A study of soil moisture migration mechanism of alpine meadow in the Tibetan Plateau
-
摘要:
查明青藏高原高寒草甸区土壤水分运移机制,对正确理解土壤水分迁移过程、提高高寒草甸重建效率具有重要指导意义。通过开展土壤剖面负压、地温观测等原位试验,结合气象资料,对土壤剖面地温、含水率及总水头特征进行分析。结果表明,土壤的冻结期起始于10月,解冻期起始于4月;地温最高值出现在植物生长旺盛期8月,最低值出现在1月;1~3月土壤水分呈固态,6~10月土壤水分呈液态,处于稳定变化阶段,4~5月、11~12月土壤水分呈固液转化态,含水率变化幅度较大,处于过渡阶段。随着气温升高及降水量增加,6~8月水热同季有利于高寒草甸生长,属于高寒草甸主要生长阶段;春季土层由表及深土壤解冻,冻土层滞水性能保障了返青期春旱牧草生长的水分需求;深秋季节的由表及深的土壤冻结,深层土壤水分随水汽发生的表聚作用保障了牧草生长的水分需求,也是高原生态系统能够维持稳定的原因之一。
Abstract:The alpine meadow soil water for sustaining the succession of vegetation ecosystem benign role lies in finding out the alpine meadow area soil moisture migration mechanism, the correct understanding of alpine meadow soil moisture migration process; the improvement of the reconstruction efficiency has important guiding significance. In this paper, based on in situ test of soil profile negative pressure and ground temperature observation, combined with meteorological data, the authors analyzed soil profile temperature, moisture content and total head characteristics. The results show that the freezing period begins in October, and the thawing period begins in April. At the highest temperature, the plant growth period is in August, and the lowest value appears in January. Soil moisture is solid from January 1 to March; from June to October soil water is liquid, belonging to stable phase change; from April to May and from November to December soil moisture is in solid and liquid state, and the moisture content change is bigger, belonging to the excessive stage. With the increase of temperature and the precipitation, the same season in June and August is favorable for the growth of alpine meadow, which belongs to the main growth stage of alpine meadow. In spring, the soil is thawed at the surface and the depth, and the stagnant water performance of the frozen soil ensures the moisture demand of the spring drought and herbage growth. In the late autumn season, the surface and deep soil are frozen, and the moisture content of the deep soil water with the water vapor in the soil protects the moisture demand of the grass growing. This is one of the reasons that the plateau ecosystem can be stable.
-
Key words:
- alpine meadow /
- moisture migration /
- total water head /
- Tibetan Plateau
-
-
表 1 气象要素监测探头安装位置
Table 1. Meteorological element monitoring probe installation position
指标 距地面高度 降水量 1m 湿度 1.5m 气温 1.5m 净辐射 2.5m 风速 6m 风向 6m 表 2 实验室土壤粒度分析结果
Table 2. Results of laboratory soil particle size analysis
序号 分层/m 沙粒/% 粉粒/% 粘粒/% 岩性定名 1 0~0.15 37.5 56.6 5.9 粉土 2 0.15~0.3 28.5 64.2 7.3 粉土 3 0.3~0.5 60.1 32.3 7.6 粉土 4 0.5~2.0 93.2 5.2 1.6 砂卵砾石 表 3 主要观测仪器性能及精度
Table 3. Main observation instrument performance and precision
序号 监测变量 传感器型号 测量量程 测量精度 1 气温/℃ DMA672.1 -50~+70 ±0.1 2 相对湿度/% DMA672.1 0~100 1.5(5~95) 3 风速/(m· s-1) DNA121#C 0~60 ±1 4 风向/° DNA121#C 0~3 ±1 5 净辐射/(W· m-1) DPA240 0~2000
工作温度:-40℃~70℃±5 6 降水量/mm DQA130#C 翻斗式,每斗0.2 ±0.2mm(0~1mm/min)
1%(1~10mm/min)7 包气带含水率/% MP406 0~100 ±3 8 包气带温度/℃ SP40A -20~+60 ±0.125℃ 9 包气带负压/kPa EQ15 0~-1000
输出信号:0~-1000,150~550±1kPa -
[1] 徐满厚, 薛娴.青藏高原高寒草甸夏季植被特征及对模拟增温的短期响应[J].生态学报, 2013, 33(7):2071-2083. http://d.old.wanfangdata.com.cn/Periodical/stxb201307008
[2] 石福孙, 吴宁, 罗鹏.川西北亚高山草甸植物群落结构及生物量对温度升高的响应[J].生态学报, 2008, 28(11):5286-5293. doi: 10.3321/j.issn:1000-0933.2008.11.010
[3] 李元寿, 王根绪, 丁永建, 等.青藏高原高寒草甸区土壤水分的空间异质性[J].水科学进展, 2008, 19(1):61-67. doi: 10.3321/j.issn:1001-6791.2008.01.010
[4] 张泉, 刘咏梅, 杨勤科, 等.祁连山退化高寒草甸土壤水分空间变异特征分析[J].冰川冻土, 2014, 36(1):88-94. http://d.old.wanfangdata.com.cn/Periodical/bcdt201401011
[5] 程慧艳, 王根绪, 王一博, 等.黄河源区不同植被类型覆盖下季节冻土冻融过程中的土壤温湿空间变化[J]..兰州大学学报(自然科学版), 2008, 44(2):15-21. doi: 10.3321/j.issn:0455-2059.2008.02.003
[6] 杨健, 马耀明.青藏高原典型下垫面的土壤温湿特征[J].冰川冻土, 2012, 34(4):813-820. http://d.old.wanfangdata.com.cn/Periodical/bcdt201204007
[7] 胡宏昌, 王根绪, 王一博, 等.江河源区典型多年冻土和季节冻土区水热过程对植被盖度的响应[J].科学通报, 2009, 54(2):242-250. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200900089867
[8] 王军德, 王根绪, 陈玲.高寒草甸土壤水分的影响因子及其空间变异研究[J].冰川冻土, 2006, 28(3):428-433. doi: 10.3969/j.issn.1000-0240.2006.03.020
[9] 曹广民, 龙瑞军.三江源区"黑土滩"型退化草地自然恢复的瓶颈及解决途径[J].草地学报, 2009, 17(1):4-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdxb200901002
[10] 邱正强, 马玉寿, 施建军, 等.甘肃马先蒿对"黑土型"退化草地垂穗披碱草人工草地的影响[J].草原与草坪, 2006, 5:26-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cyycp200605006
[11] 张宪洲, 王小丹, 高清竹, 等.开展高寒退化生态系统恢复与重建技术研究, 助力西藏生态安全屏障保护与建设[J].生态学报, 2016, 36(22):7083-7087. http://d.old.wanfangdata.com.cn/Periodical/stxb201622013
[12] 泽让东洲, 张洪轩, 陈立坤, 等.川西北高寒草甸色达县草地治理对策初探[J].草业与畜牧, 2016, 5:56-60. http://d.old.wanfangdata.com.cn/Periodical/sccy201505015
[13] 杨林平, 苏宝兰, 杨文英.黄河首曲高寒草甸退化草地(黑土滩)恢复重建优良适宜牧草筛选试验[J].草原草业, 2016, 46(11):96-98. http://d.old.wanfangdata.com.cn/Periodical/gsxmsy201611048
[14] 周华坤, 周立, 赵新全, 等.江河源区"黑土滩"型退化草场的形成过程与综合治理[J].生态学杂志, 2003, 22(5):51-55. doi: 10.3321/j.issn:1000-4890.2003.05.012
[15] 王海东, 张璐璐, 朱志红, 等.刈割、施肥对高寒草甸物种多样性与生态系统功能关系的影响及群落稳定性机制[J].植物生态学报, 2013, 37(4):279-295. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201304001
[16] 杨路存, 刘何春, 李长斌, 等.氮磷钾不同施肥配方对退化高寒草原植物群落结构的影响[J].生态学杂志, 2015, 34(1):25-32. http://d.old.wanfangdata.com.cn/Periodical/stxzz201501004
[17] 韩潼, 牛得草, 张永超, 等.施肥对玛曲县高寒草甸植物多样性及生产力的影响[J].草业科学, 2011, 28(6):926-930. http://d.old.wanfangdata.com.cn/Periodical/caoyekx201106011
[18] 王高峰, 安沙舟.施肥对退化草甸草地土壤肥力和牧草群落结构及产量的影响[J].现代农业科技, 2010, 9:278-279. http://d.old.wanfangdata.com.cn/Periodical/ahny201009183
[19] 王敬龙, 王保海, 次仁多吉, 等.改则高寒荒漠草地改良效果[J].草业科学, 2012, 29(10):1521-1525. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201205232615
[20] 张文海, 杨韫.草地退化的因素和退化草地的恢复及其改良[J].北方环境, 2011, 23(8):40-44. http://d.old.wanfangdata.com.cn/Periodical/nmghjbh201108032
[21] 周华坤, 赵新全, 温军, 等.黄河源区高寒草原的植被退化与土壤退化特征[J].草业学报, 2012, 21(5):1-11. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201205001
[22] Walker D A, Jia G J, Epstein H E, et al. Vegetation-soil thawdepth relationships along a low-arctic bioclimate gradient, Alaska:synthesis of information from the ATLAS studies[J]. Perm a frost and Periglacial Processes, 2003, 14:103-123. doi: 10.1002/(ISSN)1099-1530
[23] 乔冈.青藏高原高寒草甸区包气带水分转化机制研究[D].长安大学博士学位论文, 2018.
[24] 常娟, 王根绪, 高永恒, 等.青藏高原多年冻土区积雪对沼泽、草甸浅层土壤水热过程的影响[J].生态学报, 2012, 32(23):7289-7301. http://d.old.wanfangdata.com.cn/Periodical/stxb201223005
[25] 刘光生, 王根绪, 胡宏昌, 等.青藏高原多年冻土区植被盖度变化对活动层水热过程的影响[J].冰川冻土, 2009, 31(1):89-95. http://d.old.wanfangdata.com.cn/Periodical/bcdt200901013
[26] 李元寿.青藏高原典型多年冻土区高寒草甸覆盖变化对水循环影响的试验研究[D].中国科学院博士学位论文, 2007.
https://max.book118.com/html/2016/0322/38372110.shtm -