桂东南大村和古龙岩体的成因:地球化学、锆石U-Pb年龄及Hf同位素制约

农军年, 邹瑜, 邱恩露, 郭尚宇, 叶栩松, 向丰, 文明, 陆仕壹. 桂东南大村和古龙岩体的成因:地球化学、锆石U-Pb年龄及Hf同位素制约[J]. 地质通报, 2017, 36(2-3): 224-237.
引用本文: 农军年, 邹瑜, 邱恩露, 郭尚宇, 叶栩松, 向丰, 文明, 陆仕壹. 桂东南大村和古龙岩体的成因:地球化学、锆石U-Pb年龄及Hf同位素制约[J]. 地质通报, 2017, 36(2-3): 224-237.
NONG Junnian, ZOU Yu, QIU Enlu, GUO Shangyu, YE Xusong, XIANG Feng, WEN Ming, LU Shiyi. Petrogenesis of Dacun and Gulong plutons in southeast Guangxi: Constraints from geochemistry, zircon U-Pb ages and Hf isotope[J]. Geological Bulletin of China, 2017, 36(2-3): 224-237.
Citation: NONG Junnian, ZOU Yu, QIU Enlu, GUO Shangyu, YE Xusong, XIANG Feng, WEN Ming, LU Shiyi. Petrogenesis of Dacun and Gulong plutons in southeast Guangxi: Constraints from geochemistry, zircon U-Pb ages and Hf isotope[J]. Geological Bulletin of China, 2017, 36(2-3): 224-237.

桂东南大村和古龙岩体的成因:地球化学、锆石U-Pb年龄及Hf同位素制约

  • 基金项目:
    中国地质调查局项目《桂东-粤西成矿带地质矿产调查》(编号:D20160035)
详细信息
    作者简介: 农军年 (1986-), 男, 硕士, 工程师, 从事区域地质矿产调查研究工作。E-mail:175070721@qq.com
  • 中图分类号: P591;P597+.3

Petrogenesis of Dacun and Gulong plutons in southeast Guangxi: Constraints from geochemistry, zircon U-Pb ages and Hf isotope

  • 大村和古龙岩体产于扬子地块与华夏地块拼合带的西南段,对剖析华南区域构造演化具有重要的地质意义。对大村和古龙岩体的石英闪长岩样品进行LA-ICP-MS锆石U-Pb测年,获得206Pb/238U年龄加权平均值分别为438±1Ma和435±2Ma,说明2个岩体均形成于加里东期。大村和古龙岩体具有钙碱性、准铝质-过铝质特征的Ⅰ型花岗岩。锆石的εHf(t) 值主要集中在0~+4之间,二阶段模式年龄 (TDM2) 主要集中在1.15~1.45Ga之间,指示物源主要来自中元古代新生的基性下地壳物质。根据大村和古龙岩体的地球化学、Hf同位素组成、岩体发育暗色微粒包体等特征,结合区域地质情况,认为其是在陆内碰撞造山期后伴随岩石圈局部伸展-减薄,软流圈高温地幔物质上涌,导致中元古代新生的基性下地壳部分熔融形成的酸性岩浆和幔源岩浆在源区不同程度的混合形成母岩浆,随后又经历了一定程度的分异演化最终固结成岩。

  • 加载中
  • 图 1  研究区地质简图及采样点

    Figure 1. 

    图 2  古龙岩体野外和镜下照片

    Figure 2. 

    图 3  大村(a)和古龙(b)岩体代表性锆石颗粒CL图像

    Figure 3. 

    图 4  大村岩体LA-ICP-MS 锆石U-Pb 年龄谐和图

    Figure 4. 

    图 5  古龙岩体LA-ICP-MS锆石U-Pb年龄谐和图

    Figure 5. 

    图 6  SiO2-K2O图解

    Figure 6. 

    图 7  A/CNK-A/NK图解

    Figure 7. 

    图 8  大村和古龙岩体稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)(标准化数据据参考文献[23])

    Figure 8. 

    图 9  大村和古龙岩体锆石εHf(t) 频率直方图

    Figure 9. 

    图 10  大村和古龙岩体锆石TDM2(Hf) 频率直方图

    Figure 10. 

    图 11  华南内陆地区早古生代晚期部分中酸性岩浆岩年龄分布直方图

    Figure 11. 

    图 12  C/MF-A/MF图解[36]

    Figure 12. 

    表 1  大村和古龙岩体LA-ICP-MS锆石U-Th-Pb同位素数据

    Table 1.  LA-ICP-MS zircon U-Th-Pb isotope composition in the Dacun and Gulong plutons

    点编号Th/10-6U/10-6Th/UPb/10-6208Pb法扣除普通铅后的同位素比值208Pb法扣除普通铅后的年龄/Ma
    207Pb/206Pb±1σ207Pb/235U±1σ206Pb/238U±1σ207Pb/206Pb±1σ207Pb/235U±1σ206Pb/238U±1σ
    DCYT-1(大村岩体)
    12674370.611350.05610.00080.54330.00670.07030.00054541644144383
    23574990.721560.05530.00080.53640.00590.07040.00044251443644383
    31833570.511090.05510.00090.53380.00740.07030.00054151943454383
    41482520.59780.05670.00180.54960.01640.07030.000748049445114384
    54306580.652040.05580.00080.54060.00580.07030.00044431343944383
    62803990.701250.05560.00090.53920.00730.07030.00054381843854383
    72383920.611210.05570.00090.54010.00760.07030.00054402043854383
    82884650.621440.05570.00080.53990.00610.07030.00044411443844383
    93655600.651740.05590.00080.54250.00580.07040.00044501344044383
    102884740.611470.05630.00090.54610.00680.07030.00054661644244383
    112654020.661240.05580.00170.54070.01590.07040.000644250439104384
    122783880.721220.05610.00110.54460.00920.07040.00054582544164383
    132403970.601230.05660.00130.54870.01190.07030.00054753444484383
    142767190.382180.05580.00210.54080.01970.07030.000844562439134385
    152464660.531450.05570.00080.54010.00620.07040.00054391543844383
    161303200.41980.05560.00110.53980.00910.07040.00054382543864383
    171783200.561000.05580.00150.54190.01340.07040.00064464044094394
    181613980.411230.05710.00140.55370.01220.07030.00064963444784383
    193084670.661470.05510.00110.53500.00910.07040.00054182543564393
    202067240.282180.05680.00080.55050.00550.07030.00044831244544383
    GLYT-1(古龙岩体)
    11833050.60930.05480.00230.52700.02150.06970.000840671430144345
    22496380.391900.05560.00130.53400.01100.06980.00054343243474353
    31253510.361040.05660.00190.54420.01710.06980.000747652441114354
    4711470.48440.05530.00320.53220.02960.06980.0009425101433204355
    51112860.39860.05730.00200.55150.01840.06980.000750556446124354
    61243470.361040.05710.00140.54820.01220.06970.00064963544484343
    7721720.42580.05740.00130.61970.01290.07830.00065083249084864
    82597610.342260.05620.00080.53980.00620.06970.00044591543844353
    9872160.4640.05570.00330.53540.03040.06970.0010440103435204356
    101442180.66670.05560.00340.53520.03210.06990.0010436109435214356
    111051730.61590.05610.00110.59940.01000.07750.00054562547764813
    12781990.39590.05570.00150.53610.01360.06980.00064424243694353
    13961970.48660.05720.00100.60320.00930.07660.00054972247964753
    141424270.331270.05650.00120.54270.00990.06970.00054712744064343
    151273110.41940.05690.00120.54700.01000.06970.00054872844374353
    165174811.081550.05670.00090.54530.00670.06980.00054801644244353
    172147450.292210.05780.00090.55610.00690.06970.00055241644944353
    18972910.33870.05660.00120.54380.01050.06970.00054762944174343
    19742220.33660.05490.00260.52730.02440.06970.000840682430164355
    20781990.39590.05320.00290.51180.02680.06980.000933896420184355
    2134990.35300.05880.00170.56510.01560.06970.000655946455104353
    22852250.38730.05570.00120.59430.01190.07740.00064413147484803
    23932460.38740.05720.00160.54970.01400.06970.00064984144594354
    241746460.271920.05700.00100.54860.00820.06980.00054912144454353
    下载: 导出CSV

    表 2  大村和古龙岩体主量、微量和稀土元素含量

    Table 2.  Chemical compositions and main geochemical parameters of the Dacun and Gulong plutons

    元素大村岩体古龙岩体
    DCYT-1DCYT-2GLYT-1GLYT-2GLYT-3
    SiO261.7063.5561.8062.1563.31
    Al2O316.4516.5117.0016.9716.73
    Fe2O36.122.296.112.331.85
    FeO--2.90--3.273.60
    CaO4.985.285.666.726.27
    MgO2.732.152.792.572.58
    Na2O2.972.932.702.882.66
    K2O2.091.731.241.161.03
    TiO20.430.390.370.350.34
    MnO0.130.120.130.130.13
    P2O50.150.160.100.100.09
    SrO0.030.110.020.060.10
    BaO0.09--0.04----
    烧失量1.881.591.531.151.13
    总量99.8799.7199.5899.8499.82
    A/CNK1.011.011.060.930.99
    K/Na0.700.590.460.400.39
    ALK5.064.663.944.043.69
    Mg#0.470.440.470.460.47
    A/MF1.121.321.141.21.2
    C/MF0.620.770.690.870.81
    Li19.813.811.514.214.56
    Be1.241.60.840.991.08
    Sc14.414.613.416.616.1
    V161114160128134.1
    Cr4021.14018.945.1
    Co14.112.913.114.415.9
    Ni10.19.299.78.179.98
    Cu35.836.715.39.49.1
    Zn7067765963.8
    Ga19.221.218.616.917.9
    Rb91.16257.349.357.75
    Sr348269190.5201178.5
    Zr1341139876.470.9
    Nb7.06.835.14.835.6
    Cs9.34--3.62----
    Ba741729312356330
    Hf3.93.452.92.312.4
    Ta0.630.820.451.190.61
    Pb20.425.810.110.610.55
    Th17.7015.96.616.497.16
    U3.131.961.351.341.36
    La27.333.1615.813.4735.57
    Ce50.956.5329.226.7261.71
    Pr5.605.893.193.077.31
    Nd18.419.0511.21126.23
    Sm2.913.032.212.524.58
    Eu0.850.860.670.681.13
    Gd2.813.072.262.444.49
    Tb0.450.430.390.420.66
    Dy2.832.742.512.613.49
    Ho0.610.580.540.580.68
    Er1.911.741.751.811.93
    Tm0.270.270.250.280.3
    Yb1.961.911.761.951.78
    Lu0.290.310.290.290.36
    Y14.116.7311.715.9919.53
    ΣREE117.09129.5772.0267.84150.22
    LREE105.96118.5262.2757.46136.53
    L/H9.5210.736.395.549.97
    (La/Yb)n9.9912.456.444.9514.33
    δEu0.900.850.910.830.75
    δCe0.960.910.950.980.89
     注:DCYT-2、GLYT-2、GLYT-3数据据参考文献③;K/Na=K2O/Na2O,ALK=K2O+Na2O,Mg#=Mg2+/(Mg2++Fe2+),L/H=LREE/HREE;主量元素含量单位为%,微量和稀土元素含量为10-6
    下载: 导出CSV

    表 3  大村和古龙岩体LA-MC-ICP-MS锆石Lu-Hf同位素分析结果

    Table 3.  LA-MC-ICP-MS zircon Lu-Hf isopote analyses for Dacun and Gulong plutons

    点编号年龄/Ma176Yb/177Hf176Lu/177Hf176Hf/177HfTDM/MaT2DM/MaεHf(0)εHf(t)fLu/Hf
    DCYT-1(大村岩体)
    14380.0947420.0019740.2825660.0000219961307-7.281.79-0.94
    24380.0458690.0009770.2825940.0000189311227-6.313.05-0.97
    34380.0656700.0014100.2825790.0000209631268-6.832.41-0.96
    44380.0613640.0013100.2825620.0000219841304-7.421.84-0.96
    54380.1068410.0021900.2826140.0000219331204-5.603.41-0.93
    64380.0665970.0013530.2826000.0000219321220-6.093.16-0.96
    74380.0607020.0012790.2825540.0000219951322-7.721.56-0.96
    84380.0613070.0012990.2826100.0000209161196-5.733.54-0.96
    94380.0865000.0017890.2826090.0000239291206-5.753.37-0.95
    104380.0736790.0015340.2825670.0000199841298-7.261.94-0.95
    114380.1035270.0021600.2825970.0000229571242-6.202.81-0.93
    124380.0727440.0015580.2825890.0000239521248-6.472.72-0.95
    134380.0661630.0014050.2825830.0000219571258-6.672.56-0.96
    144380.1072100.0022810.2826310.0000249111167-5.003.99-0.93
    154380.0824290.0017760.2825720.0000209831291-7.082.04-0.95
    164380.0790140.0017170.2826610.0000218531089-3.935.22-0.95
    174390.0695280.0015200.2826090.0000199241203-5.783.44-0.95
    184380.1056070.0021010.2826300.0000209081167-5.044.00-0.94
    194390.0598360.0012740.2825630.0000239821300-7.381.91-0.96
    204380.0613290.0013080.2825910.0000179431239-6.402.86-0.96
    GLYT-1(古龙岩体)
    14390.0576750.0012140.2825980.0000219311221-6.153.16-0.96
    24340.0589040.0012310.2825870.0000229471249-6.542.66-0.96
    34350.1021190.0020140.2825540.00002110141336-7.701.30-0.94
    44350.0621330.0012590.2825630.0000229821303-7.401.81-0.96
    54350.0520150.0010820.2825290.00002210241375-8.580.69-0.97
    64350.0742820.0015830.2825670.0000209851301-7.271.85-0.95
    74340.0629450.0012800.2825870.0000229481249-6.542.65-0.96
    84860.0408690.0008440.2825440.0000229981308-8.082.35-0.97
    94350.1296830.0025430.2825420.00002410471373-8.130.71-0.92
    104350.0716280.0014220.2825880.0000219501249-6.512.66-0.96
    114350.0448720.0008850.2825010.00002410591435-9.58-0.26-0.97
    124810.0866270.0017230.2826190.0000239131158-5.404.65-0.95
    134350.0835140.0017410.2826630.0000258511087-3.855.22-0.95
    144750.0819210.0017230.2825670.0000229891280-7.262.66-0.95
    154340.0497080.0010210.2825000.00002110641440-9.62-0.36-0.97
    164350.0737190.0015200.2825490.00002210091340-7.901.23-0.95
    174350.1236330.0023630.2825850.0000239791273-6.602.29-0.93
    184350.0605600.0012620.2825040.00002210661436-9.49-0.28-0.96
    194340.0676710.0013770.2824710.00002011151511-10.63-1.47-0.96
    204350.0640880.0013540.2825130.00002310561418-9.180.01-0.96
    214350.0734460.0015680.2825320.00002110351379-8.510.62-0.95
    224350.0204130.0004420.2825590.0000219661297-7.531.92-0.99
    234800.0760220.0015740.2825420.00002110201329-8.131.94-0.95
    240.4350.0655760.0013410.2825400.00001910171356-8.210.98-0.96
     注:εHf(t)=10000 × {[(176Hf/177Hf)S-(176Lu/177Hf)S × (eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR × (eλt-1)]-1}, TDM=1/λ ×ln{1+[(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Lu/177Hf)S-(176Lu/177Hf)DM]};TDMC=TDM-(TDM-t)×[(fCC-fS)/(fCC-fDM)];fLu/Hf=(176Lu/177Hf)S/(176Lu/177Hf)CHUR-1其中:λ=1.867×10-11/a[25];(176Lu/177Hf)S和 (176Hf/177Hf)S为样品测量值;(176Lu/177Hf)CHUR=0.0332;(176Hf/177Hf)CHUR, 0=0.282772;(176Lu/177Hf)DM=0.0384,(176Hf/177Hf)DM=0.28325;(176Lu/177Hf) 平均地壳=0.015;fCC=[(176Lu/177Hf) 平均地壳/(176Lu/177Hf)CHUR]-1;fS=fLu/HffDM=[(176Lu/177Hf)DM/(176Lu/177Hf)CHUR]-1;t为锆石结晶年龄
    下载: 导出CSV
  • [1]

    丘元禧, 马文璞, 范小林, 等."雪峰古陆"加里东期的构造性质和构造演化[J].中国区域地质, 1996, (2): 150-160. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD602.007.htm

    [2]

    郭令智, 俞剑华, 施央申.华南加里东地槽褶皺区大地构造的几个问题的探讨[J].南京大学学报 (自然科学版), 1963, (14): 1-17. http://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ196314000.htm

    [3]

    殷鸿福, 吴顺宝, 杜远生, 等.华南是特提斯多岛洋体系的一部分[J].地球科学, 1999, 24(1): 3-14. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX901.000.htm

    [4]

    王德滋, 沈渭洲.中国东南部花岗岩成因与地壳演化[J].地学前缘, 2003, 10(3): 209-220. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303031.htm

    [5]

    黄标, 孙明志, 武少兴, 等.武夷山中段加里东期混合岩的特征及成因讨论[J].岩石学报, 1994, 10(4): 427-439. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199404007.htm

    [6]

    张芳荣, 舒良树, 王德滋, 等.江西付坊花岗岩体的年代学、地球化学特征及其成因研究[J].高校地质学报, 2010, (2): 161-176. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201002004.htm

    [7]

    沈渭洲, 张芳荣, 舒良树, 等.江西宁冈岩体的形成时代、地球化学特征及其构造意义[J].岩石学报, 2008, 24(10): 2244-2254. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200810006.htm

    [8]

    广西壮族自治区地质矿产局.广西壮族自治区区域地质志[M].北京:地质出版社, 1985: 1-853.

    [9]

    Sláma J, Kostler J, Condon D J, et al. Plesovice-a new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1/2): 1-35. http://www.sciencedirect.com/science/article/pii/S0009254107004883

    [10]

    Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79. http://www.sciencedirect.com/science/article/pii/S000925410200195X

    [11]

    Ludwig K R. User's manual for a geochronological toolkit for Microsoft Excel (Isoplot/Ex version 3.0)[J]. Berkeley: Berkeley Geochronology Center Special Publication, 2003, 104: 1-70. https://www.researchgate.net/publication/284696948_User's_manual_for_a_geochronological_toolkit_for_Microsoft_Excel_IsoplotEx_version_30

    [12]

    侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J].矿床地质, 2009, 28(4): 481-492. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200904009.htm

    [13]

    Scherer E, Munker C, Mezger K. Calibration of the lutetium-hafnium clock[J]. Science, 2001, 293(5530): 683-687. doi: 10.1126/science.1061372

    [14]

    Blicherttoft J, Albarede F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 243-258. http://www.sciencedirect.com/science/article/pii/S0012821X97001982

    [15]

    Vervoort J D, Blichert-Toft J. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4): 533-556. http://www.sciencedirect.com/science/article/pii/S0016703798002749

    [16]

    Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3/4): 237-269. http://www.sciencedirect.com/science/article/pii/S0024493702000828

    [17]

    Compston W, Williams I S, Kirschvink J L, et al. zircon u-pb ages for the early cambrian time-scale[J]. Journal of the Geological Society, 1992, 149(Part 2): 171-184. http://jgs.geoscienceworld.org/content/149/2/171

    [18]

    Barros C E D, Nardi S R, Dillenburg, et al. Detrital Minerals of Modern Beach Sediments in Southern Brazil: A Provenance Study Based on the Chemistry of Zircon[J]. Journal of Coastal Research, 2010, 26(1): 80-93. http://www.jcronline.org/doi/abs/10.2112/06-0817.1?code=cerf-site&journalCode=coas

    [19]

    Belousova E A, Griffin W L, O'Reilly S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622. doi: 10.1007/s00410-002-0364-7

    [20]

    Chen F, Hegner E, Todt W. Zircon ages and Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany: evidence for a Cambrian magmatic arc[J]. International Journal of Earth Sciences, 2000, 88(4): 791-802. doi: 10.1007/s005310050306

    [21]

    许华, 黄炳诚, 倪战旭, 等.钦杭成矿带西段古龙花岗岩株群岩石学、地球化学及年代学[J].华南地质与矿产, 2012, 28(4): 331-339. http://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201204006.htm

    [22]

    Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society Special Publication, 198, (42): 313-345.

    [23]

    Zhang S H, Zhao Y, Kroner A, et al. Early Permian plutons from the northern North China Block: constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt[J]. International Journal of Earth Sciences, 2009, 98(6): 1441-1467. doi: 10.1007/s00531-008-0368-2

    [24]

    Stern C R, Kilian R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral volcanic zone[J]. Contributions to Mineralogy and Petrology, 1996, 123(3): 263-281. doi: 10.1007/s004100050155

    [25]

    Wu R X, Zheng Y F, Wu Y B, et al. Reworking of juvenile crust: element and isotope evidence from Neoproterozoic granodiorite in South China[J]. Precambrian Research, 2006, 146(3): 179-212. http://www.sciencedirect.com/science/article/pii/S0301926806000362

    [26]

    张菲菲, 王岳军, 范蔚茗, 等.湘东-赣西地区早古生代晚期花岗岩体的LA-ICPMS锆石U-Pb定年研究[J].地球化学, 2010, 39(5): 414-426. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201005002.htm

    [27]

    楼法生, 沈渭洲, 王德滋, 等.江西武功山穹隆复式花岗岩的锆石U-Pb年代学研究[J].地质学报, 2005, 79(5): 636-644. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200505008.htm

    [28]

    农军年, 钟玉芳, 刘磊, 等.赣西北麦斜岩体的成因:地球化学、锆石U-Pb年代学及Hf同位素制约[J].地质科技情报, 2012, 31(2): 9-18. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201202001.htm

    [29]

    徐先兵, 张岳桥, 舒良树, 等.闽西南玮埔岩体和赣南菖蒲混合岩锆石La-ICPMS U-Pb年代学:对武夷山加里东运动时代的制约[J].地质论评, 2009, 55(2): 277-285. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200902017.htm

    [30]

    张爱梅, 王岳军, 范蔚茗, 等.闽西南清流地区加里东期花岗岩锆石U-Pb年代学及Hf同位素组成研究[J].大地构造与成矿学, 2010, 34(3): 408-418. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201003016.htm

    [31]

    程顺波, 付建明, 徐德明, 等.桂东北大宁岩体锆石SHRIMP年代学和地球化学研究[J].中国地质, 2009, 36(6): 1278-1288. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200906011.htm

    [32]

    Wang Y J, Fan W M, Zhao G C, et al. Zircon U-Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block[J]. Gondwana Research, 2007, 12(4): 404-416. doi: 10.1016/j.gr.2006.10.003

    [33]

    李巍, 毕诗健, 杨振, 等.桂东大瑶山南缘社山花岗闪长岩的锆石U-Pb年龄及Hf同位素特征:对区内加里东期成岩成矿作用的制约[J].地球科学 (中国地质大学学报), 2015, 40(1): 17-33. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201501002.htm

    [34]

    Kemp A I, Hawkesworth C J, Foster G L, et al. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon.[J]. Science, 2007, 315(5814): 980-983. doi: 10.1126/science.1136154

    [35]

    Collins W J, Richards S W. Geodynamic significance of S-type granites in circum-Pacific orogens[J]. Geology, 2008, 36(7): 559-562. doi: 10.1130/G24658A.1

    [36]

    Altherr R, Holl A, Hegner E, et al. High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany)[J]. Lithos, 2000, 50(1): 51-73. http://www.sciencedirect.com/science/article/pii/S0024493799000523

    [37]

    肖庆辉, 邓晋福, 马大铨, 等.花岗岩研究思维与方法[M].北京:地质出版社, 2002: 1-294.

    [38]

    Perugini D, Poli G. Determination of the degree of compositional disorder in magmatic enclaves using SEM X-ray element maps[J]. European Journal of Mineralogy, 2004, 16(3): 431-442. doi: 10.1127/0935-1221/2004/0016-0431

    [39]

    Waight T E, Maas R, Nicholls I A. Geochemical investigations of microgranitoid enclaves in the S-type Cowra Granodiorite, Lachlan Fold Belt, SE Australia[J]. Lithos, 2001, 56(2/3): 165-186. http://www.sciencedirect.com/science/article/pii/S0024493700000530

    [40]

    Perugini D, Poli G, Christofides G, et al. Magma mixing in the Sithonia Plutonic Complex, Greece: evidence from mafic microgranular enclaves[J]. Mineralogy and Petrology, 2003, 78(3/4): 173-200. https://rd.springer.com/article/10.1007/s00710-002-0225-0?no-access=true

    [41]

    Collins W J, Richards S R, Healy B E, et al. Origin of heterogeneous mafic enclaves by two-stage hybridisation in magma conduits (dykes) below and in granitic magma chambers[J]. Transactions of the Royal Society of Edinburgh-Earth Sciences, 2000, 91(Part 1/2): 27-45. http://specialpapers.gsapubs.org/content/350/27.short

    [42]

    于津海, 周新民, Reilly Y S O, 等.南岭东段基底麻粒岩相变质岩的形成时代和原岩性质:锆石的U-Pb-Hf同位素研究[J].科学通报, 2005, 50(16): 84-93. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200516014.htm

    [43]

    邱检生, 肖娥, 胡建, 等.福建北东沿海高分异Ⅰ型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约[J].岩石学报, 2008, (11): 2468-2484. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200811003.htm

    [44]

    Dostal J, Chatterjee A K. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada)[J]. Chemical Geology, 2000, 163(1): 207-218. http://www.sciencedirect.com/science/article/pii/S0009254199001138

    [45]

    Li W X, Li X H, Li Z X. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance[J]. Precambrian Research, 2005, 136(1): 51-66. doi: 10.1016/j.precamres.2004.09.008

    [46]

    许德如, 陈广浩, 夏斌, 等.湘东地区板杉铺加里东期埃达克质花岗闪长岩的成因及地质意义[J].高校地质学报, 2006, 12(4): 507-521. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200604012.htm

    [47]

    楼法生, 舒良树, 于津海, 等.江西武功山穹隆花岗岩岩石地球化学特征与成因[J].地质论评, 2002, 48(1): 80-88. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200201016.htm

    [48]

    Shu L S, Faure M, Jiang S Y, et al. SHRIMP zircon U-Pb age, litho-and biostratigraphic analyses of the Huaiyu Domain in South China-Evidence for a Neoproterozoic orogen, not Late Paleozoic-Early Mesozoic collision[J]. Episodes, 2006, 29(4): 244-252.

    [49]

    张春红, 范蔚茗, 王岳军, 等.湘西隘口新元古代基性-超基性岩墙年代学和地球化学特征:岩石成因及其构造意义[J].大地构造与成矿学, 2009, 32(2): 283-293. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200902013.htm

    [50]

    舒良树, 于津海, 贾东, 等.华南东段早古生代造山带研究[J].地质通报, 2008, 27(10): 1581-1593. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20081001&journal_id=gbc

    [51]

    戎嘉余, 詹仁斌, 黄冰, 等.一个罕见的奥陶纪末期深水腕足动物群在浙江杭州余杭的发现[J].科学通报, 2007, 52(22): 2632-2637. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200722009.htm

    [52]

    陈旭, 布科, 阮亦萍, 等.显生宙全球气候变化与生物绝灭事件的联系[J].地学前缘, 1997, 4(Z2): 127-132. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY7Z2.018.htm

    [53]

    张芳荣, 舒良树, 王德滋, 等.华南东段加里东期花岗岩类形成构造背景探讨[J].地学前缘, 2009, 16(1): 248-260. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200901034.htm

    [54]

    Li X H, Li Z X, Ge W C, et al. U-Pb Zircon Ages of the Neoproterozoic Granitoids in South China and Their Tectonic Implications[J]. Bulletin of Mineralogy Petrology & Geochemistry, 2001, 20(4): 271-273. http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200104018.htm

  • 加载中

(12)

(3)

计量
  • 文章访问数:  583
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2015-12-04
修回日期:  2016-01-25
刊出日期:  2017-03-25

目录