新疆哈尔里克山琼祖尔开地区变质安山岩锆石U-Pb年龄和地球化学特征

靳刘圆, 朱志新, 李平, 朱彦菲. 新疆哈尔里克山琼祖尔开地区变质安山岩锆石U-Pb年龄和地球化学特征[J]. 地质通报, 2017, 36(2-3): 293-303.
引用本文: 靳刘圆, 朱志新, 李平, 朱彦菲. 新疆哈尔里克山琼祖尔开地区变质安山岩锆石U-Pb年龄和地球化学特征[J]. 地质通报, 2017, 36(2-3): 293-303.
JIN Liuyuan, ZHU Zhixin, LI Ping, ZHU Yanfei. Zircon U-Pb age and geochemical characteristics of meta-andesite in Qiongzuerkai area of Harlik Mountain, Xinjiang[J]. Geological Bulletin of China, 2017, 36(2-3): 293-303.
Citation: JIN Liuyuan, ZHU Zhixin, LI Ping, ZHU Yanfei. Zircon U-Pb age and geochemical characteristics of meta-andesite in Qiongzuerkai area of Harlik Mountain, Xinjiang[J]. Geological Bulletin of China, 2017, 36(2-3): 293-303.

新疆哈尔里克山琼祖尔开地区变质安山岩锆石U-Pb年龄和地球化学特征

  • 基金项目:
    国家305 项目办公室“十二五”科技支撑计划重点项目《博格达-哈尔里克成矿带铜-金成矿条件研究及靶区评价》(编号:2011BAB06B04)
详细信息
    作者简介: 靳刘圆(1989-),男,硕士,工程师,从事造山带、火成岩与成矿研究。E-mail:mushan_2010@sina.cn
  • 中图分类号: P588.14+4;P597+.3

Zircon U-Pb age and geochemical characteristics of meta-andesite in Qiongzuerkai area of Harlik Mountain, Xinjiang

  • 新疆哈尔里克山广泛出露古生代火山岩,由于缺少可靠的年龄和地球化学数据,其成因及地球动力学背景长期存在争议。为探讨这一问题,选择琼祖尔开地区一套层状分布的火山岩作为研究对象,采集其中的变质安山岩进行U-Pb 同位素定年,得到2 个样品的206Pb/238U 年龄分别为309.9±4.6Ma(MSWD=2.6,n=9)和304.6±1.8Ma(MSWD=0.84,n=11),代表火山岩的结晶年龄。变质安山岩SiO2含量为49.96%~62.22%,具有低TiO2含量(0.94%~1.7%)和高Al2O3含量(14.76%~16.25%)的特征。轻、重稀土元素分馏明显,富集轻稀土元素,具负Eu 异常(δEu=0.88~0.94);岩石地球化学研究表明,变质安山岩富集大离子亲石元素Th、U、Ce、Rb、Ba,亏损高场强元素Nb、Ta、Ti,具岛弧型火山岩特征。原始岩浆源区可能为地壳熔体和俯冲洋壳熔体组成的混合物,岩浆在上升过程中有地壳物质的加入,岩石成因可能与大洋板块俯冲作用有关。哈尔里克山石炭纪火山活动可能与其南侧康古尔洋盆的演化相关。

  • 加载中
  • 图 1  哈尔里克地区地质简图

    Figure 1. 

    图 2  琼祖尔开地质简图及采样点位置

    Figure 2. 

    图 3  琼祖尔开地质剖面

    Figure 3. 

    图 4  琼祖尔开地区变质安山岩单偏光显微照片

    Figure 4. 

    图 5  琼祖尔开地区变质安山岩锆石阴极发光(CL)图像

    Figure 5. 

    图 6  琼祖尔开地区变质安山岩的锆石U-Pb 谐和图

    Figure 6. 

    图 7  琼祖尔开地区变质安山岩Nb/Y-Zr/TiO2图解[21]

    Figure 7. 

    图 8  琼祖尔开地区变质安山岩SiO2-K2O图解[[22] (图例同图 7

    Figure 8. 

    图 9  琼祖尔开地区变质安山岩稀土元素配分曲线(a)及微量元素蛛网图(b)[25]( 图例同图 7

    Figure 9. 

    图 10  琼祖尔开地区变质安山岩Sc/Ni-La/Yb 图[27](图例同图 7

    Figure 10. 

    图 11  琼祖尔开地区变质安山岩Th-La/Yb 图[28](图例同图 7

    Figure 11. 

    图 12  琼祖尔开地区变质安山岩SiO2-Nb 图[29](图例同图 7

    Figure 12. 

    表 1  琼祖尔开地区变质安山岩LA-ICP-MS 锆石U-Th-Pb 同位素数据

    Table 1.  LA-ICP-MS zircon U-Th-Pb isotopic data ofmeta-andesite from Qiongzuerkai area

    分析点号Pb/10-6Th/10-6U/10-6232Th/238U07Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
    比值比值比值比值年龄/Ma年龄/Ma年龄/Ma
    T-y-3
    0180.7253.2392.90.640.05330.00140.35540.00930.04930.0006342.793.5308.77.0309.93.4
    02142.5505.1738.70.680.05790.00240.38750.01690.04960.0006524.190.7332.612.4312.13.6
    0359.9180.4300.20.600.05220.00200.35110.01430.04880.0006294.588.9305.510.8307.43.7
    0626.1192.3318.00.600.05220.00200.33580.01280.04760.0004294.588.9293.99.7299.82.5
    0746.9154.2233.30.660.05890.00250.39290.01940.04890.0006564.990.7336.514.2307.93.6
    08129.9351.7407.60.860.05110.00130.33040.00840.04740.0005255.659.2289.96.4298.73.3
    09125.6732.0829.90.880.05290.00270.33400.01220.04780.0006324.1112.0292.69.3301.03.5
    1162.8217.6349.40.620.06590.00530.38680.01570.04730.0007803.4165.7332.011.5298.24.1
    T-y-5
    0123.799.0169.20.590.05200.00210.34030.01300.04780.0004283.490.7297.49.8301.22.6
    0295.7308.2448.40.690.05650.00380.37310.02440.04880.0005472.3150.0321.918.1306.93.1
    0491.9289.2395.20.730.05240.00290.35140.01820.04910.0004301.9130.5305.713.7309.02.5
    05136.5389.9436.30.890.06640.00340.43250.02080.04790.0005820.4106.3364.914.7301.32.9
    0680.8229.2307.40.750.05240.00230.35100.01480.04860.0004301.993.5305.511.1305.82.4
    0752.5144.6237.40.610.06450.00260.42750.01660.04850.0005766.752.8361.411.8305.32.9
    0837.8106.5174.00.610.05940.00550.37030.01620.04800.0007583.4201.8319.912.0302.04.4
    1096.0427.2627.40.680.05590.00140.37210.00900.04850.0004450.055.6321.26.7305.22.8
    1137.6242.4311.10.780.05810.00190.38210.01110.04820.0006531.575.0328.68.1303.23.6
    1294.1309.3421.20.730.05870.00330.38600.01830.04850.0010566.7120.4331.513.4305.46.3
    13126.2602.9868.90.690.05010.00120.32670.00790.04780.0006198.257.4287.16.1301.23.8
     注:样品测试在中国科学院广州地球化学研究所同位素地球化学国家重点实验室完成
    下载: 导出CSV

    表 2  琼祖尔开地区变质安山岩主量元素组成

    Table 2.  Major element compositions of meta-andesite in Qiongzuerkai area

    %
    编号Tt-1Tt-2Tt-3Tt-4Tt-5Tt-6
    SiO259.6562.2255.0454.9149.9650.5
    TiO20.960.941.541.511.701.70
    Al2O314.7615.1516.2416.1216.3016.25
    Fe2O32.502.623.132.827.247.28
    FeO3.813.524.875.233.683.93
    MnO0.130.120.180.170.120.12
    MgO1.441.372.112.175.555.56
    CaO5.044.308.648.325.155.04
    Na2O6.296.371.831.874.954.99
    K2O0.630.501.411.390.310.36
    P2O50.330.320.370.380.260.28
    烧失量3.622.844.474.404.564.61
    总量99.16100.2799.8399.2999.78100.62
    TFe2O36.746.548.558.6411.3411.66
    Mg#29.9329.5333.0433.4349.4748.82
    Na2O/K2O9.9812.741.301.3515.9713.86
     注:样品测试在中国地质科学院国家地质实验测试中心完成
    下载: 导出CSV

    表 3  琼祖尔开地区变质安山岩微量和稀土元素组成

    Table 3.  Trace element and REE compositions of metaandesitein Qiongzuerkai area

    10-6
    编号Tt-1Tt-2Tt-3Tt-4Tt-5Tt-6
    La20.6019.5019.0019.5015.5019.40
    Ce48.6043.8045.1044.4039.0045.40
    Pr6.025.876.035.974.765.52
    Nd27.0026.3027.1026.2021.1023.50
    Sm5.575.516.376.644.744.97
    Eu1.691.722.021.981.431.53
    Gd6.096.326.636.994.835.17
    Tb0.980.961.081.110.820.82
    Dy5.975.456.326.274.314.52
    Ho1.301.201.351.360.920.96
    Er3.863.503.893.832.632.79
    Tm0.560.500.570.570.370.40
    Yb3.593.093.363.352.322.43
    Lu0.600.500.530.530.340.38
    Rb15.0012.0047.2044.9011.2012.90
    V172.00136.00452.00449.00139.00176.00
    Cr4.204.103.063.013.924.30
    Ni1.111.051.141.100.690.79
    Co5229.824150.6511704.8311538.812573.402988.47
    Sc7.517.236.846.599.249.55
    Pb0.560.540.470.480.660.72
    Ba312.00315.00499.00480.00562.00612.00
    Th27.0026.3027.1026.2021.1023.50
    U1440.421396.771615.011658.661134.871222.17
    Nb176.00168.00158.00150.00178.00183.00
    Ta4.534.233.943.934.194.34
    Sr5755.205635.309232.309052.4510191.5010191.50
    Nd34.0030.5034.6034.8022.0024.40
    Zr0.880.890.940.880.910.92
    Hf132.43124.22129.35128.70103.07117.79
    Y109.48102.70105.62104.6986.53100.32
    δEu22.9521.5223.7324.0116.5417.47
    ΣREE4.774.774.454.365.235.74
    ΣLREE3.763.943.733.684.675.19
    ΣHREE4.124.534.064.184.795.73
    L/R20.6019.5019.0019.5015.5019.40
    (Ce/Yb)N48.6043.8045.1044.4039.0045.40
    (La/Yb)N6.025.876.035.974.765.52
     注:样品测试在中国地质科学院国家地质实验测试中心完成
    下载: 导出CSV
  • [1]

    李锦轶,何国琦,徐新,等.新疆北部及邻区地壳构造格架及其形成过程的初步探讨[J].地质学报,2006,80(1): 148-168. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601020.htm

    [2]

    孙桂华,李锦轶,高立明,等.新疆东部哈尔里克山闪长岩体锆石SHRIMP U-Pb定年及其地质意义[J]. 地质论评, 2005,51(4): 463-469. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200504018.htm

    [3]

    李锦轶,王克卓,李亚萍,等.天山山脉地貌特征、地壳组成与地质演化[J].地质通报,2006,25(8): 895-909. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=200608159&journal_id=gbc

    [4]

    楼法生,唐春花. 新疆巴里坤红井子地区石炭纪火山岩及其大地构造环境分析[J]. 新疆地质,1995,13(1): 67-76. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI501.006.htm

    [5]

    顾连兴,胡受奚,于春水,等. 东天山博格达造山带石炭纪火山岩及其形成地质环境[J]. 岩石学报,2000,16(3): 305-317. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200003000.htm

    [6]

    顾连兴,胡受奚,于春水,等. 论博格达俯冲撕裂型裂谷的形成与演化[J]. 岩石学报,2001,17(4): 585-597. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200104008.htm

    [7]

    王银喜,顾连兴,张遵忠,等. 博格达裂谷双峰式火山岩地质年代学与Nd-Sr-Pb同位素地球化学特征[J]. 岩石学报,2006,22(5): 1215-1224. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605013.htm

    [8]

    赵明,舒良树,王赐银. 东疆哈尔里克变质地带变质作用特征及形成构造环境研究[J].高校地质学报,1997,3(1):40-50. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX701.004.htm

    [9]

    成守德,张湘江.新疆大地构造基本格架.新疆地质[J]. 2000,18(4): 293-296.

    [10]

    刘德全,唐延龄,周汝洪.新疆北部古生代地壳演化及成矿系列[J]. 矿床地质,1992,11(4):307-314. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ199204003.htm

    [11]

    马瑞士,王赐银,叶尚夫.东天山构造格架及地壳演化[M].南京: 南京大学出版社,1993:1-225.

    [12]

    王赐银,舒良树,赵明,等.东天山北部哈尔里克晚古生代推覆构造与岩浆作用研究[J].高校地质学报,1996,2(2):198-206. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX602.007.htm

    [13]

    王宗秀,周高志,李涛.对新疆北部蛇绿岩及相关问题的思考和认识[J].岩石学报,2003,19(4):683-691. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200304008.htm

    [14]

    周济元,茅燕石,黄志勋,等.东天山古大陆边缘火山地质[M].成都:成都科技大学出版社,1994:1-280.

    [15]

    周济元,崔炳芳,肖惠良,等.新疆康古尔-黄山对接碰撞带的存在、成矿模式及成矿预测[J].火山地质与矿产,2001,22(4):252-263. http://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ200104003.htm

    [16]

    Liu Y S, Hu Z C, Gao S. In-situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008,257: 34-43. doi: 10.1016/j.chemgeo.2008.08.004

    [17]

    Ludwing K R. ISOPLOT 3.00: A Geochronnlogical Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication, 2003, 4: 1-70.

    [18]

    Hsokin P W O, Black L P. Metamorphic ziron formation by solidstate recrystallization of protolith igneous zircon[J].Journal of Metamorphic Geology, 2000,18:423-439 https://www.researchgate.net/publication/229968849_Metamorphic_zircon_formation_by_solid-state_recrystallization_of_protolith_igneous_zircon

    [19]

    吴元保,郑水飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学捅报,2004,49(16):1589-1604. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm

    [20]

    Wendlandt R F, Altherr R, Neumann E R, et al. Petrology, geochemistry, isotopes[J]. Developments in Geotectonics, 1995, 25: 47-60.

    [21]

    Winchester J A, Floyd P A. Geochemical discrimination of different magama series and their differentiation prouducts using immobile elements[J]. Chemical Geology, 1977,20:325-343. doi: 10.1016/0009-2541(77)90057-2

    [22]

    Peccerillo A, Talor A R. Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contribution to Mineralogy and Petrology, 1976,58:63-81. doi: 10.1007/BF00384745

    [23]

    Henderson P. Rare earth element geochemistry[M]. New York: Elsevier Science Publications B V., 1984.

    [24]

    Wilson M. Igneous petrogenesis a global tectonic approach[M]. London: Unwin Hyman, 1989:1-466.

    [25]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Saunders A D, Norry M J. Magmatism in the Ocean Basins[C]//Soc. London Spcc. Pub.,1989,42:313-345.

    [26]

    Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[C]//Andestites. Chichester,Wiley, 1985:523-548.

    [27]

    Bailey J C. Geochemical criteria for a refined tectonic discrimination of orogrnic andesites[J]. Chemical Geology, 1981, 32:139-154. doi: 10.1016/0009-2541(81)90135-2

    [28]

    Condie K C. Geochemistry and tectonic setting of early proterozoic supracrustal rocks in the southwestern united states[J]. J. Geology, 1986,94:845-861. doi: 10.1086/629091

    [29]

    Pearce J A,Gale G H. Identification of ore-deposition environment from trace-element geochemistry of associated igneous host rocks[C]//Volcanic processes in ore genesis. Geology Society, 1977,7: 14-24.

    [30]

    Condie K C. Geochemical change in basalts and andesites across the archaean-proterozoic boundary identification and significance[J]. Lithos, 1989,23: 1-18. doi: 10.1016/0024-4937(89)90020-0

    [31]

    Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[[M]. Oxford UK: Blackwell, 1985:1-312.

    [32]

    Barth M G, Mc Douough W F, Rudnick R L. Tracking the budget of Nb and Ta in the Continental crust[J].Chemical Geology, 2000,165:197-213. doi: 10.1016/S0009-2541(99)00173-4

    [33]

    Pfander J A,Munker C,Stracke A, et al. Nb/Ta and Zr/Hf in ocean island basalts-Implications for Crust mantle differentiation and the fate of Niobium[J]. Earth and Planetary Science Letters, 2007,254:158-172. doi: 10.1016/j.epsl.2006.11.027

    [34]

    Stolz A J, Vame R, Davies G R. Magma source components in an arc-continent collision zone:The Flores-Lembata secter,Sunda Arc,Indonesia[J]. Contributions to Mineralogy and Petrology, 1990, 105:585-601. doi: 10.1007/BF00302497

    [35]

    Baker T, Ash C H, Thompson J F H. Geological setting and characteristics of Red Chris porphyry copper gold deposits, northwestern British Columbia[J]. Exploration and Mining Geology, 1997,6: 297-316. https://www.researchgate.net/publication/283838389_Geological_setting_and_characteristics_of_the_Red_Chris_porphyry_copper-gold_deposit_northwestern_British_Columbia

    [36]

    李锦轶.新疆东部新元古代晚期和古生代构造格局及其演变[J]. 地质论评,2004,50(3):308-309. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200403015.htm

    [37]

    Han B F,Guo Z J, Zhang C, et al. Age,Geochemistry,and tectonic implications of a late Paleozoic stitching pluton in the North Tian Shan suture zone, western China[J]. Geological Society of America Bulletin, 2010,122:627-640 doi: 10.1130/B26491.1

    [38]

    郭召杰.新疆北部大地构造研究中几个问题的评述——兼论地质图在区域构造研究中的重要意义[J].地质通报,2012,31(7): 1054-1060. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20120704&journal_id=gbc

    [39]

    孙桂华.新疆哈尔里克山古生代以来构造变形及构造演化[D].中国地质科学院博士学位论文,2007:179-198.

    [40]

    木合塔尔·扎日,吴兆宁,吴昌志.东天山板块缝合区(带)的构造演化与多金属矿床成矿的关系[J].地球科学,2010,35(2):250. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201002007.htm

    [41]

    夏芳,赵同阳,徐仕琪,等.新疆哈尔里克地区侵入岩浆构造序列的确定及构造意义[J].新疆地质,2012,30(4):392-398. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201204005.htm

  • 加载中

(12)

(3)

计量
  • 文章访问数:  297
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2016-04-18
修回日期:  2017-01-16
刊出日期:  2017-03-25

目录