质简图

    Figure 2. 

    图 3  亚布努马花岗斑岩野外及镜下照片

    Figure 3. 

    图 4  亚布努马花岗斑岩SiO2-K2O图解[9]

    Figure 4. 

    图 5  亚布努马花岗斑岩TAS[10] (a)和A/CNK-A/NK图解[11](b)

    Figure 5. 

    图 6  亚布努马花岗斑岩稀土元素配分曲线[12] (a)和微量元素蛛网图[12] (b)

    Figure 6. 

    图 7  亚布努马花岗斑岩代表性锆石阴极发光图像(a)和锆石U-Pb年龄谐和图(b)

    Figure 7. 

    图 8  亚布努马花岗斑岩成因类型判别图解(底图据参考文献[18])

    Figure 8. 

    图 9  亚布努马花岗斑岩构造判别图解[29]

    Figure 9. 

    表 1  亚布努马地区花岗斑岩样品主量、微量和稀土元素分析结果

    Table 1.  Major, trace elements and REE data of the granite porphyry in the Yabunuma region

    样品号 SiO2 TiO2 Al2O3 TFe2O3 MnO MgO CaO Na2O K2O P2O5 烧失量 总计
    N16T18H1 68.45 0.10 13.96 0.80 0.01 0.47 3.68 4.12 5.53 0.09 2.77 99.98
    N16T18H2 74.05 0.04 13.47 0.72 0.02 0.20 0.23 4.02 6.23 0.06 0.46 99.51
    N16T18H4 65.96 0.08 17.39 0.81 0.01 0.45 1.72 5.64 6.37 0.06 1.50 99.98
    N16T18H5 68.42 0.14 16.31 1.38 0.01 0.91 0.99 5.90 4.48 0.06 1.08 99.68
    样品号 Li P K Sc Ti V Cr Mn Co Ni Cu
    N16T18H1 3.02 412.8 37820 3.072 547.8 4.646 0.09072 129.48 1.0356 1.835 1.8172
    N16T18H2 0.18036 288.8 39540 3.184 238.6 4.276 0.4062 163 0.729 2.174 3.996
    N16T18H4 1.6922 289.4 43420 4.56 428 5.06 0.4146 118.94 0.9524 1.4962 1.9416
    N16T18H5 7.132 254 27620 3.206 732.6 6.724 13.75 108.3 1.0418 8.836 1.958
    样品号 Zn Ga Rb Sr Y Zr Nb Cs Ba La Ce
    N16T18H1 12.262 11.478 183.64 82.8 24.36 67.16 9.164 2.524 188.78 15.31 32.3
    N16T18H2 15.036 11.824 213.4 72.92 10.99 23.66 7.44 5.442 168.32 5.23 10.74
    N16T18H4 12.702 14.226 198.8 78.36 22.96 66.72 8.88 1.9046 150.66 21.1 42.6
    N16T18H5 17.604 14.31 120.78 63.82 22.58 108.94 10.718 1.3062 89.2 26.68 53.36
    样品号 Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb
    N16T18H1 3.686 13.824 2.97 0.5246 3.172 0.5824 4.204 0.8722 2.69 0.4194 2.844
    N16T18H2 1.3616 5.226 1.2528 0.288 1.3784 0.2774 2.052 0.4176 1.3512 0.2304 1.7374
    N16T18H4 4.456 15.55 3.242 0.2394 3.27 0.618 4.444 0.8974 2.764 0.4424 3.148
    N16T18H5 5.674 19.98 3.69 0.3664 3.542 0.6174 4.248 0.8616 2.662 0.4218 3.052
    样品号 Lu Hf Ta Pb Th U LREE HREE ∑REE LREE/HREE Eu/Eu*
    N16T18H1 0.374 1.85136 0.9378 17.992 7.988 4.834 68.6146 15.158 83.7726 4.526626 0.52
    N16T18H2 0.2498 0.92466 1.1622 36.78 4.788 2.454 24.0984 7.6942 31.7926 3.132021 0.67
    N16T18H4 0.4342 2.1964 1.086 22.68 12.252 7.938 87.1874 16.018 103.2054 5.443089 0.22
    N16T18H5 0.436 3.0514 0.921 24.04 15.926 7.736 109.7504 15.8408 125.5912 6.928336 0.31
    注:主量元素含量单位为%,微量和稀土元素含量为10-6
    下载: 导出CSV

    表 2  亚布努马花岗斑岩LA-ICP-MS锆石U-Th-Pb同位素测定结果

    Table 2.  U-Th-Pb composition of the zircons from the granite porphyry in the Yabunuma region as measured by LA-ICP-MS

    测点 Pbrad 232Th 238U Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 年龄/Ma
    /10-6 207Pb/206Pb 207Pb/235U 206Pb/238U
    NT18-07 4.7 83 168 0.49 0.04922 0.00455 0.16917 0.01554 0.02492 0.00037 158 179 159 13 159 2
    NT18-09 2.8 54 96 0.57 0.04947 0.00824 0.17227 0.02852 0.02525 0.00053 170 295 161 25 161 3
    NT18-11 4.8 98 171 0.57 0.04932 0.00512 0.16841 0.01741 0.02476 0.00037 163 205 158 15 158 2
    NT18-12 4.7 82 158 0.52 0.04931 0.00441 0.1805 0.01603 0.02654 0.00039 163 172 168 14 169 2
    NT18-15 9.7 152 278 0.55 0.04781 0.00365 0.16469 0.01239 0.02498 0.00033 90 171 155 11 159 2
    注:中国地质大学(北京)地学实验中心测试
    下载: 导出CSV
  • [1]

    朱弟成, 莫宣学, 王立全, 等.西藏冈底斯东部察隅高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束[J].中国科学:地球科学, 2009, 39(7):833-848. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JDXK200907001&dbname=CJFD&dbcode=CJFQ

    [2]

    朱弟成, 潘桂棠, 莫宣学, 等.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束[J].岩石学报, 2006, 22(3):534-546. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603002

    [3]

    朱弟成, 潘桂棠, 王立全, 等.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论[J].地质通报, 2008, 27(9):1535-1536. doi: 10.3969/j.issn.1671-2552.2008.09.013 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20080913&flag=1

    [4]

    莫宣学, 董国臣, 赵志丹, 等.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J].高校地质学报, 2005, 11(3):281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001

    [5]

    Zhu D C, Pan G T, Chung S L, et al. SHRIMP zircon age and geochemical constraints on the origin of Lower Jurassic volcanic rocks from the Yeba Formation, southern Gangdese, South Tibet[J]. International Geology Review, 2008, 50(5):442-471. doi: 10.2747/0020-6814.50.5.442

    [6]

    Govindaraju K.Compilation of working values and sample description for 383 geostandards[J].Geostandards and Geoanalytical Research, 1994, 18:1-158. doi: 10.1046/j.1365-2494.1998.53202081.x-i1

    [7]

    于红.陕西商南松树沟橄榄岩矿物地球化学特征及成因机理示踪[D].中国地质大学(北京)硕士学位论文, 2011.

    [8]

    Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards and Geoanalytical Research, 1995, 19(1):1-23. doi: 10.1111/ggr.1995.19.issue-1

    [9]

    Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 1976, 58(1):63-81. http://d.old.wanfangdata.com.cn/NSTLQK/10.1007-BF00384745/

    [10]

    Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3/4):215-224. https://linkinghub.elsevier.com/retrieve/pii/0012825294900299

    [11]

    Maniar P D. Tectonic discrimination of granitoids[J]. Geol.soc.am. bull., 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    [12]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [13]

    Chappell B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3):535-551. doi: 10.1016/S0024-4937(98)00086-3

    [14]

    King P L, White A J R, Chappell B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan Fold belt, southeastern Australia[J]. Journal of Petrology, 1997, 38(3):371-391. doi: 10.1093/petroj/38.3.371

    [15]

    王强, 赵振华, 熊小林.桐柏-大别造山带燕山晚期A型花岗岩的厘定[J].岩石矿物学杂志, 2000, 19(4):297-306. doi: 10.3969/j.issn.1000-6524.2000.04.002

    [16]

    Watson E B, Harrison T M. Zircon saturation revisited:temperature and composition effects in a variety of crustal magma types[J]. Earth & Planetary Science Letters, 1983, 64(2):295-304. https://www.sciencedirect.com/science/article/pii/0012821X8390211X

    [17]

    刘昌实, 陈小明, 陈培荣, 等. A型岩套的分类、判别标志和成因[J].高校地质学报, 2003, 9(4):573-591. doi: 10.3969/j.issn.1006-7493.2003.04.011

    [18]

    Whalen J B, Currie K L, Chappell B W. A-type granites:geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy & Petrology, 1987, 95(4):407-419. http://d.old.wanfangdata.com.cn/Periodical/hndzykc201103007

    [19]

    Richards J P. Magmatic to hydrothermal metal fluxes in convergent and collided margins[J]. Ore Geology Reviews, 2011, 40(1):1-26. doi: 10.1016/j.oregeorev.2011.05.006

    [20]

    Wang X S, Bi X W, Leng C B, et al. Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo-Cu-(W) mineralization in the southern Yidun Arc, SW China:Implications for metallogenesis and geodynamic setting[J]. Ore Geology Reviews, 2014, 61(8):73-95. https://www.researchgate.net/publication/258658301_Zoning_of_mineralization_in_hypogene_porphyry_copper_deposits_Insight_from_comb_microfractures_within_quartz-chalcopyrite_veins_in_the_Hongshan_porphyry_Cu_deposit_western_Yunnan_SW_China

    [21]

    Wu F Y, Jahn B M, Wilde S A, et al. Highly fractionated I-type granites in NE China (Ⅱ):isotopic geochemistry and implications for crustal growth in the Phanerozoic[J]. Lithos, 2003, 67(3):191-204. https://www.sciencedirect.com/science/article/pii/S0024493702002220

    [22]

    邱检生, 肖娥, 胡建, 等.福建北东沿海高分异Ⅰ型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约[J].岩石学报, 2008, 24(11):2468-2484. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200811002

    [23]

    Joplin G A. Some chemical data on members of the shoshonite association[J]. Mineralogical Magazine, 1972, (300):936-945.

    [24]

    Meen J K. Formation of shoshonites from calcalkaline basalt magmas:geochemical and experimental constraints from the type locality[J]. Contributions to Mineralogy & Petrology, 1987, 97(3):333-351. https://www.researchgate.net/publication/226601709_Formation_of_shoshonites_from_calcalkaline_basalt_magmas_geochemical_and_experimental_constraints_from_the_type_locality

    [25]

    Meen J K. Elevation of potassium content of basaltic magma by fractional crystallization:the effect of pressure[J]. Contributions to Mineralogy & Petrology, 1990, 104(3):309-331. https://link.springer.com/article/10.1007%2FBF00321487

    [26]

    Marchev P, Georgiev S, Zajacz Z, et al. High-K ankaramitic melt inclusions and lavas in the Upper Cretaceous Eastern Srednogorie continental arc, Bulgaria:Implications for the genesis of arc shoshonites[J]. Lithos, 2009, 113(1/2):228-245. https://www.sciencedirect.com/science/article/pii/S002449370900084X

    [27]

    Roberts M P. Origin of high-potassium, calc-alkaline, I-type granitoids[J]. Geology, 1993, 21(9):825. doi: 10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2

    [28]

    闫晶晶.西藏中拉萨地块许如错岩体年代学和地球化学[D].中国地质大学(北京)硕士学位论文, 2016.

    [29]

    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4):956-983. doi: 10.1093/petrology/25.4.956

  • 加载中

(9)

(2)

计量
  • 文章访问数:  538
  • PDF下载数:  2
  • 施引文献:  0
出版历程
收稿日期:  2018-01-12
修回日期:  2018-05-20
刊出日期:  2018-08-15

目录