Petrogenesis and tectonic implications of the Fushan moyite in the Fanchang area,Anhui Province-Evidence from zircon U-Pb age,geochemistry and Hf isotopes
-
摘要:
安徽繁昌地区是长江中下游铜铁金多金属成矿带的重要组成部分。对繁昌浮山钾长花岗岩开展了详细的岩石学、岩石地球化学、锆石U-Pb 年代学和Lu-Hf 同位素分析,并在此基础上探讨了岩石成因及动力学背景。岩石地球化学研究表明,浮山钾长花岗岩为硅过饱和的准铝质-弱过铝质富碱富钾岩石,具有较高的Ga/Al 值、TFeO/MgO 值、Zr+Nb+Ce+Y 和稀土元素含量,显示出A 型花岗岩的地球化学特征。此外,浮山钾长花岗岩具有低(87Sr/86Sr)i、高δ18O、负εNd(t)和εHf(t)、负Eu 异常等地球化学特征。繁昌浮山钾长花岗岩LA-ICP-MS 锆石206Pb/238U 年龄为124.9±2.0Ma(n=15,MSWD=0.20),被解释为钾长花岗岩的形成年龄。与长江中下游地区A 型花岗岩带中的其他岩体为同期岩浆活动的产物,均形成于早白垩世。结合岩石学和区域地质资料,表明浮山钾长花岗岩可能是新生下地壳物质部分熔融作用形成的,形成浮山钾长花岗岩的新生下地壳可能由来源于富集地幔岩石圈的玄武质-安山质岩浆和少量结晶变质基底物质组成。根据锆石U-Pb 年龄,结合区域地质资料分析,晚侏罗世—早白垩世,长江中下游地区经历挤压向伸展构造应力场的转变,随时间推移,伸展作用逐渐增大,至125Ma 左右该区岩石圈可能达到了伸展的高峰期。
-
关键词:
- 钾长花岗岩 /
- LA-ICP-MS 锆石U-Pb 年龄 /
- Lu-Hf 同位素 /
- 岩石成因 /
- 长江中下游地区
Abstract:The Fanchang area is one of the important components of the Middle-Lower Yangtze Valley metallogenic belt. The Fushan moyite is one of the most representative and important granitic intrusions. In this paper, LA-ICP-MS zircon U-Pb dating, petrographic observations and geochemical and Hf isotopic analysis were carried out for the Fushan moyite in the Fanchang area, with the emphasis placed on the analysis of petrogenesis and tectonic implications of the Fushan moyite. The Fushan moyite has a clear A-type geochemical signature, e.g., it is of metaluminous to weakly peraluminous nature (A/CNK=0.91~1.11) and has high SiO2 (averagely 71.52%), total alkalis (Na2O+K2O=8.85%~9.60%), K*(K2O/Na2O=1.06~1.57), Fe*(TFeO/MgO=2.49~10.2), rare earth elements (ΣREE=278×10-6~376×10-6), Ga/Al ratio (2.90~3.31) and HFSE (Zr+Nb+Ce+Y=421.8×10-6~655.0×10-6). LAICP-MS zircon U-Pb dating yielded a concordant weighted mean 206Pb/238Pb age of 124.9±2.0Ma, which is similar to ages of other A-type granites in the Middle-Lower Yangtze Valley metallogenic belt, indicating that all A-type granites were formed in the Early Cretaceous. Zircons from this pluton yielded εHf(t) values between -5.8 and -10.0, which, together with U-Pb age,(87Sr/86Sr)I, δ18O and εNd(t) values of the Fushan moyite, suggest the importance of juvenile material in the magma source, and the juvenile material was composed of the basaltic andesitic magma from enriched mantle lithosphere and minor crystalline metamorphic basement. These data, together with other accurate dating data of intermediate-acid plutons and volcanic rocks in the Middle-Lower Yangtze Valley metallogenic belt, support the peak time of crustal extension at ~125Ma in this area.
-
Key words:
- moyite /
- LA-ICP-MS zircon U-Pb ages /
- Lu-Hf isotopes /
- petrogenesis /
- Middle-Lower Yangtze Valley
-
图 1 安徽繁昌浮山钾长花岗岩体地质略图(图a 据参考文献[4]修改;图b 据参考文献①修改)
Figure 1.
图 5 A 型花岗岩判别图解(底图据参考文献[45])
Figure 5.
图 6 繁昌地区浮山钾长花岗岩球粒陨石标准化微量元素蛛网图(球粒陨石数据据参考文献[47])
Figure 6.
图 7 繁昌地区浮山钾长花岗岩球粒陨石标准化稀土元素配分模式图(球粒陨石数据据参考文献[48])
Figure 7.
表 1 繁昌地区浮山钾长花岗岩主量元素分析结果
Table 1. Major elements composition of samples from the Fushan moyite in Fanchang area, Anhui Province
% 样品编号 SiO2 TiO2 Al2O3 TFeO MnO MgO CaO Na2O K2O P2O5 烧失量 总量 Na2O+K2O K2O/Na2O A/CNK A/NK TFeO/MgO FC108 71.20 0.36 13.88 1.75 0.10 0.47 1.02 4.41 5.14 0.07 1.19 99.59 9.55 1.17 0.95 1.08 3.71 FC109 70.39 0.36 14.40 1.81 0.10 0.46 0.86 4.14 5.31 0.10 1.67 99.60 9.45 1.28 1.02 1.15 3.90 FC114 63.05 0.82 15.43 3.51 0.18 1.41 2.56 4.40 4.67 0.30 3.06 99.38 9.07 1.06 0.91 1.25 2.49 FC118 69.97 0.38 14.20 1.89 0.09 0.63 1.15 4.27 5.08 0.09 1.81 99.56 9.35 1.19 0.97 1.13 2.99 FS002a 73.03 0.26 13.79 1.35 0.08 0.25 0.64 3.86 5.42 0.03 0.82 99.53 9.28 1.40 1.03 1.13 5.40 FS003a 73.14 0.30 13.89 1.45 0.08 0.26 0.67 3.90 5.12 0.03 0.70 99.54 9.02 1.31 1.05 1.16 5.58 FS019b 73.22 0.27 13.60 1.34 0.11 0.37 0.11 4.18 5.38 0.03 0.45 99.06 9.56 1.29 1.05 1.07 3.62 FS020b 73.61 0.26 13.14 1.62 0.01 0.23 0.17 3.45 5.40 0.03 1.11 99.04 8.85 1.57 1.11 1.14 7.04 FS021b 73.55 0.27 13.42 1.42 0.06 0.28 0.24 3.55 5.40 0.03 0.86 99.07 8.95 1.52 1.11 1.15 5.08 FS022b 73.28 0.27 12.91 2.12 0.10 0.33 0.36 4.20 5.40 0.03 0.41 99.42 9.60 1.29 0.96 1.01 6.44 FS023b 72.24 0.28 13.51 1.22 0.14 0.12 0.68 4.05 5.42 0.03 0.50 98.20 9.47 1.34 0.98 1.08 10.20 注:a 数据据参考文献[20];b 数据据参考文献[1] 表 2 繁昌地区浮山钾长花岗岩微量、稀土元素分析结果
Table 2. Trace and rare earth elements composition of samples from the Fushan moyite in Fanchang area, Anhui Province
10-6 样品编号 Ba Rb Th Nb Ta Sr Nd Sm Zr Hf Y Sc V Cr Co Ni U Ga FC108 255 228 28.70 43.10 2.41 118 64.40 12.40 230 8.01 50.70 12.00 18.60 0.64 1.54 0.81 5.80 24.30 FC109 403 223 27.20 35.70 2.01 119 49.40 9.13 213 7.33 39.10 8.58 18.50 0.32 1.42 0.43 6.30 22.10 FC114 899 193 19.50 33.40 1.81 292 63.40 11.70 430 9.57 46.60 9.09 68.30 0.26 5.82 0.60 6.43 23.50 FC118 425 216 27.70 37.90 2.11 160 60.50 11.10 220 7.32 46.90 7.38 20.50 0.35 1.83 0.48 10.50 23.80 FS002a 116 226 25.20 37.80 2.14 50.60 51.50 9.66 356 9.63 57.00 4.59 4.52 0.89 0.38 0.77 5.50 ― FS003a 98 207 24.80 40.30 2.26 49.90 63.10 11.80 362 10.40 61.60 6.18 6.80 4.00 0.78 2.60 5.07 ― 样品编号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ∑REE LREE/HREE δEu (La/Yb)N FC108 85.20 158.0 18.30 64.40 12.40 1.02 11.00 1.82 9.16 1.80 5.37 0.98 5.82 0.85 376.13 9.22 0.26 10.50 FC109 69.40 134.0 13.40 49.40 9.13 0.98 8.26 1.32 6.87 1.31 4.10 0.75 4.50 0.66 304.08 9.95 0.34 11.06 FC114 79.00 145.0 16.60 63.40 11.70 1.93 10.80 1.59 8.41 1.62 4.84 0.85 5.03 0.72 351.49 9.38 0.52 11.27 FC118 77.40 156.0 16.70 60.50 11.10 1.14 10.40 1.60 8.37 1.56 4.63 0.85 5.19 0.76 356.19 9.68 0.32 10.70 FS002a 72.10 98.3 15.20 51.50 9.66 0.77 7.98 1.31 8.11 1.62 5.30 0.74 4.90 0.77 278.26 8.05 0.26 10.55 FS003a 91.20 130.0 18.40 63.10 11.80 0.90 9.93 1.59 9.47 1.81 5.80 0.75 5.42 0.81 350.98 8.86 0.25 12.07 注:a 数据据参考文献[20] 表 3 繁昌地区浮山钾长花岗岩LA-ICP-MS 锆石U-Th-Pb 同位素数据
Table 3. LA-ICP-MS zircon U-Th-Pb analyses of samples from the Fushan moyite in Fanchang area
点序号 含量/10-6 Th/U 同位素比值 年龄/Ma 206Pb 207Pb 208Pb 232Th 238U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/235U 1σ 206Pb/238U 1σ 9 46.45 3.19 5.4 410 570 0.72 0.0485 0.0072 0.1324 0.018 0.0198 0.0012 0.0068 0.00080 126 16 126.30 7.6 10 58.36 2.96 6.81 446 628 0.71 0.0486 0.0037 0.1323 0.0092 0.0198 0.00062 0.0068 0.00041 126 8.2 126.10 3.9 13 82.66 4.29 14.03 1186 979 1.21 0.0485 0.0030 0.1300 0.0075 0.0194 0.00052 0.0056 0.00024 124 6.7 124.00 3.3 19 42.98 2.512 5.04 368 491 0.75 0.0495 0.0035 0.1305 0.0086 0.0191 0.00058 0.0062 0.00035 125 7.7 122.10 3.7 26 79.23 5.09 13.31 868 897 0.97 0.0490 0.0041 0.1331 0.010 0.0197 0.00071 0.0072 0.00041 127 9.3 125.70 4.5 27 58.3 3.07 12.66 855 746 1.15 0.0485 0.0028 0.1324 0.0071 0.0198 0.00049 0.0074 0.00026 126 6.3 126.20 3.1 28 86.33 4.53 14.05 764 913 0.84 0.0488 0.0019 0.1338 0.0048 0.0199 0.00036 0.0070 0.00020 128 4.3 126.80 2.3 29 70.84 3.96 14.48 1063 860 1.24 0.0492 0.0024 0.1321 0.0059 0.0195 0.00042 0.0062 0.00019 126 5.3 124.20 2.7 35 56.47 3.35 6.98 481 621 0.78 0.0489 0.0049 0.1315 0.012 0.0195 0.00083 0.0065 0.00049 126 11 124.50 5.2 38 59.17 3.44 11.78 797 642 1.24 0.0483 0.0071 0.1358 0.018 0.0204 0.0012 0.0064 0.00061 129 16 130.00 7.9 40 38.84 2.138 10.4 765 486 1.57 0.0484 0.0030 0.1295 0.0073 0.0194 0.00051 0.0061 0.00021 124 6.5 123.90 3.2 41 36.15 2.2 6.3 489 393 1.24 0.0485 0.0079 0.1304 0.020 0.0195 0.0013 0.0056 0.00056 125 18 124.60 8.4 46 18.3 0.929 3.82 306 213 1.44 0.0490 0.012 0.1323 0.029 0.0196 0.0018 0.0059 0.00073 126 26 125.10 11 53 49.47 4.3 11.19 820 624 1.31 0.0477 0.0073 0.1263 0.018 0.0192 0.0012 0.0054 0.00048 121 16 122.70 7.7 50 42.08 3.091 7.96 622 560 1.11 0.0487 0.0037 0.1286 0.0088 0.0192 0.00062 0.0056 0.00029 123 8.0 122.30 3.9 表 4 繁昌地区浮山钾长花岗岩锆石原位微区Hf 同位素分析结果
Table 4. Hf isotope analyses of zircons from the Fushan moyite in Fanchang area
样品编号 t/Ma 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ εHf(0) εHf(t) TDM1/Ma TDM2/Ma 176Hf/177Hf(t) fLu/Hf 1 125 0.085 0.00040 0.0029 0.000012 0.282469 0.000016 -10.70 -8.20 1165 1696 0.282463 -0.91 9 126 0.038 0.00027 0.0014 0.000013 0.282460 0.000015 -11.04 -8.38 1131 1709 0.282457 -0.96 10 126 0.049 0.00032 0.0017 0.000011 0.282414 0.000017 -12.67 -10.05 1209 1814 0.282409 -0.95 13 124 0.049 0.00016 0.0017 0.000004 0.282461 0.000015 -10.98 -8.40 1139 1709 0.282457 -0.95 19 122 0.049 0.00041 0.0018 0.000017 0.282439 0.000015 -11.79 -9.25 1174 1761 0.282435 -0.95 22 130 0.054 0.00028 0.0020 0.000014 0.282472 0.000020 -10.61 -7.92 1133 1683 0.282467 -0.94 26 126 0.069 0.00087 0.0024 0.000024 0.282500 0.000018 -9.61 -7.05 1102 1624 0.282495 -0.93 27 126 0.042 0.00036 0.0015 0.000011 0.282485 0.000019 -10.15 -7.51 1099 1654 0.282481 -0.95 28 127 0.083 0.00061 0.0028 0.000020 0.282477 0.000016 -10.42 -7.87 1151 1677 0.282471 -0.91 29 124 0.086 0.00095 0.0030 0.000026 0.282506 0.000020 -9.40 -6.92 1112 1615 0.282499 -0.91 35 125 0.042 0.00015 0.0016 0.000007 0.282458 0.000019 -11.09 -8.49 1139 1715 0.282455 -0.95 38 130 0.052 0.00025 0.0019 0.000006 0.282474 0.000016 -10.53 -7.84 1126 1678 0.282470 -0.94 40 124 0.073 0.00046 0.0025 0.000017 0.282456 0.000018 -11.17 -8.66 1171 1724 0.282450 -0.92 41 125 0.092 0.00191 0.0032 0.000064 0.282486 0.000019 -10.10 -7.63 1148 1660 0.282479 -0.90 46 125 0.051 0.00031 0.0019 0.000012 0.282479 0.000019 -10.35 -7.77 1119 1669 0.282475 -0.94 50 122 0.043 0.00085 0.0016 0.000027 0.282535 0.000030 -8.38 -5.82 1031 1545 0.282531 -0.95 53 123 0.091 0.00063 0.0032 0.000023 0.282483 0.000019 -10.23 -7.80 1154 1669 0.282475 -0.90 54 125 0.041 0.00045 0.0015 0.000016 0.282460 0.000019 -11.02 -8.40 1134 1709 0.282457 -0.96 -
[1] 常印佛, 刘湘培, 吴言昌. 长江中下游铜铁成矿带[M]. 北京: 地质出版社, 1991: 1-379.
[2] 翟裕生,姚书振,林新多, 等. 长江中下游地区铁铜(金)成矿规律[M]. 北京: 地质出版社, 1992: 1-235.
[3] 唐永成,吴言昌,储国正, 等.安徽沿江地区铜多金属矿床地质[M]. 北京: 地质出版社, 1998: 1-351.
[4] 周涛发,范裕,袁峰.长江中下游成矿带成岩成矿作用研究进展[J]. 岩石学报, 2008, 24(8):1665-1678. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200808001.htm
[5] Mao J W, Xie G Q, Duan C, et al. A tectono-genetic model for porphyry-skarn-stratabound Cu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, Eastern China[J]. Ore Geology Reviews, 2011, 43(1): 294-314. doi: 10.1016/j.oregeorev.2011.07.010
[6] Zhang Z Y,Du Y S, Teng C Y, et al. Petrogenesis, geochronology, and tectonic significance of granitoids in the Tongshan intrusion, Anhui Province, Middle-Lower Yangtze River Valley, eastern China[J]. Journal of Asian Earth Sciences, in press. 2013, 6: 1294-1302. https://www.researchgate.net/publication/259521946_Petrogenesis_geochronology_and_tectonic_significance_of_granitoids_in_the_Tongshan_intrusion_Anhui_Province_Middle-Lower_Yangtze_River_Valley_eastern_China
[7] 戚学祥,旷宏伟,陈培良, 等. 长江中下游燕山期侵入岩地球化学特征及其地质意义[J]. 资源调查与环境, 2002, 23(1):52-59. http://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ200201006.htm
[8] 杜杨松,曹毅,袁万明, 等.安徽沿江地区中生代碰撞后到造山后岩浆活动和壳幔相互作用——来自火山-侵入杂岩和岩石包体的证据[J]. 岩石学报, 2007, 23(6):1294-1302. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200706005.htm
[9] Cao Y, Du Y S, Cai C L, et al. Mesozoic A-type granitoids and xenoliths in the Lujiang-Zongyang area, Anhui Province: significance in post-collisional magmatic evolution[J]. Geological Journal of China Universities, 2008, 14(4): 565-576.
[10] Xie J C, Yang X Y, Sun W D,et al. Early Cretaceous dioritic rocks in the Tongling region, eastern China: Implications for the tectonic settings[J]. Lithos, 2012, 150: 49-61. doi: 10.1016/j.lithos.2012.05.008
[11] Wang Y B, Liu D Y, Zeng P S, et al. SHRIMP U-Pb geochronology of proxene diorite in the Chaoshan gold deposit and its Geological Significance[J]. Acta Geosicentica Sinica, 2004, 25(4): 423-427.
[12] 楼亚儿,杜杨松.安徽繁昌中生代侵入岩的特征和锆石SHRIMP测年[J]. 地球化学, 2006, 35(4):333-345. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200604003.htm
[13] 范裕,周涛发,袁峰, 等.安徽庐江-枞阳地区A型花岗岩的LAICP-MS定年及其地质意义[J]. 岩石学报, 2008, 28(8):1715-1724. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200808005.htm
[14] Yan J, Liu H Q, Song C Z, et al. Zircon U-Pb geochronology of the volcanic rocks from Fanchang-Ningwu volcanic basins in the Lower Yangtze region and its geological implications[J]. Chinese Science Bulletin, 2009, 54(16): 2895-2904. http://engine.scichina.com/publisher/scp/journal/Sci%20Bull%20Chin/54/16/10.1007/s11434-009-0110-x
[15] Li H, Zhang H, Ling M X, et al. Geochemical and zircon U-Pb study of the Huangmeijian A-type granite: implications for geological evolution of the Lower Yangtze River belt[J]. International Geology Review, 2011, 53(5/6): 499-525. https://www.researchgate.net/profile/Ming-Xing_Ling/publication/233143395_Geochemical_and_zircon_U-Pb_study_of_the_Huangmeijian_A-type_granite_Implications_for_geological_evolution_of_the_Lower_Yangtze_River_belt/links/02e7e52c634585302d000000.pdf
[16] Xie G Q, Mao J W, Zhao H J. Zircon U-Pb geochronological and Hf isotopic constraints on petrogenesis of Late Mesozoic intrusions in the southeast Hubei Province, Middle-Lower Yangtze River belt (MLYRB), East China[J]. Lithos, 2011, 125(1/2): 693-710. http://www.oalib.com/references/15786799
[17] Chen J F, Yan J, Xie Z, et al. Nd and Sr isotopic compositions of igneous rocks from the Lower Yangtze region in eastern China: constraints on sources[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(9/10): 719-731. https://www.researchgate.net/publication/223628007_Nd_and_Sr_isotopic_compositions_of_igneous_rocks_from_the_Lower_Yangtze_Region_in_Eastern_China_Constraints_on_Sources
[18] 曹毅,杜杨松,蔡春麟,等. 安徽庐枞地区中生代A型花岗岩类及其岩石包体:在碰撞后岩浆演化过程中的意义[J]. 高校地质学报, 2008, 14(4):565-576. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200804012.htm
[19] 杜杨松,秦新龙,李铉具. 安徽铜陵地区中生代幔源岩浆底侵作用——来自矿物巨晶和岩石包体的证据[J]. 岩石矿物学杂志, 2004, 23(2):109-116. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200402001.htm
[20] 闫峻,彭戈,刘建敏, 等. 下扬子繁昌地区花岗岩成因:锆石年代学和Hf-O同位素制约[J]. 岩石学报, 2012, 28(10):3209-3227. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201210014.htm
[21] Li X H, Li Z X, Li W X, et al. Revisiting the"C-type adakites"of the Lower Yangtze River Belt, central eastern China: In-situ zircon Hf-O isotope and geochemical constraints[J]. Chemical Geology, 2013, 345: 1-15. doi: 10.1016/j.chemgeo.2013.02.024
[22] 邵济安,杨进辉. 记载了早中生代壳幔演化的赤峰-凌源地质走廊[J]. 岩石学报, 2011, 12: 3525-3534. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201112003.htm
[23] Xie G Q, Mao J W, Zhao H J, et al. Zircon U-Pb and phlogopite 40Ar-39Ar age of the Chengchao and Jinshandian skarn Fe deposits, southeast Hubei Province, Middle-Lower Yangtze River Valley metallogenic belt, China[J]. Mineralium Deposita, 2012, 47(6):633-652. doi: 10.1007/s00126-011-0367-2
[24] Cao Y, Du Y S, Gao F P, et al. Origin and evolution of hydrothermal fluids in the Taochong iron deposit, Middle-Lower Yangtze Valley,Eastern China:Evidence from microthermometric and stable isotope analyses of fluid inclusions[J]. Ore Geology Reviews, 2012, 48: 225-238. doi: 10.1016/j.oregeorev.2012.03.009
[25] Song G X, Qin K Z, Li G M, et al. Geochronologic and isotope geochemical constraints on magmatism and associated W-Mo mineralization of the Jitoushan W-Mo deposit, middle-lower Yangtze Valley[J]. International Geology Review, 2012, 54(13): 1532-1547. doi: 10.1080/00206814.2011.646806
[26] Song G X, Qin K Z, Li G M, et al. Geochronology and Ore-Forming Fluids of the Baizhangyan W-Mo Deposit in the Chizhou Area, Middle-Lower Yangtze Valley, SEChina[J]. Resource Geology, 2013, 63(1): 57-71. doi: 10.1111/rge.2013.63.issue-1
[27] 邢凤鸣,徐祥. 安徽两条A型花岗岩带[J]. 岩石学报, 1994, 10(4): 357-369. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199404001.htm
[28] Gao S, Yang J, Zhou L, et al. Age and growth of the Archean Kongling terrain, south China, with emphasis on 3.3Ga granitoid gneisses[J]. American Journal of Science, 2011, 311(2): 153-182. doi: 10.2475/02.2011.03
[29] Grimmer J C, Ratschbacher L, McWilliams M, et al. When did the ultrahigh-pressure rocks reach the surface? A 207Pb /206Pb zircon, 40Ar /39Ar white mica,Si-in-white mica, single-grain provenance study of Dabie Shan synorogenic foreland sediments[J]. Chemical Geology, 2003,197(1): 87-110. https://www.researchgate.net/publication/309360777_The_provenance_and_tectonic_setting_of_the_Lower_Devonian_sandstone_of_the_Danlin_Formation_in_southeast_Yangtze_Plate_with_implications_for_the_Wuyi-Yunkai_orogeny_in_South_China_Block
[30] Zhao Y M, Zhang Y A, Bi C S. Geology of gold-bearing skarn deposits in the middle and lower Yangtze River Valley and adjacent regions[J]. Ore Geology Reviews, 1999, 14(3/4): 227-249. https://www.researchgate.net/publication/238365182_Geology_of_gold-bearing_skarn_deposits_in_the_middle_and_lower_Yangtze_River_Valley_and_adjacent_regions
[31] 袁峰,周涛发,范裕,等. 安徽繁昌盆地中生代火山岩锆石LAICPMS U-Pb年龄及其意义[J]. 岩石学报,2010, 26(9):2805-2817. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201009024.htm
[32] 刘春,闫峻,宋传中,等.长江中下游繁昌盆地火山岩年代学和地球化学:岩石成因和地质意义[J]. 岩石学报, 2012, 28(10):3228-3240. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201210015.htm
[33] 谢烈文,张艳斌,张辉煌,等. 锆石/斜锆石U-Pb和Lu-Hf同位素以及微量元素成分的同时原位测定[J]. 科学通报, 2008, 53(2): 220-228. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200802015.htm
[34] Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79.
[35] Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370. doi: 10.1111/ggr.2004.28.issue-3
[36] Yuan H L, Gao S, Dai M M, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICPMS[ J]. Chemical Geology, 2008, 247(1/2): 100-118. https://www.researchgate.net/profile/Chunrong_Diwu2/publication/223195915_Simultaneous_determinations_of_U-Pb_age_Hf_isotopes_and_trace_element_compositions_of_zircon_by_excimer_laser-ablation_quadrupole_and_multiple-collector_ICP-MS/links/544473930cf2e6f0c0fba2fa.pdf
[37] Hawkesworth C J, Kemp A I S. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution[J]. Chemical Geology, 2006, 226(3/4): 144-162. https://www.researchgate.net/profile/C_Hawkesworth/publication/222428341_Using_hafnium_and_oxygen_isotopes_in_zircons_to_unravel_the_record_of_crustal_evolution/links/0c960528a5ec81881f000000.pdf?origin=publication_detail
[38] Woodhead J D, Hergt J M. A Preliminary Appraisal of Seven Natural Zircon Reference Materials for In Situ Hf Isotope Determination[J]. Geostandards and Geoanalytical Research, 2005, 29(2):183-195. doi: 10.1111/ggr.2005.29.issue-2
[39] Griffin W L, Pearson N J, Belousova E A, et al. Comment: Hf-isotope heterogeneity in zircon 91500[J]. Chemical Geology, 2006, 233(3/4): 358-363. https://www.researchgate.net/publication/248360429_Comment_Hf-isotope_heterogeneity_in_zircon_91500
[40] Wu F Y, Yang Y H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology, 2006, 234(1/2): 105-126. https://www.researchgate.net/profile/Jin-Hui_Yang/publication/248360430_Hf_isotopic_compositions_of_the_standard_zircons_and_baddeleyites_used_in_U-Pb_geochronology/links/02e7e528c5604e8c14000000.pdf
[41] Soderlund U, Patchett P J, Vervoort J D, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219(3/4): 311-324.
[42] Blichert-Toft J, Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997,148(1/2): 243-258. https://www.researchgate.net/publication/286734600_The_Lu-Hf_isotope_geochemistry_of_chondrites_and_the_evolution_of_the_mantle-crust_system
[43] Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICP MS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9
[44] Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma genesis, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3/4): 237-269. https://www.researchgate.net/publication/223813483_Zircon_chemistry_and_magma_mixing_SE_China_In-situ_analysis_of_Hf_isotopes_Tonglu_and_Pingtan_igneous_complexes
[45] Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202
[46] Turner S P, Foden J D, Morrison R S. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia[J]. Lithos, 1992, 28(2): 151-179. doi: 10.1016/0024-4937(92)90029-X
[47] Thompson R N. Magmatism of the British Tertiary Volcanic Province. Scottish Journal of Geology, 1982, 18: 59-107.
[48] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, Special Publication, London, 1989,42: 313-345.
[49] Hoskin P W O, Schaltegger U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):27-62. doi: 10.2113/0530027
[50] Wu Y B, Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(15): 1554-1569. doi: 10.1007/BF03184122
[51] 吴福元,李献华,郑永飞, 等. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 2007, 23(2):185-220. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
[52] 邢凤鸣,徐祥.安徽扬子岩浆岩带与成矿[M]. 合肥:安徽人民出版社, 1999: 1-170.
[53] Guo C L, Chen Y C, Zeng Z L, et al. Petrogenesis of the Xihuashan granites in southeastern China: Constraints from geochemistry and in-situ analyses of zircon U-Pb-Hf-O isotopes[J]. Lithos, 2012, 148: 209-227. doi: 10.1016/j.lithos.2012.06.014
[54] 任启江,刘孝善,徐兆文,等. 安徽庐枞中生代火山构造洼地及其成矿作用[M]. 北京:地质出版社, 1991: 1-206.
[55] Bonin B. A-type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97(1/2): 1-29.
[56] Clemens J D, Stevens G. What controls chemical variation in granitic magmas?[J]. Lithos, 2012, 134/135: 317-329. doi: 10.1016/j.lithos.2012.01.001
[57] 翟建平.大龙山岩体和城山岩体的铅同位素组成特征及其成因探讨[J]. 铀矿地质, 1987, 3(2):73-80. http://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ198702001.htm
[58] 翟建平. 昆山、城山和大龙山岩体的锶同位素特征及其成因研究[J]. 地球化学, 1989, 3:202-209. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198903001.htm
[59] 吴才来,周珣若,黄许陈, 等. 安徽茅坦A型花岗岩研究[J]. 地质学报, 1998, 72(3):237-248. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199803004.htm
[60] 张旗,潘国强,李承东,等. 花岗岩混合问题:与玄武岩对比的启示——关于花岗岩研究的思考之一[J]. 岩石学报, 2007, 23(5): 1141-1152. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705027.htm
[61] 张旗,潘国强,李承东,等.花岗岩结晶分离作用问题——关于花岗岩研究的思考之二[J]. 岩石学报, 2007, 23(6):1239-1251. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200706001.htm
[62] Zhang S B, Zheng Y F, Wu Y B, et al. Zircon isotope evidence for ≥3. 5Ga continental crust in the Yangtze craton of China[J]. Precambrian Research, 2006, 146(1/2): 16-34. https://www.researchgate.net/profile/Yong-Fei_Zheng/publication/248450700_Zircon_isotope_evidence_for_35Ga_continental_crust_in_the_Yangtze_Craton_of_China/links/00b4952cbb5f026e05000000.pdf?origin=publication_list
[63] 张少兵,贺强,郑永飞. 扬子陆块董岭杂岩与华南前寒武纪地壳演化[C]//2011年全国岩石学与地球动力学研讨会摘要集, 2011: 286.
[64] Tang H Y, Zheng J P, Griffin W L, et al. Complex Precambrian crustal evolution beneath the northeastern Yangtze Craton reflected by zircons from Mesozoic volcanic rocks of the Fanchang basin, Anhui Province[J]. Precambrian Research, 2012, 220/221: 91-106. doi: 10.1016/j.precamres.2012.07.005
[65] 胡劲平,蒋少涌.宁芜盆地浅成侵入岩的锆石U-Pb年代学和Hf同位素研究及其地质意义[J]. 高校地质学报, 2010, 16(3):294-308. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201003004.htm
[66] 侯可军,袁顺达. 宁芜盆地火山-次火山岩的锆石U-Pb年龄、Hf同位素组成及其地质意义[J]. 岩石学报,2010, 26(3):888-902. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201003020.htm
[67] Chappell B W. Magma Mixing and the Production of Compositional Variation within Granite Suites: Evidence from the Granites of Southeastern Australia[J]. Journal of Petrology, 1996, 37(3): 449-470. doi: 10.1093/petrology/37.3.449
[68] Chappell B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J].Lithos, 1999, 46(3): 535-551. doi: 10.1016/S0024-4937(98)00086-3
[69] Huang W L, Wyllie P J. Phase relationships of gabbro-tonalitegranite-water at 15 kbar with applications to differentiation and anatexis[J]. American Mineralogist, 1986, 71: 301-316. http://rruff.info/doclib/am/vol71/AM71_301.pdf
[70] Gill R. Igneous Rocks and Processes: a practical guide[M]. Chichester: Wiley-Blackwell, A John Wiley & Sons, Ltd., Publication, 2010: 1-421.
[71] Raith J G. Petrogenesis of the Concordia granite gneiss and its relation to W-Mo mineralization in western Namaqualand,South Africa[J]. Precambrian Research, 1995, 70(3/4): 303-335. http://www.ingentaconnect.com/content/els/03019268/1995/00000070/00000003/art00049
[72] Wu F Y, Jahn B M, Wilde S A, et al. Highly fractionated I-type granites in NE China ( Ⅰ) : Geochronology and petrogenesis[J]. Lithos, 2003, 66(3/4) : 241-273. http://www.academia.edu/13669525/Highly_fractionated_I-type_granites_in_NE_China_I_geochronology_and_petrogenesis
[73] Lü Q T, Hou Z Q, Zhao J H, et al. Deep seismic reflection profiling reveals complex crustal structure of Tongling ore district[J]. Science in China Series D: Earth Sciences, 2004, 47(3): 193-200. doi: 10.1360/02YD0277
[74] Wu G G, Zhang D, Di Y J, et al. SHRIMP zircon U-Pb dating of the intrusives in the Tongling metallogenic cluster and its dynamic setting[J]. Science in China: Earth Sciences, 2008, 51(7): 911-928. doi: 10.1007/s11430-008-0067-7
[75] 吕庆田,侯增谦,赵金花,等. 深地震反射剖面揭示的铜陵矿集区复杂地壳结构形态[J]. 中国科学(D辑),2003, 5:442-449. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200305005.htm
[76] 秦新龙.安徽铜陵中生代侵入岩及其岩石包体中硫化物-金属氧化物包裹体研究[D]. 中国地质大学(北京)博士学位论文, 2007: 1-205.
[77] Ames L, Tilton G R, Zhou G Z. Timing of collision of the Sino-Korean and Yangtze cratons: U-Pb zircon dating of coesite-bearing eclogites[J]. Geology, 1993, 21(4): 339-342. doi: 10.1130/0091-7613(1993)021<0339:TOCOTS>2.3.CO;2
[78] Zheng Y F, Fu B, Gong B, et al. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime[J]. Earth-Science Reviews, 2003, 62(1/2): 105-161. https://www.researchgate.net/profile/Long_Li10/publication/223673324_Stable_isotope_geochemistry_of_ultrahigh_pressure_metamorphic_rocks_from_the_Dabie-Sulu_orogen_in_China_Implications_for_geodynamics_and_fluid_regime/links/0deec5254230e4dad5000000.pdf?origin=publication_list
[79] Li S G, Yang W. Decoupling of surface and subsurface sutures in the Dabie orogen and a continent-collisional lithospheric-wedging model: Sr-Nd-Pb isotopic evidences of Mesozoic igneous rocks in eastern China[J]. Chinese Science Bulletin, 2003, 48(8): 831-838. doi: 10.1007/BF03187062
[80] 邓晋福,叶德隆,赵海玲.下扬子地区火山作用深部过程与盆地形成[M]. 武汉:中国地质大学出版社, 1992: 1-184.
[81] 任纪舜,牛宝贵,和政军.中国东部的构造格局和动力演化. 中国东部岩石圈结构与构造岩浆演化[M]. 北京:原子能出版社, 1998: 1-12.
[82] Wang Q, Wyman D A, Xu J F, et al. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization[J]. Lithos, 2006, 89(3/4): 424-446. https://www.researchgate.net/publication/222896146_Petrogenesis_of_Cretaceous_adakitic_and_shoshonitic_igneous_rocks_in_the_Luzong_area_Anhui_Province_eastern_China_Implications_for_geodynamics_and_Cu-Au_mineralization
[83] Yang X N, Xu Z W, Lu X C, et al. Porphyry and skarn Au-Cu deposits in the Shizishan orefield, Tongling, East China: U-Pb dating and in-situ Hf isotope analysis of zircons and petrogenesis of associated granitoids[J]. Ore Geology Reviews, 2011, 43(1): 182-193. doi: 10.1016/j.oregeorev.2010.09.003
[84] Zhou T F, Fan Y, Yuan F. Advances on petrogensis and metallogeny study of the mineralizaon belt of the Middle and Lower Reaches of theYangtze River area[J]. Acta Petrologica Sinica, 2008, 24(8): 1665-1678. https://www.researchgate.net/publication/282281037_Advances_on_petrogensis_and_metallogeny_study_of_the_mineralization_belt_of_the_Middle_and_Lower_Reaches_of_the_Yangtze_River_area
[85] Zhou T F, Fan Y, Yuan F, et al. Geochronology of the volcanic rocks in the Lu-Zong basin and its significance[J]. Science in China Series D: Earth Sciences, 2008, 51(10): 1470-1482. doi: 10.1007/s11430-008-0111-7
[86] Eby G N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology, 1992, 20: 641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2