Petrogenesis of Dacun and Gulong plutons in southeast Guangxi: Constraints from geochemistry, zircon U-Pb ages and Hf isotope
-
摘要:
大村和古龙岩体产于扬子地块与华夏地块拼合带的西南段,对剖析华南区域构造演化具有重要的地质意义。对大村和古龙岩体的石英闪长岩样品进行LA-ICP-MS锆石U-Pb测年,获得206Pb/238U年龄加权平均值分别为438±1Ma和435±2Ma,说明2个岩体均形成于加里东期。大村和古龙岩体具有钙碱性、准铝质-过铝质特征的Ⅰ型花岗岩。锆石的εHf(t) 值主要集中在0~+4之间,二阶段模式年龄 (TDM2) 主要集中在1.15~1.45Ga之间,指示物源主要来自中元古代新生的基性下地壳物质。根据大村和古龙岩体的地球化学、Hf同位素组成、岩体发育暗色微粒包体等特征,结合区域地质情况,认为其是在陆内碰撞造山期后伴随岩石圈局部伸展-减薄,软流圈高温地幔物质上涌,导致中元古代新生的基性下地壳部分熔融形成的酸性岩浆和幔源岩浆在源区不同程度的混合形成母岩浆,随后又经历了一定程度的分异演化最终固结成岩。
Abstract:The Dacun and Gulong plutons were found in the southwest orogenic belt of the Yangtze block and the Cathaysia block, and the pluton has important geological significance in analyzing the regional tectonic evolution of South China. In this paper, two quartz diorite samples were collected from Dacun pluton and Gulong pluton for LA-ICP-MS zircon U-Pb dating, respectively, which yielded U-Pb ages of 438±1Ma and 435±2Ma, indicating that the Dacun pluton and Gulong pluton were both formed in Caledonian orogeny. The data show that the Dacun pluton and Gulong pluton belong to I-type granite which has calc-alkaline and aluminous-peraluminous features. The Hf isotopic compositions of zircons show that the rocks have εHf(t) values from 0 to +4, and TDM2(Hf) model ages are mainly concentrated in the range of 1.15~1.45Ga, implying that the magma was derived from the basic lower crust material, and the lower crust was formed in the Mesoproterozoic. According to geochemical features of the Dacun and Gulong plutons, Hf isotopic composition, and the dark particles-bearing pluton, in combination with regional geological conditions, the authors hold that, after the intracontinental collision orogenic period, the Dacun and Gulong plutons were formed along with the local lithosphere stretching-thinning, the upwelling of high temperature mantle materials from the asthenosphere, and the partial melting of the basic lower crust in the Mesoproterozoic. In the process of melting, there existed mixture of the upwelling mantle-derived magma formed in the source area at different levels, thus leading to the generation of parental magma. And then the magma experienced a certain degree of differentiation and evolution, finally forming rocks through solidification.
-
图 8 大村和古龙岩体稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)(标准化数据据参考文献[23])
Figure 8.
图 12 C/MF-A/MF图解[36]
Figure 12.
表 1 大村和古龙岩体LA-ICP-MS锆石U-Th-Pb同位素数据
Table 1. LA-ICP-MS zircon U-Th-Pb isotope composition in the Dacun and Gulong plutons
点编号 Th/10-6 U/10-6 Th/U Pb/10-6 208Pb法扣除普通铅后的同位素比值 208Pb法扣除普通铅后的年龄/Ma 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ DCYT-1(大村岩体) 1 267 437 0.61 135 0.0561 0.0008 0.5433 0.0067 0.0703 0.0005 454 16 441 4 438 3 2 357 499 0.72 156 0.0553 0.0008 0.5364 0.0059 0.0704 0.0004 425 14 436 4 438 3 3 183 357 0.51 109 0.0551 0.0009 0.5338 0.0074 0.0703 0.0005 415 19 434 5 438 3 4 148 252 0.59 78 0.0567 0.0018 0.5496 0.0164 0.0703 0.0007 480 49 445 11 438 4 5 430 658 0.65 204 0.0558 0.0008 0.5406 0.0058 0.0703 0.0004 443 13 439 4 438 3 6 280 399 0.70 125 0.0556 0.0009 0.5392 0.0073 0.0703 0.0005 438 18 438 5 438 3 7 238 392 0.61 121 0.0557 0.0009 0.5401 0.0076 0.0703 0.0005 440 20 438 5 438 3 8 288 465 0.62 144 0.0557 0.0008 0.5399 0.0061 0.0703 0.0004 441 14 438 4 438 3 9 365 560 0.65 174 0.0559 0.0008 0.5425 0.0058 0.0704 0.0004 450 13 440 4 438 3 10 288 474 0.61 147 0.0563 0.0009 0.5461 0.0068 0.0703 0.0005 466 16 442 4 438 3 11 265 402 0.66 124 0.0558 0.0017 0.5407 0.0159 0.0704 0.0006 442 50 439 10 438 4 12 278 388 0.72 122 0.0561 0.0011 0.5446 0.0092 0.0704 0.0005 458 25 441 6 438 3 13 240 397 0.60 123 0.0566 0.0013 0.5487 0.0119 0.0703 0.0005 475 34 444 8 438 3 14 276 719 0.38 218 0.0558 0.0021 0.5408 0.0197 0.0703 0.0008 445 62 439 13 438 5 15 246 466 0.53 145 0.0557 0.0008 0.5401 0.0062 0.0704 0.0005 439 15 438 4 438 3 16 130 320 0.41 98 0.0556 0.0011 0.5398 0.0091 0.0704 0.0005 438 25 438 6 438 3 17 178 320 0.56 100 0.0558 0.0015 0.5419 0.0134 0.0704 0.0006 446 40 440 9 439 4 18 161 398 0.41 123 0.0571 0.0014 0.5537 0.0122 0.0703 0.0006 496 34 447 8 438 3 19 308 467 0.66 147 0.0551 0.0011 0.5350 0.0091 0.0704 0.0005 418 25 435 6 439 3 20 206 724 0.28 218 0.0568 0.0008 0.5505 0.0055 0.0703 0.0004 483 12 445 4 438 3 GLYT-1(古龙岩体) 1 183 305 0.60 93 0.0548 0.0023 0.5270 0.0215 0.0697 0.0008 406 71 430 14 434 5 2 249 638 0.39 190 0.0556 0.0013 0.5340 0.0110 0.0698 0.0005 434 32 434 7 435 3 3 125 351 0.36 104 0.0566 0.0019 0.5442 0.0171 0.0698 0.0007 476 52 441 11 435 4 4 71 147 0.48 44 0.0553 0.0032 0.5322 0.0296 0.0698 0.0009 425 101 433 20 435 5 5 111 286 0.39 86 0.0573 0.0020 0.5515 0.0184 0.0698 0.0007 505 56 446 12 435 4 6 124 347 0.36 104 0.0571 0.0014 0.5482 0.0122 0.0697 0.0006 496 35 444 8 434 3 7 72 172 0.42 58 0.0574 0.0013 0.6197 0.0129 0.0783 0.0006 508 32 490 8 486 4 8 259 761 0.34 226 0.0562 0.0008 0.5398 0.0062 0.0697 0.0004 459 15 438 4 435 3 9 87 216 0.4 64 0.0557 0.0033 0.5354 0.0304 0.0697 0.0010 440 103 435 20 435 6 10 144 218 0.66 67 0.0556 0.0034 0.5352 0.0321 0.0699 0.0010 436 109 435 21 435 6 11 105 173 0.61 59 0.0561 0.0011 0.5994 0.0100 0.0775 0.0005 456 25 477 6 481 3 12 78 199 0.39 59 0.0557 0.0015 0.5361 0.0136 0.0698 0.0006 442 42 436 9 435 3 13 96 197 0.48 66 0.0572 0.0010 0.6032 0.0093 0.0766 0.0005 497 22 479 6 475 3 14 142 427 0.33 127 0.0565 0.0012 0.5427 0.0099 0.0697 0.0005 471 27 440 6 434 3 15 127 311 0.41 94 0.0569 0.0012 0.5470 0.0100 0.0697 0.0005 487 28 443 7 435 3 16 517 481 1.08 155 0.0567 0.0009 0.5453 0.0067 0.0698 0.0005 480 16 442 4 435 3 17 214 745 0.29 221 0.0578 0.0009 0.5561 0.0069 0.0697 0.0005 524 16 449 4 435 3 18 97 291 0.33 87 0.0566 0.0012 0.5438 0.0105 0.0697 0.0005 476 29 441 7 434 3 19 74 222 0.33 66 0.0549 0.0026 0.5273 0.0244 0.0697 0.0008 406 82 430 16 435 5 20 78 199 0.39 59 0.0532 0.0029 0.5118 0.0268 0.0698 0.0009 338 96 420 18 435 5 21 34 99 0.35 30 0.0588 0.0017 0.5651 0.0156 0.0697 0.0006 559 46 455 10 435 3 22 85 225 0.38 73 0.0557 0.0012 0.5943 0.0119 0.0774 0.0006 441 31 474 8 480 3 23 93 246 0.38 74 0.0572 0.0016 0.5497 0.0140 0.0697 0.0006 498 41 445 9 435 4 24 174 646 0.27 192 0.0570 0.0010 0.5486 0.0082 0.0698 0.0005 491 21 444 5 435 3 表 2 大村和古龙岩体主量、微量和稀土元素含量
Table 2. Chemical compositions and main geochemical parameters of the Dacun and Gulong plutons
元素 大村岩体 古龙岩体 DCYT-1 DCYT-2 GLYT-1 GLYT-2 GLYT-3 SiO2 61.70 63.55 61.80 62.15 63.31 Al2O3 16.45 16.51 17.00 16.97 16.73 Fe2O3 6.12 2.29 6.11 2.33 1.85 FeO -- 2.90 -- 3.27 3.60 CaO 4.98 5.28 5.66 6.72 6.27 MgO 2.73 2.15 2.79 2.57 2.58 Na2O 2.97 2.93 2.70 2.88 2.66 K2O 2.09 1.73 1.24 1.16 1.03 TiO2 0.43 0.39 0.37 0.35 0.34 MnO 0.13 0.12 0.13 0.13 0.13 P2O5 0.15 0.16 0.10 0.10 0.09 SrO 0.03 0.11 0.02 0.06 0.10 BaO 0.09 -- 0.04 -- -- 烧失量 1.88 1.59 1.53 1.15 1.13 总量 99.87 99.71 99.58 99.84 99.82 A/CNK 1.01 1.01 1.06 0.93 0.99 K/Na 0.70 0.59 0.46 0.40 0.39 ALK 5.06 4.66 3.94 4.04 3.69 Mg# 0.47 0.44 0.47 0.46 0.47 A/MF 1.12 1.32 1.14 1.2 1.2 C/MF 0.62 0.77 0.69 0.87 0.81 Li 19.8 13.8 11.5 14.2 14.56 Be 1.24 1.6 0.84 0.99 1.08 Sc 14.4 14.6 13.4 16.6 16.1 V 161 114 160 128 134.1 Cr 40 21.1 40 18.9 45.1 Co 14.1 12.9 13.1 14.4 15.9 Ni 10.1 9.29 9.7 8.17 9.98 Cu 35.8 36.7 15.3 9.4 9.1 Zn 70 67 76 59 63.8 Ga 19.2 21.2 18.6 16.9 17.9 Rb 91.1 62 57.3 49.3 57.75 Sr 348 269 190.5 201 178.5 Zr 134 113 98 76.4 70.9 Nb 7.0 6.83 5.1 4.83 5.6 Cs 9.34 -- 3.62 -- -- Ba 741 729 312 356 330 Hf 3.9 3.45 2.9 2.31 2.4 Ta 0.63 0.82 0.45 1.19 0.61 Pb 20.4 25.8 10.1 10.6 10.55 Th 17.70 15.9 6.61 6.49 7.16 U 3.13 1.96 1.35 1.34 1.36 La 27.3 33.16 15.8 13.47 35.57 Ce 50.9 56.53 29.2 26.72 61.71 Pr 5.60 5.89 3.19 3.07 7.31 Nd 18.4 19.05 11.2 11 26.23 Sm 2.91 3.03 2.21 2.52 4.58 Eu 0.85 0.86 0.67 0.68 1.13 Gd 2.81 3.07 2.26 2.44 4.49 Tb 0.45 0.43 0.39 0.42 0.66 Dy 2.83 2.74 2.51 2.61 3.49 Ho 0.61 0.58 0.54 0.58 0.68 Er 1.91 1.74 1.75 1.81 1.93 Tm 0.27 0.27 0.25 0.28 0.3 Yb 1.96 1.91 1.76 1.95 1.78 Lu 0.29 0.31 0.29 0.29 0.36 Y 14.1 16.73 11.7 15.99 19.53 ΣREE 117.09 129.57 72.02 67.84 150.22 LREE 105.96 118.52 62.27 57.46 136.53 L/H 9.52 10.73 6.39 5.54 9.97 (La/Yb)n 9.99 12.45 6.44 4.95 14.33 δEu 0.90 0.85 0.91 0.83 0.75 δCe 0.96 0.91 0.95 0.98 0.89 注:DCYT-2、GLYT-2、GLYT-3数据据参考文献③;K/Na=K2O/Na2O,ALK=K2O+Na2O,Mg#=Mg2+/(Mg2++Fe2+),L/H=LREE/HREE;主量元素含量单位为%,微量和稀土元素含量为10-6 表 3 大村和古龙岩体LA-MC-ICP-MS锆石Lu-Hf同位素分析结果
Table 3. LA-MC-ICP-MS zircon Lu-Hf isopote analyses for Dacun and Gulong plutons
点编号 年龄/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ TDM/Ma T2DM/Ma εHf(0) εHf(t) fLu/Hf DCYT-1(大村岩体) 1 438 0.094742 0.001974 0.282566 0.000021 996 1307 -7.28 1.79 -0.94 2 438 0.045869 0.000977 0.282594 0.000018 931 1227 -6.31 3.05 -0.97 3 438 0.065670 0.001410 0.282579 0.000020 963 1268 -6.83 2.41 -0.96 4 438 0.061364 0.001310 0.282562 0.000021 984 1304 -7.42 1.84 -0.96 5 438 0.106841 0.002190 0.282614 0.000021 933 1204 -5.60 3.41 -0.93 6 438 0.066597 0.001353 0.282600 0.000021 932 1220 -6.09 3.16 -0.96 7 438 0.060702 0.001279 0.282554 0.000021 995 1322 -7.72 1.56 -0.96 8 438 0.061307 0.001299 0.282610 0.000020 916 1196 -5.73 3.54 -0.96 9 438 0.086500 0.001789 0.282609 0.000023 929 1206 -5.75 3.37 -0.95 10 438 0.073679 0.001534 0.282567 0.000019 984 1298 -7.26 1.94 -0.95 11 438 0.103527 0.002160 0.282597 0.000022 957 1242 -6.20 2.81 -0.93 12 438 0.072744 0.001558 0.282589 0.000023 952 1248 -6.47 2.72 -0.95 13 438 0.066163 0.001405 0.282583 0.000021 957 1258 -6.67 2.56 -0.96 14 438 0.107210 0.002281 0.282631 0.000024 911 1167 -5.00 3.99 -0.93 15 438 0.082429 0.001776 0.282572 0.000020 983 1291 -7.08 2.04 -0.95 16 438 0.079014 0.001717 0.282661 0.000021 853 1089 -3.93 5.22 -0.95 17 439 0.069528 0.001520 0.282609 0.000019 924 1203 -5.78 3.44 -0.95 18 438 0.105607 0.002101 0.282630 0.000020 908 1167 -5.04 4.00 -0.94 19 439 0.059836 0.001274 0.282563 0.000023 982 1300 -7.38 1.91 -0.96 20 438 0.061329 0.001308 0.282591 0.000017 943 1239 -6.40 2.86 -0.96 GLYT-1(古龙岩体) 1 439 0.057675 0.001214 0.282598 0.000021 931 1221 -6.15 3.16 -0.96 2 434 0.058904 0.001231 0.282587 0.000022 947 1249 -6.54 2.66 -0.96 3 435 0.102119 0.002014 0.282554 0.000021 1014 1336 -7.70 1.30 -0.94 4 435 0.062133 0.001259 0.282563 0.000022 982 1303 -7.40 1.81 -0.96 5 435 0.052015 0.001082 0.282529 0.000022 1024 1375 -8.58 0.69 -0.97 6 435 0.074282 0.001583 0.282567 0.000020 985 1301 -7.27 1.85 -0.95 7 434 0.062945 0.001280 0.282587 0.000022 948 1249 -6.54 2.65 -0.96 8 486 0.040869 0.000844 0.282544 0.000022 998 1308 -8.08 2.35 -0.97 9 435 0.129683 0.002543 0.282542 0.000024 1047 1373 -8.13 0.71 -0.92 10 435 0.071628 0.001422 0.282588 0.000021 950 1249 -6.51 2.66 -0.96 11 435 0.044872 0.000885 0.282501 0.000024 1059 1435 -9.58 -0.26 -0.97 12 481 0.086627 0.001723 0.282619 0.000023 913 1158 -5.40 4.65 -0.95 13 435 0.083514 0.001741 0.282663 0.000025 851 1087 -3.85 5.22 -0.95 14 475 0.081921 0.001723 0.282567 0.000022 989 1280 -7.26 2.66 -0.95 15 434 0.049708 0.001021 0.282500 0.000021 1064 1440 -9.62 -0.36 -0.97 16 435 0.073719 0.001520 0.282549 0.000022 1009 1340 -7.90 1.23 -0.95 17 435 0.123633 0.002363 0.282585 0.000023 979 1273 -6.60 2.29 -0.93 18 435 0.060560 0.001262 0.282504 0.000022 1066 1436 -9.49 -0.28 -0.96 19 434 0.067671 0.001377 0.282471 0.000020 1115 1511 -10.63 -1.47 -0.96 20 435 0.064088 0.001354 0.282513 0.000023 1056 1418 -9.18 0.01 -0.96 21 435 0.073446 0.001568 0.282532 0.000021 1035 1379 -8.51 0.62 -0.95 22 435 0.020413 0.000442 0.282559 0.000021 966 1297 -7.53 1.92 -0.99 23 480 0.076022 0.001574 0.282542 0.000021 1020 1329 -8.13 1.94 -0.95 24 0.435 0.065576 0.001341 0.282540 0.000019 1017 1356 -8.21 0.98 -0.96 注:εHf(t)=10000 × {[(176Hf/177Hf)S-(176Lu/177Hf)S × (eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR × (eλt-1)]-1}, TDM=1/λ ×ln{1+[(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Lu/177Hf)S-(176Lu/177Hf)DM]};TDMC=TDM-(TDM-t)×[(fCC-fS)/(fCC-fDM)];fLu/Hf=(176Lu/177Hf)S/(176Lu/177Hf)CHUR-1其中:λ=1.867×10-11/a[25];(176Lu/177Hf)S和 (176Hf/177Hf)S为样品测量值;(176Lu/177Hf)CHUR=0.0332;(176Hf/177Hf)CHUR, 0=0.282772;(176Lu/177Hf)DM=0.0384,(176Hf/177Hf)DM=0.28325;(176Lu/177Hf) 平均地壳=0.015;fCC=[(176Lu/177Hf) 平均地壳/(176Lu/177Hf)CHUR]-1;fS=fLu/Hf;fDM=[(176Lu/177Hf)DM/(176Lu/177Hf)CHUR]-1;t为锆石结晶年龄 -
[1] 丘元禧, 马文璞, 范小林, 等."雪峰古陆"加里东期的构造性质和构造演化[J].中国区域地质, 1996, (2): 150-160. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD602.007.htm
[2] 郭令智, 俞剑华, 施央申.华南加里东地槽褶皺区大地构造的几个问题的探讨[J].南京大学学报 (自然科学版), 1963, (14): 1-17. http://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ196314000.htm
[3] 殷鸿福, 吴顺宝, 杜远生, 等.华南是特提斯多岛洋体系的一部分[J].地球科学, 1999, 24(1): 3-14. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX901.000.htm
[4] 王德滋, 沈渭洲.中国东南部花岗岩成因与地壳演化[J].地学前缘, 2003, 10(3): 209-220. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303031.htm
[5] 黄标, 孙明志, 武少兴, 等.武夷山中段加里东期混合岩的特征及成因讨论[J].岩石学报, 1994, 10(4): 427-439. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199404007.htm
[6] 张芳荣, 舒良树, 王德滋, 等.江西付坊花岗岩体的年代学、地球化学特征及其成因研究[J].高校地质学报, 2010, (2): 161-176. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201002004.htm
[7] 沈渭洲, 张芳荣, 舒良树, 等.江西宁冈岩体的形成时代、地球化学特征及其构造意义[J].岩石学报, 2008, 24(10): 2244-2254. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200810006.htm
[8] 广西壮族自治区地质矿产局.广西壮族自治区区域地质志[M].北京:地质出版社, 1985: 1-853.
[9] Sláma J, Kostler J, Condon D J, et al. Plesovice-a new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1/2): 1-35. http://www.sciencedirect.com/science/article/pii/S0009254107004883
[10] Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79. http://www.sciencedirect.com/science/article/pii/S000925410200195X
[11] Ludwig K R. User's manual for a geochronological toolkit for Microsoft Excel (Isoplot/Ex version 3.0)[J]. Berkeley: Berkeley Geochronology Center Special Publication, 2003, 104: 1-70. https://www.researchgate.net/publication/284696948_User's_manual_for_a_geochronological_toolkit_for_Microsoft_Excel_IsoplotEx_version_30
[12] 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J].矿床地质, 2009, 28(4): 481-492. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200904009.htm
[13] Scherer E, Munker C, Mezger K. Calibration of the lutetium-hafnium clock[J]. Science, 2001, 293(5530): 683-687. doi: 10.1126/science.1061372
[14] Blicherttoft J, Albarede F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 243-258. http://www.sciencedirect.com/science/article/pii/S0012821X97001982
[15] Vervoort J D, Blichert-Toft J. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4): 533-556. http://www.sciencedirect.com/science/article/pii/S0016703798002749
[16] Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3/4): 237-269. http://www.sciencedirect.com/science/article/pii/S0024493702000828
[17] Compston W, Williams I S, Kirschvink J L, et al. zircon u-pb ages for the early cambrian time-scale[J]. Journal of the Geological Society, 1992, 149(Part 2): 171-184. http://jgs.geoscienceworld.org/content/149/2/171
[18] Barros C E D, Nardi S R, Dillenburg, et al. Detrital Minerals of Modern Beach Sediments in Southern Brazil: A Provenance Study Based on the Chemistry of Zircon[J]. Journal of Coastal Research, 2010, 26(1): 80-93. http://www.jcronline.org/doi/abs/10.2112/06-0817.1?code=cerf-site&journalCode=coas
[19] Belousova E A, Griffin W L, O'Reilly S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622. doi: 10.1007/s00410-002-0364-7
[20] Chen F, Hegner E, Todt W. Zircon ages and Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany: evidence for a Cambrian magmatic arc[J]. International Journal of Earth Sciences, 2000, 88(4): 791-802. doi: 10.1007/s005310050306
[21] 许华, 黄炳诚, 倪战旭, 等.钦杭成矿带西段古龙花岗岩株群岩石学、地球化学及年代学[J].华南地质与矿产, 2012, 28(4): 331-339. http://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201204006.htm
[22] Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society Special Publication, 198, (42): 313-345.
[23] Zhang S H, Zhao Y, Kroner A, et al. Early Permian plutons from the northern North China Block: constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt[J]. International Journal of Earth Sciences, 2009, 98(6): 1441-1467. doi: 10.1007/s00531-008-0368-2
[24] Stern C R, Kilian R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral volcanic zone[J]. Contributions to Mineralogy and Petrology, 1996, 123(3): 263-281. doi: 10.1007/s004100050155
[25] Wu R X, Zheng Y F, Wu Y B, et al. Reworking of juvenile crust: element and isotope evidence from Neoproterozoic granodiorite in South China[J]. Precambrian Research, 2006, 146(3): 179-212. http://www.sciencedirect.com/science/article/pii/S0301926806000362
[26] 张菲菲, 王岳军, 范蔚茗, 等.湘东-赣西地区早古生代晚期花岗岩体的LA-ICPMS锆石U-Pb定年研究[J].地球化学, 2010, 39(5): 414-426. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201005002.htm
[27] 楼法生, 沈渭洲, 王德滋, 等.江西武功山穹隆复式花岗岩的锆石U-Pb年代学研究[J].地质学报, 2005, 79(5): 636-644. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200505008.htm
[28] 农军年, 钟玉芳, 刘磊, 等.赣西北麦斜岩体的成因:地球化学、锆石U-Pb年代学及Hf同位素制约[J].地质科技情报, 2012, 31(2): 9-18. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201202001.htm
[29] 徐先兵, 张岳桥, 舒良树, 等.闽西南玮埔岩体和赣南菖蒲混合岩锆石La-ICPMS U-Pb年代学:对武夷山加里东运动时代的制约[J].地质论评, 2009, 55(2): 277-285. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200902017.htm
[30] 张爱梅, 王岳军, 范蔚茗, 等.闽西南清流地区加里东期花岗岩锆石U-Pb年代学及Hf同位素组成研究[J].大地构造与成矿学, 2010, 34(3): 408-418. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201003016.htm
[31] 程顺波, 付建明, 徐德明, 等.桂东北大宁岩体锆石SHRIMP年代学和地球化学研究[J].中国地质, 2009, 36(6): 1278-1288. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200906011.htm
[32] Wang Y J, Fan W M, Zhao G C, et al. Zircon U-Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block[J]. Gondwana Research, 2007, 12(4): 404-416. doi: 10.1016/j.gr.2006.10.003
[33] 李巍, 毕诗健, 杨振, 等.桂东大瑶山南缘社山花岗闪长岩的锆石U-Pb年龄及Hf同位素特征:对区内加里东期成岩成矿作用的制约[J].地球科学 (中国地质大学学报), 2015, 40(1): 17-33. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201501002.htm
[34] Kemp A I, Hawkesworth C J, Foster G L, et al. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon.[J]. Science, 2007, 315(5814): 980-983. doi: 10.1126/science.1136154
[35] Collins W J, Richards S W. Geodynamic significance of S-type granites in circum-Pacific orogens[J]. Geology, 2008, 36(7): 559-562. doi: 10.1130/G24658A.1
[36] Altherr R, Holl A, Hegner E, et al. High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany)[J]. Lithos, 2000, 50(1): 51-73. http://www.sciencedirect.com/science/article/pii/S0024493799000523
[37] 肖庆辉, 邓晋福, 马大铨, 等.花岗岩研究思维与方法[M].北京:地质出版社, 2002: 1-294.
[38] Perugini D, Poli G. Determination of the degree of compositional disorder in magmatic enclaves using SEM X-ray element maps[J]. European Journal of Mineralogy, 2004, 16(3): 431-442. doi: 10.1127/0935-1221/2004/0016-0431
[39] Waight T E, Maas R, Nicholls I A. Geochemical investigations of microgranitoid enclaves in the S-type Cowra Granodiorite, Lachlan Fold Belt, SE Australia[J]. Lithos, 2001, 56(2/3): 165-186. http://www.sciencedirect.com/science/article/pii/S0024493700000530
[40] Perugini D, Poli G, Christofides G, et al. Magma mixing in the Sithonia Plutonic Complex, Greece: evidence from mafic microgranular enclaves[J]. Mineralogy and Petrology, 2003, 78(3/4): 173-200. https://rd.springer.com/article/10.1007/s00710-002-0225-0?no-access=true
[41] Collins W J, Richards S R, Healy B E, et al. Origin of heterogeneous mafic enclaves by two-stage hybridisation in magma conduits (dykes) below and in granitic magma chambers[J]. Transactions of the Royal Society of Edinburgh-Earth Sciences, 2000, 91(Part 1/2): 27-45. http://specialpapers.gsapubs.org/content/350/27.short
[42] 于津海, 周新民, Reilly Y S O, 等.南岭东段基底麻粒岩相变质岩的形成时代和原岩性质:锆石的U-Pb-Hf同位素研究[J].科学通报, 2005, 50(16): 84-93. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200516014.htm
[43] 邱检生, 肖娥, 胡建, 等.福建北东沿海高分异Ⅰ型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约[J].岩石学报, 2008, (11): 2468-2484. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200811003.htm
[44] Dostal J, Chatterjee A K. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada)[J]. Chemical Geology, 2000, 163(1): 207-218. http://www.sciencedirect.com/science/article/pii/S0009254199001138
[45] Li W X, Li X H, Li Z X. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance[J]. Precambrian Research, 2005, 136(1): 51-66. doi: 10.1016/j.precamres.2004.09.008
[46] 许德如, 陈广浩, 夏斌, 等.湘东地区板杉铺加里东期埃达克质花岗闪长岩的成因及地质意义[J].高校地质学报, 2006, 12(4): 507-521. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200604012.htm
[47] 楼法生, 舒良树, 于津海, 等.江西武功山穹隆花岗岩岩石地球化学特征与成因[J].地质论评, 2002, 48(1): 80-88. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200201016.htm
[48] Shu L S, Faure M, Jiang S Y, et al. SHRIMP zircon U-Pb age, litho-and biostratigraphic analyses of the Huaiyu Domain in South China-Evidence for a Neoproterozoic orogen, not Late Paleozoic-Early Mesozoic collision[J]. Episodes, 2006, 29(4): 244-252.
[49] 张春红, 范蔚茗, 王岳军, 等.湘西隘口新元古代基性-超基性岩墙年代学和地球化学特征:岩石成因及其构造意义[J].大地构造与成矿学, 2009, 32(2): 283-293. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200902013.htm
[50] 舒良树, 于津海, 贾东, 等.华南东段早古生代造山带研究[J].地质通报, 2008, 27(10): 1581-1593. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20081001&journal_id=gbc
[51] 戎嘉余, 詹仁斌, 黄冰, 等.一个罕见的奥陶纪末期深水腕足动物群在浙江杭州余杭的发现[J].科学通报, 2007, 52(22): 2632-2637. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200722009.htm
[52] 陈旭, 布科, 阮亦萍, 等.显生宙全球气候变化与生物绝灭事件的联系[J].地学前缘, 1997, 4(Z2): 127-132. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY7Z2.018.htm
[53] 张芳荣, 舒良树, 王德滋, 等.华南东段加里东期花岗岩类形成构造背景探讨[J].地学前缘, 2009, 16(1): 248-260. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200901034.htm
[54] Li X H, Li Z X, Ge W C, et al. U-Pb Zircon Ages of the Neoproterozoic Granitoids in South China and Their Tectonic Implications[J]. Bulletin of Mineralogy Petrology & Geochemistry, 2001, 20(4): 271-273. http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200104018.htm