LA-ICP-MS zircon U-Pb ages of the granites from Mashan of Inner Mongolia and their geological significances
-
摘要:
对内蒙古北山南带东段的马山花岗岩体进行了LA-ICP-MS 锆石U-Pb 年代学和岩石地球化学研究,结果表明,马山花岗岩以花岗闪长岩为主,偏铝质-过铝质,中钾钙碱性特征,具有较高的SiO2(64.85%~79.17%)、Na2O+K2O(5.13%~6.62%),富钠(Na2O/K2O>1);在球粒陨石标准化配分模式图上,配分曲线相对平缓,富集轻稀土元素,重稀土元素分馏不明显且相对亏损,δEu=0.65~0.91,具有弱Eu 负异常;在微量元素原始地幔标准化蛛网图上,亏损Ba、Nb、Ta、P、Ti,富集Rb、Th、U、K。通过LA-ICP-MS 锆石U-Pb 测年,马山花岗岩体的侵位年龄为281.8±3.2Ma。结合区域地质背景,认为马山花岗岩体是壳幔混合成因的,形成于早二叠世后碰撞伸展体制之下,北山南带于早二叠世晚期进入后碰撞裂谷伸展发育阶段。
Abstract:This paper reports LA-ICP-MS zircon U-Pb ages and geochemistry of the granite in Mashan, east of the southern Beishan, Inner Mongolia, with the purpose of constraining its formation age and petrogenesis. The results show that the granitic body mainly consists of granodiorite which belongs to middle-K calc-alkaline series with metaluminous-peraluminous characteristics and high content of SiO2(64.85%~79.17%), Na2O+K2O (5.13%~6.62%) and Na2O/K2O>1. In addition, the granite invariably exhibits relatively gentle light rare earth elements (LREE) enrichment with flat heavy rare earth element (HREE) and weak negative Eu anomalies (δEu=0.65~0.91) in the chondrite-normalized REE patterns, depletion of Ba, Nb, Ta, P, Ti and enrichment of Rb, Th, U, K in the spidergram. The LA-ICP-MS zircon U-Pb age of the granite is 281.8±3.2Ma. Based on regional geology, the above characteristics indicate that the Mashan granite was the mixing product of crustal and mantle derived magmas and was formed under the tectonic setting of post-collisional extension in Early Permian. This implies that the east of southern Beishan Mountain turned to the stage of rift in post-collisional extensional period during Early Permian.
-
图 1 马山二长花岗岩体地质简图及大地构造位置图(b 据参考文献[30]修改)
Figure 1.
图 5 SiO2-(Na2O +K2O)图解(底图据参考文献[37])
Figure 5.
图 6 A/CNK-A/NK 图解(底图据参考文献[38])
Figure 6.
图 7 SiO2-K2O 图解(底图据参考文献[39])
Figure 7.
图 8 K2O-Na2O 图解(底图据参考文献[40])
Figure 8.
图 9 稀土元素球粒陨石标准化图解(a, 标准化值据参考文献[41])和微量元素
Figure 9.
图 10 马山花岗岩体大洋中脊标准化图解(标准化值据参考文献[42])
Figure 10.
表 1 马山花岗岩体LA-ICP-MS 锆石(TW01) U-Th-Pb 同位素数据
Table 1. LA-ICP-MS zircon U-Th-Pb dating data of granite from Mashan(TW01)
分析点 含量/10-6 232Th/238U 207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U 232Th 238U 比值 1σ 比值 1σ 年龄/Ma 1σ 年龄/Ma 1σ TW01-1 280.96 449.94 0.62 9.3972 0.2158 0.4182 0.0092 2377.6 21.07 2252.3 41.73 TW01-2 523.95 1099.59 0.48 0.3621 0.0089 0.0437 0.0010 313.8 6.64 275.4 5.97 TW01-3 375.06 699.75 0.54 0.3941 0.0100 0.0456 0.0010 337.4 7.29 287.1 6.31 TW01-4 594.83 576.85 1.03 0.8243 0.0212 0.0526 0.0012 610.4 11.79 330.4 7.55 TW01-5 349.29 359.94 0.97 0.3703 0.0110 0.0431 0.0010 319.9 8.13 272 6.38 TW01-6 92.39 154.58 0.60 0.4218 0.0152 0.0456 0.0012 357.3 10.86 287.3 7.47 TW01-7 401.97 1310.93 0.31 0.3223 0.0078 0.0438 0.0010 283.7 6.01 276.4 5.96 TW01-8 191.06 372.5 0.51 0.3463 0.0101 0.0438 0.0010 301.9 7.58 276.3 6.38 TW01-9 292.29 294.14 0.99 0.3421 0.0102 0.0444 0.0011 298.8 7.73 280 6.53 TW01-10 99.79 354.71 0.28 0.3287 0.0093 0.0409 0.0010 288.5 7.14 258.4 5.96 TW01-11 408.08 804.03 0.51 0.3764 0.0095 0.0436 0.0010 324.4 7.02 275 6.06 TW01-12 49.69 106.02 0.47 0.4079 0.0170 0.0409 0.0012 347.4 12.27 258.2 7.6 TW01-13 133.16 156.37 0.85 0.4344 0.0141 0.0433 0.0011 366.3 10 273 6.93 TW01-14 81.57 213.17 0.38 0.5080 0.0149 0.0603 0.0015 417.1 10.03 377.7 8.81 TW01-15 291.58 308.2 0.95 0.3552 0.0104 0.0437 0.0010 308.6 7.79 275.7 6.45 TW01-16 252.32 605.27 0.42 0.3590 0.0094 0.0429 0.0010 311.5 7 270.7 6.04 TW01-17 660.33 1444.13 0.46 0.4373 0.0104 0.0461 0.0010 368.4 7.36 290.5 6.29 TW01-18 216.72 353.49 0.61 0.4315 0.0124 0.0451 0.0011 364.2 8.77 284.6 6.69 TW01-19 477.93 938.69 0.51 0.3581 0.0090 0.0457 0.0010 310.8 6.72 287.9 6.32 TW01-20 212.5 325.28 0.65 0.3001 0.0098 0.0413 0.0010 266.4 7.68 260.8 6.33 TW01-21 108.44 260.92 0.42 0.3980 0.0129 0.0456 0.0012 340.2 9.38 287.2 7.13 TW01-22 158.92 169.8 0.94 0.4177 0.0160 0.0467 0.0013 354.4 11.43 294 8.04 TW01-23 372.22 946.18 0.39 0.3493 0.0087 0.0449 0.0010 304.2 6.53 283.2 6.21 TW01-24 315.24 351.81 0.90 0.4617 0.0139 0.0457 0.0011 385.5 9.65 288.2 7.02 TW01-25 261.36 418.89 0.62 0.3418 0.0098 0.0458 0.0011 298.6 7.41 288.6 6.66 TW01-26 157.57 259.58 0.61 0.3533 0.0108 0.0458 0.0011 307.2 8.13 288.7 6.87 TW01-27 157.3 231.78 0.68 0.3569 0.0112 0.0456 0.0011 309.9 8.4 287.7 6.93 TW01-28 77.52 182.09 0.43 4.3637 0.1037 0.2902 0.0066 1705.5 19.64 1642.3 32.72 表 2 马山花岗岩体主量、微量和稀土元素分析结果
Table 2. Analytical data of major, trace, and rare earth elements of granite from Mashan
样品号
岩石名称P1/GS1
花岗质碎裂岩P1/GS3
花岗质碎岩P13/GS3
中粗粒花岗闪长岩P13/GS5
中粗粒花岗闪长岩P16/GS1、XT1
黑云母花岗闪长岩P16/GS2、XT2
黑云母花岗闪长岩SiO2 65.48 68.06 69.75 69.21 64.85 66.77 Al2O3 15.00 13.55 14.09 14.33 15.30 15.49 Fe2O3 1.40 1.13 1.95 2.08 3.41 3.01 FeO 3.44 3.02 1.68 1.75 2.22 1.88 TiO2 0.76 0.62 0.41 0.43 0.56 0.53 MgO 2.55 2.05 1.36 1.20 1.78 1.62 CaO 3.92 2.93 3.15 3.57 3.48 3.25 P2O5 0.16 0.16 0.07 0.09 0.12 0.12 K2O 1.90 2.71 2.40 2.29 2.21 1.90 MnO 0.09 0.07 0.07 0.08 0.08 0.07 Na2O 3.23 2.66 3.74 3.67 4.05 4.72 烧失量 1.55 3.72 0.82 0.54 1.60 1.29 总量 99.46 100.69 99.49 99.23 99.66 100.65 A/CNK 1.04 1.07 0.97 0.96 0.99 0.99 NK/A 0.49 0.54 0.62 0.59 0.59 0.63 σ 1.17 1.15 1.41 1.35 1.79 1.84 Rb 88.84 114.35 75.02 170.00 47.34 48.32 Ba 430.78 435.03 370.10 481.29 109.25 283.55 Th 12.55 13.66 8.49 17.14 6.92 4.94 U 2.10 1.30 1.44 3.79 1.68 1.40 Nb 13.36 11.54 5.78 12.36 5.75 4.42 Ta 1.18 1.20 0.62 1.28 0.64 0.49 Sr 255.42 139.70 209.88 195.36 291.65 226.93 Zr 143.82 72.81 127.41 374.10 196.08 185.01 V 101.52 64.53 71.65 23.01 78.67 64.00 Cr 54.31 43.16 22.04 21.90 18.38 22.06 Co 13.38 6.74 6.29 1.34 10.11 7.72 Cu 15.99 16.80 7.21 3.16 22.49 17.54 Zn 76.13 53.91 33.03 41.80 47.13 39.88 Ga 18.83 16.43 15.27 16.56 14.36 13.37 La 18.00 18.59 15.70 12.85 14.47 13.48 Ce 24.17 31.86 31.06 19.91 37.94 34.31 Pr 5.07 4.90 3.65 3.23 4.69 3.94 Nd 19.47 18.51 14.39 12.23 18.34 15.69 Sm 4.14 4.16 3.01 2.83 3.94 3.60 Eu 1.08 0.85 0.86 0.74 0.91 0.90 Gd 3.76 3.84 2.77 2.56 3.31 3.16 Tb 0.74 0.81 0.55 0.48 0.60 0.59 Dy 4.40 4.95 3.57 3.00 3.52 3.57 Ho 0.88 1.00 0.81 0.66 0.75 0.76 Er 2.80 3.34 2.57 2.21 2.08 2.10 Tm 0.40 0.55 0.37 0.34 0.34 0.33 Yb 2.49 3.19 2.70 2.06 2.29 2.28 Lu 0.40 0.45 0.38 0.33 0.36 0.36 Y 23.71 28.29 20.30 17.14 19.75 20.25 REE 111.51 125.29 102.69 80.57 113.29 105.31 LREE 71.93 78.87 68.67 51.79 80.29 71.91 HREE 39.58 46.42 34.02 28.78 33.00 33.39 LREE/HREE 1.82 1.70 2.02 1.80 2.43 2.15 (La/Yb)N 5.19 4.18 4.17 4.47 4.54 4.25 (La/Sm)N 2.81 2.88 3.37 2.93 2.37 2.42 (Gd/Yb)N 1.25 1.00 0.85 1.03 1.20 1.15 δEu 0.84 0.65 0.91 0.84 0.77 0.82 注:元素由中国冶金地质总局西北地质勘查院测试中心测定;δEu=EuN/SQRT(SmN∗GdN);主量元素含量单位为%,微量和稀土元素为10-6 -
[1] 聂凤军,江思宏,白大明, 等.北山地区金属矿床成矿规律及找矿方向[M].北京:地质出版社, 2002:1-408.
[2] 刘雪亚.甘肃北山区的钙碱系列岩浆活动及其与板块构造的关系[J].中国地质科学院院报, 1984,10:151-163. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB198403014.htm
[3] 左国朝,何国琦.北山板块构造及成矿规律[M].北京:北京大学出版社, 1990:1-226
[4] 穆志国,刘驰,黄宝玲,等.甘肃北山地区同位素定年与构造岩浆热事件[J].北京大学学报(自然科学版),1992,28(4):486-497. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ199204015.htm
[5] 穆志国,左国朝.甘肃北山古生代造山带地壳演化的同位素和稀土元素地球化学特征[J]. 北京大学学报(自然科学版), 1994,30(2): 202-214. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ402.012.htm
[6] 孙桂英,张德全,徐洪林.格尔木-额济纳旗地学断面走廊域花岗岩类的地球化学特征与构造环境的判别[J].地球物理学报, 1995,38(s2):145-158. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX5S2.012.htm
[7] 于海峰, 陆松年, 梅华林, 等. 中国西部新元古代榴辉岩-花岗岩带和深层次韧性剪切带特征及其大陆再造意义[J].岩石学报, 1999,15(4): 532-328. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199904004.htm
[8] 修勤业.甘肃北山地区花岗岩类地球化学特征及大地构造意义[J]. 前寒武纪研究进展, 1999,22(1):31-39. http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ199901003.htm
[9] 梅华林,李惠民.甘肃柳园地区花岗质岩石时代及成因[J].岩石矿物学杂志,1999,18(1):14-17. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW901.002.htm
[10] 徐保良,阎国翰, 陆凤香,等.北山-阿拉善地区二叠-三叠纪富碱侵入岩的岩石学特征[J]. 岩石矿物学杂志, 2001,20(3):263-272. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200103007.htm
[11] 聂凤军,江思宏,刘妍,等.甘肃花牛山东钾长花岗岩40Ar/39Ar同位素年龄及其地质意义[J].地质科学, 2002,37(4):415-422.
[12] 聂凤军,江思宏,白大明,等.北山中南带海西-印支期岩浆活动与金的成矿作用[J].地球学报, 2003,24(5):415-422. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200305003.htm
[13] 江思宏,聂凤军,陈文,等.北山明水地区花岗岩时代的确定及其地质意义[J].岩石矿物学杂志, 2003,22(2):107-111. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200302000.htm
[14] 江思宏,聂凤军,陈文,等.甘肃辉铜山铜矿床燕山期钾长花岗岩的发现及其地质意义[J].矿床地质, 2003,22(2):185-190. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200302009.htm
[15] 江思宏,聂凤军.北山地区花岗岩类成因的Nd同位素制约[J].地质学报, 2006,80(6):826-842. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200606005.htm
[16] 江思宏,聂凤军.北山地区花岗岩类的40Ar/39Ar同位素年代学研究[J].岩石学报, 2006,22(11):2719-2732.
[17] 戴霜,方小敏,张翔,等.北山中部地区闪长岩-花岗岩类成因及构造背景[J].兰州大学学报(自然科学版), 2003,39(1):86-92. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK200301018.htm
[18] 赵泽辉,郭召杰,王毅.甘肃北山柳园地区花岗岩类的年代学、地球化学特征及构造意义[J].岩石学报, 2007,23(8):1847-1860. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200708006.htm
[19] 王立社,杨建国,谢春林,等.甘肃北山火石山哈儿根头口布花岗岩年代学、地球化学及其地质意义[J].地质学报, 2009,83(3):377-387. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200903008.htm
[20] 江思宏.北山地区岩浆活动与金的成矿作用[D]. 中国地质科学院博士学位论文, 2004:1-175.
[21] 童英,王涛,洪大卫,等.北疆及邻区石炭-二叠纪花岗岩时空分布特征及其构造意义[J].岩石矿物学杂志,2010,29(6):619-641. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201006003.htm
[22] 冯继承,张文,吴泰然,等.甘肃北山桥湾北花岗岩体的年代学、地球化学及其地质意义[J].北京大学学报(自然科学版),2012,48(1): 61-70. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201201011.htm
[23] 张文,冯继承,郑荣国,等.甘肃北山音凹峡南花岗岩体的LA-ICP MS定年及其构造意义[J].岩石学报,2011,27(6):1649-1661. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106007.htm
[24] 朱江.北山造山带南带构造-岩浆建造与金多金属成矿[D]. 中国地质大学博士学位论文,2013:1-197.
[25] 陕亮,许荣科,郑有业,等.北山地区白山堂铜多金属矿区岩浆岩锆石LA-ICP MS U-Pb年代学及其地质意义[J].中国地质,2013,40(5):1600-1612. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201305023.htm
[26] 张新虎,苏犁,崔学军,等.甘肃北山造山带玉山钨矿成岩成矿时代及成矿机制[J].科学通报,2008,53(9):1077-1084. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200809017.htm
[27] 王银茹,黄满湘,赵亮,等.玉山钨矿岩石学特征及成矿关系[J].新疆地质,2011,29(2):217-221. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201102021.htm
[28] 赵亮.甘肃金塔县玉山钨矿成矿规律及成矿预测研究[D]. 中南大学硕士学位论文,2010: 1-65.
[29] 龚全胜,刘明强,梁明宏,等.甘肃北山造山类型及基本特征[J]. 西北地质,2002,35(3):28-34. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200203003.htm
[30] 何世平,任秉琛,姚文光,等.甘肃内蒙古北山地区构造单元划分[J]. 西北地质,2002,35(4):30-40. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200204003.htm
[31] 刘雪亚,王荃.中国西部北山造山带的大地构造及其演化[J].地学研究, 1995,28:37-48.
[32] 张新虎.甘、青、蒙祁连山、北山造山带构造地层演化史[J],甘肃地质学报,1993,2(1): 80-86. http://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ199301009.htm
[33] Horn L, Rudnick R L, Mcdonough W F. Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICPMS: Application to U-Pb geochronology[J]. Chemical Geology, 2000, 167:405-425. doi: 10.1016/S0009-2541(00)00229-1
[34] Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3):353-370. doi: 10.1111/ggr.2004.28.issue-3
[35] Stacey J S, Kraners J D. Approximation of terrestrial lead isotope evolution by a two-stage model[J]. Earth and Planetary Science Letters.1975, 26(2):207-221. doi: 10.1016/0012-821X(75)90088-6
[36] Ludwig K R. User′s manual for Isoplot/Ex, version 3.00. A Geochronological Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication, 2003,4:1-70. https://www.researchgate.net/publication/284696948_User's_manual_for_a_geochronological_toolkit_for_Microsoft_Excel_IsoplotEx_version_30
[37] Eric A K, Middelmost.Naming materials in the magma/igneous rock system[J].Earth-Science Reviews,1994,37:215-224. doi: 10.1016/0012-8252(94)90029-9
[38] Maniar P D, Piccoli P M. Tectionic discrimination in of granitoids[J]. Geological Society, Am. Bull.,1989, 1: 635-643.
[39] Rickwood P C. Boundary lines within petrologic diagrams which use oxides for major and minor element[J]. Lithos, 1989,22: 246-263.
[40] 路远发.Geokit:一个用VBA构建的地球化学工具软件包[J].地球化学,2004,33(5):459-464. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200405003.htm
[41] Sun S S, Macdonough W F.Chemical and isotopic systematics of ocean basalts: Implations for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society,London,Special Publications, 1989,42(1):313-345.
[42] Pearce J A, Harris N B L, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of the granitic rocks[J]. Journal of Petrology, 1984,25: 956-983. doi: 10.1093/petrology/25.4.956
[43] 张旗,王焰,李承东,等.花岗岩按照压力的分类[J],地质通报,2006, 25(11):1274-1278. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=2006011236&journal_id=gbc
[44] 李锦轶,张进,杨天南,等.北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J].吉林大学学报, 2009,39(4):584-605. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904002.htm
[45] 龚全胜,刘明强,梁明宏,等.北山造山带大地构造相及构造演化[J]. 西北地质, 2003,36(1):11-17. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200301002.htm
[46] 何世平,周会武,任秉琛,等.甘肃内蒙古北山地区古生代地壳演化[J].西北地质, 2005,38(3):6-15. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200503001.htm
[47] 毛启贵.北山及邻区古生代-早古生代增生与碰撞大地构造格架[D].中国科学院地质与地球物理研究所博士学位论文,2008.
[48] 肖文交,舒良树,高俊,等.中亚造山带大陆动力学过程与成矿作用[J].新疆地质,2008,23:599-603. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200801005.htm
[49] Xiao W J, Windley B F, Huang B C, et al. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J]. American Journal of Science, 2010, 310:1553-1594. doi: 10.2475/10.2010.12
[50] Guo Q Q, Xiao W J, Brian F, et al. Provenance and tectonic settings of Permian turbidites from the Beishan mountains, NW China: Implications for the Late Paleozoic accretionary tectonics of the southern Altaids[J]. Journal of the Asian Earth Sciences,2012,49:54-68. doi: 10.1016/j.jseaes.2011.03.013
[51] 姜常义,程松林,叶书锋,等.新疆北山地区中坡山北镁铁质岩体岩石地球化学与岩石成因[J].岩石学报, 2006,22(1):115-126 http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200601012.htm
[52] 赵泽辉,郭召杰,韩宝福,等.新疆东部-甘肃北山地区二叠纪玄武岩对比研究及其构造意义[J].岩石学报, 2006,22(5):1279-1293. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605019.htm
[53] 刘明强,龚全胜,梁明宏.甘肃北山地区音凹峡多旋回裂谷带[J].甘肃地质学报, 1999,8(2):15-22. http://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ199902002.htm
[54] 吴泰然.花岗岩及其形成的大地构造环境[J].北京大学学报(自然科学版), 1995,31(3):358-365. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ503.012.htm