贵州白层超基性岩对右江盆地燕山晚期拉张环境深源岩浆演化作用的启示——来自地球化学的证据

吴松洋, 侯林, 丁俊, 张锦让, 朱斯豹. 贵州白层超基性岩对右江盆地燕山晚期拉张环境深源岩浆演化作用的启示——来自地球化学的证据[J]. 地质通报, 2017, 36(2-3): 445-458.
引用本文: 吴松洋, 侯林, 丁俊, 张锦让, 朱斯豹. 贵州白层超基性岩对右江盆地燕山晚期拉张环境深源岩浆演化作用的启示——来自地球化学的证据[J]. 地质通报, 2017, 36(2-3): 445-458.
WU Songyang, HOU Lin, DING Jun, ZHANG Jinrang, ZHU Sibao. Deep magma evolution in the extensional Youjiang Basin in late Yanshanian period: Evidence from geochemical characteristics of Baiceng ultramafic rock, Guizhou Province[J]. Geological Bulletin of China, 2017, 36(2-3): 445-458.
Citation: WU Songyang, HOU Lin, DING Jun, ZHANG Jinrang, ZHU Sibao. Deep magma evolution in the extensional Youjiang Basin in late Yanshanian period: Evidence from geochemical characteristics of Baiceng ultramafic rock, Guizhou Province[J]. Geological Bulletin of China, 2017, 36(2-3): 445-458.

贵州白层超基性岩对右江盆地燕山晚期拉张环境深源岩浆演化作用的启示——来自地球化学的证据

  • 基金项目:
    中国地质调查局项目《贵州贞丰金-铀多金属成矿区控矿因素与找矿方法研究》(编号:12120113094400)
详细信息
    作者简介: 吴松洋 (1989-), 男, 在读博士生, 岩石学、矿物学、矿床学专业。E-mail:songywu@163.com
    通讯作者: 侯林 (1985-), 男, 博士, 工程师, 矿床学专业。E-mail:houlin_aaron@163.com
  • 中图分类号: P588.12+5;P588.11+5

Deep magma evolution in the extensional Youjiang Basin in late Yanshanian period: Evidence from geochemical characteristics of Baiceng ultramafic rock, Guizhou Province

More Information
  • 白层超基性岩产出于扬子地台西南缘,该区域存在多期次的岩浆活动,出露多处超基性岩体。对白层11件超基性岩样品进行了主量和微量元素(包括稀土元素)及铂族元素分析,结果表明,白层超基性岩主量元素变化范围不大,具低钠富钾钙碱性岩石的地球化学特征;该超基性岩富集Ba、Sr、Rb等大离子亲石元素及Nb等高场强元素;稀土元素总量高,球粒陨石标准化曲线呈强烈的右倾趋势,轻、重稀土元素分馏明显,Eu、Ce异常不明显;铂族元素总含量低,且分异不明显。该超基性岩的地球化学特征显示,其形成于燕山晚期右江盆地大规模岩石圈伸展减薄的构造背景下;岩浆来源于低程度部分熔融的超镁铁质地幔,石榴子石及硫化物在熔融过程中残留于源区。岩浆在上升过程中未发生明显的地壳物质混染。岩浆结晶分异程度不高,发生了橄榄石与单斜辉石的结晶分异但未发生斜长石的分离。

  • 加载中
  • 图 1  贵州黔西南大地构造分区及岩浆岩分布(据参考文献[14]修改)

    Figure 1. 

    图 2  研究区区域地质图(据参考文献①修改)

    Figure 2. 

    图 图版Ⅰ  a、b—野外宏观特征;c—手标本特征;d、e、f—微观特征(正交偏光).Bt—黑云母;Px—辉石;Hbl—普通角闪石

    图 3  白层超基性岩SiO2-(K2O+Na2O) 图解

    Figure 3. 

    图 4  白层超基性岩微量元素蛛网图(a)和稀土元素配分图(b)

    Figure 4. 

    图 5  白层超基性岩铂族元素原始地幔标准化图

    Figure 5. 

    图 6  白层超基性岩形成的构造环境判别图

    Figure 6. 

    图 7  白层超基性岩MgO-Nb/U协变关系图(a)及Nb/Ta-La/Yb协变关系图(b)

    Figure 7. 

    图 8  白层超基性岩主量元素与MgO的相关关系协变图

    Figure 8. 

    图 9  白层超基性岩La-La/Sm相关关系图(a)及MgO-Sr相关关系图(b)

    Figure 9. 

    图 10  白层超基性岩Ni/Cu-Pd/Ir图解(a)[47]和Pd-Cu/Pd图解(b)[47]

    Figure 10. 

    图 11  白层超基性岩La/Sm-Sm/Yb图解(底图据参考文献[48])

    Figure 11. 

    表 1  白层超基性岩主量元素分析结果及特征值

    Table 1.  Major elements compositions of ultramafic rocks in Baiceng

    %
    样品号εk52-1εk52-2εk52-3εk52-4εk52-5εk52-6 εk52-8εk52-9εk52-10εk52-11εk52-12
    SiO235.4436.2535.5236.3136.1934.6235.4735.6236.4735.4334.64
    Al2O311.1711.9111.6511.5611.8911.8711.3711.5611.5911.2411.21
    TFe7.247.527.437.727.737.147.277.887.617.47.38
    MgO7.297.787.257.517.266.337.267.787.677.877.21
    CaO16.4115.5915.7714.8114.6418.6216.0715.1214.8415.5116.53
    K2O4.123.653.824.134.183.544.083.673.774.293.88
    Na2O0.560.410.490.570.440.440.550.480.470.50.51
    TiO20.790.720.860.850.850.70.850.810.870.820.72
    P2O52.011.891.971.782.071.721.872.042.072.11.87
    烧失量7.877.718.048.247.908.698.328.858.147.729.87
    总和99.3699.2798.8898.6698.4099.2899.4999.8099.9998.3999.93
    Mg#50.1148.7448.2546.7546.1247.3948.2949.1149.4749.2548.43
    Na2O+K2O4.684.064.314.74.623.984.634.154.244.794.39
    Na2O/K2O0.140.110.130.140.110.120.130.130.120.090.13
    下载: 导出CSV

    表 2  白层超基性岩微量元素分析结果

    Table 2.  Trace elements compositions of ultramafic rocks in Baiceng

    10-6
    样品号εk52-1εk52-2εk52-3εk52-4εk52-5εk52-6 εk52-8εk52-9εk52-10εk52-11εk52-12
    Rb139.47127.06147.02173.73147.94127.21145.53155.48143.46162.19172.79
    Ba56216062646936996140594664256338614859035111
    Th56.560.8360.6459.8265.4760.8558.8263.1860.1557.9862.48
    U7.968.537.738.288.468.988.210.069.427.729.03
    Sc24.5124.7224.5522.1522.6522.2823.6525.1924.2424.9821.12
    Ta5.595.745.715.935.796.075.756.366.225.535.79
    Co33.634.734.823.334.631.634.536.935.334.132.7
    Ni58.960.859.636.455.752.258.860.658.758.552.2
    Nb216.26248.67228.66257.14259.27245.91243.27285.38269.35236.53245.75
    Sr1420.41758.081678.651680.031640.441519.681617.031661.911618.571629.272002.21
    Cr128.06126.81129.86108.68117.64110.1120.17128.32125.02124.78108.41
    Zr272.96299.57276.25267.79266.67250.79263.64278.15279.97268.38255.44
    Hf5.185.255.144.754.714.274.725.154.874.834.37
    La306329324325343307326343332320318
    Ce513549537537553504541572560540517
    Pr50.854.152.25253.749.452.7555453.350.5
    Nd170180175170175162174178177176166
    Sm2222.922.621.422.120.822.222.922.122.720.4
    Eu5.045.445.1455.114.695.155.35.25.214.85
    Gd16.417.716.915.916.91616.31717.617.115.7
    Tb1.71.781.661.631.71.61.661.751.731.631.55
    Dy6.76.936.626.546.616.366.556.876.836.596.02
    Ho1.081.151.091.041.061.021.061.141.121.081
    Er2.993.193.032.942.992.882.943.233.012.922.85
    Tm0.340.370.330.340.360.330.330.380.340.340.33
    Yb2.172.222.152.132.132.112.052.292.252.082.06
    Lu0.320.340.320.310.310.30.310.340.320.30.29
    ΣREE1098.481174.381148.081141.371184.21079.451152.831208.221183.51149.541106.72
    LREE1066.741140.711115.981110.521152.151048.891121.611175.211150.271117.531076.87
    HREE31.7433.6732.130.8532.0530.5731.2233.0133.2332.0129.85
    LREE/HREE33.6133.8834.773635.9534.3235.9235.634.6234.9236.07
    (La/Yb)N97.77103.01104.84106.12111.89101.15110.47103.74102.2106.9106.83
    (La/Sm)N8.739.039.019.539.749.319.239.399.438.879.77
    (Gd/Yb)N6.256.596.516.26.566.256.596.136.466.786.3
    δEu0.780.790.770.790.780.760.790.790.780.780.8
    δCe0.920.920.910.910.90.910.920.920.930.920.9
    下载: 导出CSV

    表 3  白层超基性岩铂族元素分析结果及特征值

    Table 3.  PGE compositions and characteristic parameters of Baiceng ultramafic rock

    10-9
    样品号IrRuRhPtPd∑PGEPPGE/IPGEPd/IrPd/RuPd/RhPt/PdPt/Pt*
    εk52-10.1652.690.1080.0512.622.6760.97515.9410.97624.2620.0202.970
    εk52-20.1242.340.1110.0371.011.0460.4698.1420.4319.0640.0364.110
    εk52-30.1252.360.1050.0451.781.8250.77614.2720.75316.9660.0253.210
    εk52-40.1692.310.1210.0402.282.3220.98613.4940.98818.9260.0182.590
    εk52-50.0862.190.0980.0432.382.4261.10727.7101.08624.3530.0182.670
    εk52-60.0742.740.1050.0522.462.5090.92933.3930.89623.3150.0213.170
    εk52-80.0852.460.1150.0402.262.3000.95026.6630.92019.6030.0182.830
    εk52-90.1532.130.1050.0372.472.5061.14316.1081.15823.5980.0152.460
    εk52-100.1042.440.1040.0552.452.5011.02523.4861.00423.5830.0222.840
    εk52-110.1342.450.1400.0461.731.7720.74112.8630.70612.3220.0262.920
    εk52-120.1342.180.0930.0311.521.5560.71211.3420.69916.4510.0213.410
    下载: 导出CSV
  • [1]

    邓晋福, 苏尚国, 周肃, 等.华北地区燕山期岩石圈减薄的深部过程[J].地学前缘, 2003, 10(3):41-50. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303004.htm

    [2]

    Su W C, Hu R Z, Xia B, et al. Calcite Sm-Nd isochron age of the Shuiyindong Carlin-type gold deposit, Guizhou, China[J]. Chemical Geology, 2009, 258:269-274. doi: 10.1016/j.chemgeo.2008.10.030

    [3]

    Peter S G, Huang J Z, Li Z P, et al. Sedimentary rock-hosted Au deposits of the Dian-Qian-Gui area, Guizhou, and Yunnan Provinces, and Guangxi District, China[J]. Ore Geology Reviews, 2007, 31:170-204. doi: 10.1016/j.oregeorev.2005.03.014

    [4]

    朱赖民, 刘显凡, 金景福, 等.滇-黔-桂微细浸染型金矿床时空分布与成矿流体来源[J].地质科学, 1998, 33(4):463-474. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX804.008.htm

    [5]

    王砚耕, 索书田, 张明发.黔西南构造与卡林型金矿[M].北京:地质出版社, 1994.

    [6]

    陈懋弘, 毛景文, 吴六灵, 等.滇黔桂矿集区微细浸染型金矿成矿年代学研究[J].桂林工学院学报, 2006, 26(3):334-340. http://www.cnki.com.cn/Article/CJFDTOTAL-GLGX200603004.htm

    [7]

    韩至钧, 王砚耕, 冯济舟, 等.黔西南金矿地质与勘查[M].贵阳:贵州科技出版社, 1999.

    [8]

    陈懋弘, 章伟, 杨宗喜, 等.黔西南白层超基性岩墙锆石SHRIMP U-Pb年龄和Hf同位素组成研究[J].矿床地质, 2009, 28(2):240-250. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200903003.htm

    [9]

    Liu S, Su W C, Hu R Z, et al. Geochronological and geochemical constraints on the petrogenesis of alkaline ultramafic dykes from south-west Guizhou Province, SW China[J]. Lithos, 2010, 114:253-264. doi: 10.1016/j.lithos.2009.08.012

    [10]

    冯光英, 刘燊, 苏文超, 等.黔西南碱性超基性脉岩的铂族元素地球化学[J].矿物学报, 2010, 30(2):207-214. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201002007.htm

    [11]

    陈懋弘, 毛景文, 屈文俊, 等.贵州贞丰烂泥沟卡林型金矿床含砷黄铁矿Re-Os同位素测年及地质意义[J].地质论评, 2007, 53(3): 371-382. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200703009.htm

    [12]

    胡瑞忠, 彭建堂, 马东升, 等.扬子地块西南缘大面积低温成矿时代[J].矿床地质, 2007, 26(6):583-596. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200706002.htm

    [13]

    刘建中, 邓一明, 刘川勤, 等.水银洞金矿床包裹体和同位素地球化学研究[J].贵州地质, 2006, 23(1):51-56. http://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ200601011.htm

    [14]

    贵州省地质调查院.贵州省区域地质志[M].北京:地质出版社, 1994.

    [15]

    Zhang X C, Spiro B, Halls C, et al. Sediment-hosted disseminated gold deposit in Southwest Guizhou PRC: Their geological setting and orgin in relation to mineralogical, fluid inclusion, and stable-isotope characteristics[J]. International Geology Review, 2003, 45:407-470. doi: 10.2747/0020-6814.45.5.407

    [16]

    梅厚钧.峨眉山玄武岩地球化学特征, IGCAS年度报告 (1980-1981)[M].贵阳:贵州人民出版社, 1980.

    [17]

    路远发. GeoKit:一个用VAB构建的地球化学工具软件包[J].地球化学, 2004, 33(5):459-464. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200405003.htm

    [18]

    McDonough W F, Sun S S. The composition of the earth[J]. Chemical Geology, 1995, 120: 223-230. doi: 10.1016/0009-2541(94)00140-4

    [19]

    Anders E, Grevese N. Abundances of the elements meteoritic and solar[J]. Geochimica et Cosmochimica Acta, 1989, 53(1):197-214. doi: 10.1016/0016-7037(89)90286-X

    [20]

    张成江, 陈友良. 510-1铀矿床垂直分带规律的发现及其成因意义[J].地质与勘探, 2010, 46(4):434-441. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201003009.htm

    [21]

    赵振华.微量元素地球化学原理[M].北京:科学出版社, 1997.

    [22]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in The Ocean Basins. Geological Society Special Publication, 1989, 42:313-345.

    [23]

    孙晓明, 熊德信, 王生伟, 等.云南哀牢山金矿带墨江金镍矿床铂族元素 (PGE) 地球化学及其对矿床成因的制约[J].矿床地质, 2006, 25(4):438-446. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200604007.htm

    [24]

    Rehkamper M, HallidayA N, Barfod D, et al. Platinum-Group Element Abundance Patterns in different Mantle Environments[J]. Science, 1997, 278:1595-1598 doi: 10.1126/science.278.5343.1595

    [25]

    张贵山, 温汉捷, 裘愉卓.闽西晚中生代基性岩脉的地球化学研究[J].地球化学, 2004, 3(3):243-253. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200403002.htm

    [26]

    张贵山, 温汉捷, 胡瑞忠, 等.闽东南基性岩脉形成的构造应力场地质意义[J].大地构造与成矿学, 2006, 30(2):142-148. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD200504001144.htm

    [27]

    李立兴, 李厚明, 崔艳合, 等.河北高寺台含铬超基性岩杂岩体成岩成矿时代及岩石成因[J].岩石学报, 2012, 28(11):3757-3771. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211026.htm

    [28]

    冯光英, 刘燊, 冯彩霞, 等.吉林红旗岭超基性岩体的锆石U-Pb年龄、Sr-Nd-Hf同位素特征及岩石成因[J].岩石学报, 2011, 27(6): 1594-1606. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106003.htm

    [29]

    吴华, 李华芹, 莫新华, 等.新疆哈密白石泉铜镍矿区基性-超基性岩的形成时代及其地质意义[J].地质学报, 2005, 79(4):498-502. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200504009.htm

    [30]

    Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69:33-47. doi: 10.1007/BF00375192

    [31]

    Meschede M. A method of discriminat between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 1986, 56:207-218. doi: 10.1016/0009-2541(86)90004-5

    [32]

    杜远生, 黄宏伟, 黄志强, 等.右江盆地晚古生代-三叠纪盆地转换及其构造意义[J].地质科技情报, 2009, 28(6):10-15. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200906002.htm

    [33]

    曾允孚, 刘文均, 陈洪德, 等.华南右江复合盆地的沉积构造演化[J].地质学报, 1995, 69(2):113-124. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199502001.htm

    [34]

    曾允孚, 刘文均, 陈洪德, 等.右江复合盆地的沉积特征及其构造演化[J].广西地质, 1992, 5(4):1-14. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDZ199204000.htm

    [35]

    陈洪德, 曾允孚.右江沉积盆地的性质及演化讨论[J].岩相古地理, 1990, 1:28-37 http://www.cnki.com.cn/Article/CJFDTOTAL-TTSD199001003.htm

    [36]

    毛景文, 谢桂青, 李晓峰, 等.华南地区中生代大规模成矿作用与岩石圈多阶段伸展[J].地学前缘, 2004, 11(1):45-55. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200401002.htm

    [37]

    Chen M H, Mao J W, Li C, et al. Re-Os isochron ages for arsenopyrite from Carlin-like gold deposits in the Yunnan-Guizhou-Guangxi "golden triangle", southwestern China[J]. Ore Geology Reviews, 2015, 64:316-327. doi: 10.1016/j.oregeorev.2014.07.019

    [38]

    Su W C, Hu R Z, Xia B, et al. Calcite Sm-Nd isochron age of the Shuiyindong Carlin-type Au deposit, Guizhou, China[J]. Chemical Geology, 2009, 258:269-274. doi: 10.1016/j.chemgeo.2008.10.030

    [39]

    Taylor S, McLennan S. The Continental Crust: Its Composition and Evolution[M]. New York:Oxford Press, 1985.

    [40]

    Hofmann A, Jochum K, Seufert M, et al. Nb and Pb in oceanic basalts: New constraints on mantle evolution[J]. Earth and Planetary Science Letters, 1986, 79(1/2):33-45. https://www.researchgate.net/publication/222453665_Hofmann_A_W_Jochum_K_P_Seufert_M_White_W_M_Nb_and_Pb_in_oceanic_basalts_new_constraints_on_mantle_evolution_Earth_Planet_Sci_Lett_79_33-45

    [41]

    Munker C, Pfander J A, Weyer S, et al. Evolution of planetary cores and the earth-moon system from Nb/Ta systematics[J]. Science, 2003, 301(5629):84-87. doi: 10.1126/science.1084662

    [42]

    Rehkamper M, Halliday A N, Barfod D, et al. Platinum-Group Element Abundance Patterns in different Mantle Environments[J]. Science, 1997, 278:1595-1598. doi: 10.1126/science.278.5343.1595

    [43]

    Munker C. Nb/Ta fractionation in a Cambrian arc/back system, New Zealand:source constraints and application of refined ICPMS techniques[J]. Chemical Geology, 1998, 56:207-218. https://www.researchgate.net/publication/248360164_NbTa_fractionation_in_a_Cambrian_arcback_arc_system_New_Zealand_Source_constraints_and_application_of_refined_ICPMS_techniques

    [44]

    Naldrett A J, Hoffmann E L, Green A H, et al. The composition of Ni-sulfide ores with particular reference to their content of PGE and Au[J]. Canada Mineral, 1979, 17:403-415. http://canmin.geoscienceworld.org/content/17/2/403

    [45]

    储雪蕾, 李晓林, 徐久华, 等.汉诺坝玄武岩及其地幔橄榄岩、麻粒岩捕掳体的PGE分布特征[J].科学通报, 1999, 44(8):859-863. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199908016.htm

    [46]

    赵正, 漆亮, 黄智龙, 等.攀西裂谷南段鸡街碱性超基性岩微量元素和Sr-Nd同位素地球化学及其成因探讨[J].岩石学报, 2012, 28(6):1915-1927. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201206016.htm

    [47]

    Barnes S J, Naldrett A J, Gorton M P. The orgin of the Fractionation of plartinum-group elements in terrestrial magmas[J]. Chemical Geology, 1985, 53:303-323. doi: 10.1016/0009-2541(85)90076-2

    [48]

    Genc S C, Tuysuz O. Tectonic setting of the Jurassic bimodal magmatism in the Sakarya zone (central and western Pontides), northern Turkey:A geochemical and isotopic approach[J]. Lithos, 2010, 118(1/2):95-111. https://www.researchgate.net/publication/222136664_Tectonic_setting_of_the_Jurassic_bimodal_magmatism_in_the_Sakarya_Zone_Central_and_Western_Pontides_Northern_Turkey_A_geochemical_and_isotopic_approach

    [49]

    Eggins S, Rudnick R, McDonough W. The composition of peridotites and their minerals:A laser-ablation ICP-MS study[J]. Earth and Planetary Science Letters, 1998, 154(1/4):53-71. http://www.academia.edu/2806189/The_composition_of_peridotites_and_their_minerals_a_laser-ablation_ICP-MS_study

    [50]

    McDonough W F, Stosch H, Ware N. Distribution of the titanium and the rare earth elements between peridotitic minerals[J]. Contributions to Mineralogy and Petrology, 1992, 110(2):321-328. https://link.springer.com/article/10.1007/BF00310747

    [51]

    Xu Y G. Distribution of trace element in spinel and garnet peridotites[J]. Science in China (Series D), 2000, 43(2):166-175. doi: 10.1007/BF02878146

    [52]

    Zack T, Foley S, Jenner G. A consistent partition coefficient set for clinopyroxene, amphibole and garnet from laser ablation microprobe analysis of garnet pyroxenites from Kakanui, New Zealand[J]. Neues Jahrbuch Fur Mineralogie Abhandlungen, 1998, 172:23-41. http://www.academia.edu/2837201/A_consistent_partition_coefficient_set_for_clinopyroxene_amphibole_and_garnet_from_laser_ablation_microprobe_analysis_of_garnet_pyroxenites_from_Kakanui_New_Zealand

    [53]

    Bodinier J, Merlet C, Bedini R, et al. Distribution of niobium, tantalum, and other highly incompatible trace elements in the lithospheric mantle:The spinel paradox[J]. Geochimica et Cosmochimica Acta, 1996, 60(3):545-550. doi: 10.1016/0016-7037(95)00431-9

    [54]

    Keays R R. The role of komatiitic magmatism and S-saturation in the formation of ore deposits[J]. Lithos, 1995, 34:1-18. doi: 10.1016/0024-4937(95)90003-9

  • 加载中

(12)

(3)

计量
  • 文章访问数:  520
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2016-05-23
修回日期:  2017-01-20
刊出日期:  2017-03-25

目录