Petrogeochemistry and zircon U-Pb chronology of the Yangzong rhyolite porphyry along Ailao Mountain tectonic belt
-
摘要:
对云南绿春县仰宗流纹斑岩进行了锆石U-Pb年龄、岩石地球化学分析。LA-ICP-MS锆石U-Pb测年显示,仰宗流纹斑岩年龄为263.1±2.3Ma,形成于晚二叠世。岩石地球化学分析显示,仰宗流纹斑岩SiO2含量为71.08%~80.26%,全碱(Na2O+K2O)含量为4.67%~8.67%,且Na2O<K2O;岩石轻、重稀土元素存在一定的分馏,负Eu异常明显(δEu=0.05~0.57),相对富集Rb、Th、U、Ni、Cs、Zr、Hf、As、K等元素,亏损Sr、Ta、Ba、Cr、Zn、W等元素。结果显示,仰宗流纹斑岩形成于碰撞期后的陆内构造环境,表明哀牢山构造带的古特提斯支洋或弧后盆地在晚二叠世(263.1±2.3Ma)可能已经闭合。
-
关键词:
- 流纹斑岩 /
- LA-ICP-MS锆石U-Pb年龄 /
- 岩石地球化学 /
- 板内型花岗岩
Abstract:This paper presents bulk petrogeochemistry and zircon U-Pb dating results for the Yangzong rhyolite porphyry in Luchun County, Yunnan Province. LA-ICP-MS zircon U-Pb dating results show that the Yangzong rhyolite porphyry was formed in the Late Permian (263.1±2.3Ma). The Yangzong rhyolite porphyry is characterized by SiO2 content of 71.08%~80.26%, alkali (Na2O+ K2O) 4.67%~8.67%, and Na2O<K2O. It is enriched in LREE and Rb, Th, U, Ni, Cs, Zr, Hf, As, K and depleted in Sr, Ta, Ba, Cr, Zn, W with negative Eu anomalies (δEu=0.05~0.57). According to the diagrams, the Yangzong rhyolit porphyry was formed in the tectonic environment of island arc-continent or continental-arc collision, indicating that the branch of Paleo-Tethys Ocean or arc basin in Ailao Mountain tectonic belt might have been closed in the Late Permian (263.1±2.3Ma).
-
Key words:
- rhyolite porphyry /
- LA-ICP-MS zircon U-Pb ages /
- petrogeochemistry /
- intraplate granite
-
-
图 5 R1-R2图解[19]
Figure 5.
图 6 构造环境图解[20]
Figure 6.
表 1 仰宗流纹斑岩LA-ICP-MS锆石U-Th-Pb同位素测试结果
Table 1. LA-ICP-MS zircon U-Th-Pb analytical results of the Yangzong rhyolite porphyry
测点 含量/10-6 Th/U 207Pb/206Pb 1σ 206Pb/238U 1σ 207Pb/235U 1σ 同位素年龄/Ma Pb Th U 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/206Pb 1σ 1 14 141 317 0.45 0.05343 0.00083 0.04258 0.00040 0.3137 0.0053 268.8 2.5 277.0 4.7 347.2 35.11 2 15 85 378 0.23 0.05102 0.00072 0.04154 0.00036 0.2922 0.0044 262.4 2.3 260.3 3.9 241.8 32.6 3 16 145 381 0.38 0.05156 0.00074 0.04090 0.00034 0.2908 0.0042 258.4 2.2 259.2 3.7 266.2 32.8 4 16 143 371 0.39 0.05768 0.00182 0.04197 0.00044 0.3338 0.0130 265.0 2.8 292.4 11.9 517.7 69.2 5 15 145 354 0.41 0.05051 0.00074 0.04237 0.00038 0.2951 0.0047 267.5 2.4 262.6 4.2 218.7 33.8 6 43 246 1078 0.23 0.05060 0.00027 0.04099 0.00037 0.2860 0.0022 259.0 2.4 255.4 2.0 222.5 12.4 7 25 298 591 0.50 0.05044 0.00060 0.04061 0.00033 0.2824 0.0036 256.6 2.1 252.6 3.2 215.2 27.5 8 17 180 422 0.43 0.04901 0.00074 0.04082 0.00032 0.2759 0.0043 257.9 2.0 247.4 3.9 148.4 35.2 9 14 152 334 0.45 0.05059 0.00083 0.04072 0.00033 0.2840 0.0049 257.3 2.1 253.8 4.4 222.0 38.0 10 15 114 358 0.32 0.05299 0.00089 0.04253 0.00039 0.3107 0.0058 268.5 2.5 274.7 5.1 328.3 37.9 11 12 139 282 0.49 0.05372 0.00128 0.04174 0.00042 0.3092 0.0074 263.6 2.7 273.5 6.5 359.4 53.7 12 14 22 348 0.06 0.05227 0.00081 0.04196 0.00036 0.3024 0.0048 265.0 2.3 268.2 4.3 297.0 35.3 13 19 135 463 0.29 0.05170 0.00067 0.04121 0.00044 0.2938 0.0046 260.4 2.8 261.5 4.1 272.0 29.8 14 9 65 221 0.29 0.05250 0.00115 0.04245 0.00041 0.3073 0.0073 268.0 2.6 272.1 6.5 307.1 50.1 15 21 127 511 0.25 0.05414 0.00056 0.04233 0.00043 0.3160 0.0040 267.2 2.7 278.8 3.5 376.9 23.4 16 20 97 478 0.20 0.05683 0.00062 0.04209 0.00052 0.3298 0.0057 265.8 3.3 289.4 5.0 484.9 24.2 17 14 123 325 0.38 0.05157 0.00073 0.04267 0.00039 0.3034 0.0045 269.3 2.4 269.1 4.0 266.6 32.6 18 12 124 273 0.45 0.05309 0.00086 0.04221 0.00036 0.3090 0.0054 266.5 2.3 273.4 4.7 332.4 36.9 表 2 仰宗流纹斑岩主量、微量和稀土元素分析数据
Table 2. Major, trace elements and REE compositions of the Yangzong rhyolite porphyry
样号 PM2904H2 PM2904H4 PM2904H5 PM3305H1 PM2905H2 PM2907H1 PM2908H3 PM2910H2 PM2911H1 PM2912H1 SiO2 78.12 75.04 75.78 81.88 74.40 70.30 72.04 72.08 70.38 73.94 Al2O3 11.6 13.40 13.95 9.95 11.75 13.45 13.35 13.10 13.25 13.65 Fe2O3 0.10 0.31 0.51 0.02 2.38 2.03 2.39 1.99 2.67 1.44 FeO 0.28 0.52 0.22 0.15 0.60 1.49 0.45 2.53 1.71 0.67 P2O5 0.015 0.015 0.019 0.027 0.039 0.042 0.024 0.05 0.054 0.011 K2O 4.14 4.82 5.85 2.92 6.36 6.79 7.42 4.41 5.53 6.05 Na2O 4.34 4.70 0.22 3.32 0.43 1.63 0.58 3.45 2.73 0.21 MgO 0.11 0.23 0.68 0.05 0.50 0.58 0.52 0.73 0.66 0.58 CaO 0.08 0.04 0.03 0.04 0.06 0.11 0.05 0.27 0.19 0.02 TiO2 0.06 0.08 0.07 0.05 0.40 0.63 0.48 0.61 0.62 0.49 MnO 0.026 0.016 0.032 0.007 0.033 0.043 0.035 0.062 0.049 0.026 烧失量 0.68 0.69 2.17 0.54 2.57 2.14 2.58 0.37 1.95 2.49 总量 99.55 99.86 99.53 98.95 99.52 99.23 99.92 99.65 99.80 99.58 Q 47.65 34.33 40.11 32.88 32.01 49.81 45.67 39.21 42.52 44.48 An 0.04 0.28 0.09 1.02 0.6 0.03 0.03 0.33 0 0 Ab 3.76 14.21 5.05 29.4 23.63 1.83 1.49 14.79 1.91 0.97 Or 38.81 41.35 45.10 26.25 33.42 36.85 40.16 36.76 44.89 42.25 C 4.28 3.42 4.45 2.30 2.62 6.95 6.04 4.15 4.94 6.19 Di 0 0 0 0 0 0 0 0 0 0 Hy 2.77 2.69 2.35 3.96 3.47 2.30 3.58 2.19 3.00 3.31 Il 0.79 1.23 0.95 1.17 1.21 0.96 0.94 0.85 0.86 0.87 Mt 1.81 2.39 1.83 2.91 2.91 1.25 2.02 1.66 1.84 1.87 Ap 0.09 0.10 0.06 0.12 0.13 0.03 0.06 0.06 0.06 0.07 DI 90.22 89.89 90.26 88.53 89.06 88.49 87.32 90.76 89.32 87.70 SI 4.92 4.65 4.62 5.57 4.99 6.52 6.84 4.38 6.29 6.69 AR 3.71 4.28 3.96 3.85 4.19 2.69 3.06 3.65 3.73 3.11 σ 1.45 2.56 2.18 2.12 2.46 1.25 1.54 2.02 1.94 1.69 NK 6.79 8.42 8.00 7.86 8.26 6.26 6.72 7.75 7.63 6.97 A/CNK 1.526 1.315 1.471 1.197 1.224 1.97 1.774 1.417 1.564 1.773 Sc 7.08 9.79 8.10 9.91 9.69 5.66 7.04 5.87 6.77 7.07 Cr 17.62 13.59 15.00 14.98 12.78 14.12 13.04 13.26 13.89 11.94 Co 5.31 5.54 6.56 6.79 5.87 3.92 4.19 3.64 4.95 5.07 Ni 10.81 6.02 10.18 8.26 6.02 5.77 5.83 5.87 7.00 6.09 Zn 93.70 51.08 64.78 77.22 68.52 35.77 77.14 37.49 74.53 42.14 Rb 313.5 327.8 340.2 218.7 263 532.8 499.5 327.5 387.1 528.6 Sr 34.75 53.91 56.84 46.48 44.28 31.65 49.80 78.82 43.26 53.01 Cs 5.66 4.63 5.24 3.15 4.14 9.13 10.96 10.64 10.28 13.62 Ba 796.3 939.3 955.8 674.7 820.3 634.4 867.1 876.2 783.4 958.4 Zr 208.9 393.5 248.2 402.3 401.3 333.8 324.0 307.1 280.2 301.9 Ta 1.05 1.34 1.21 1.31 1.36 1.36 1.31 1.22 1.27 1.25 Th 24.79 32.70 28.47 32.40 32.95 34.86 34.31 32.62 31.90 32.60 U 5.20 6.67 5.99 6.65 6.97 6.89 7.02 6.33 6.52 6.35 Hf 5.81 11.00 7.20 10.93 10.78 9.44 8.95 8.69 7.92 8.55 Cu 3.69 2.35 17.24 2.49 2.68 1.92 4.23 3.09 0.92 5.02 注:主量元素含量单位为%,微量和稀土元素为10-6;Q为CIPW标准矿物石英;σ为里特曼指数 表 3 仰宗流纹斑岩稀土元素丰度及主要参数
Table 3. REE analyses of the Yangzong rhyolite porphyry
样号 PM2904H2 PM2904H4 PM2904H5 PM3305H1 PM2905H2 PM2907H1 PM2908H3 PM2910H2 PM2911H1 PM2912H1 La 40.20 49.02 42.26 59.99 50.62 25.49 60.18 47.10 42.96 60.79 Ce 69.82 94.51 82.87 109.80 89.19 72.58 95.85 87.9 89.02 101.4 Pr 9.13 12.49 9.22 14.04 13.08 6.03 13.98 11.77 8.83 15.01 Nd 31.45 47.40 31.15 51.73 48.80 22.66 50.70 44.59 32.73 58.93 Sm 6.73 10.32 6.50 10.72 11.02 4.70 11.65 9.68 6.33 13.74 Eu 1.01 1.47 1.06 1.64 1.64 0.67 1.55 1.37 0.90 1.95 Gd 5.27 8.88 5.45 9.90 10.27 4.84 9.28 8.89 5.69 13.81 Tb 0.97 1.60 0.90 1.77 1.83 0.95 1.59 1.50 0.94 2.59 Dy 6.00 10.32 5.95 11.26 11.68 7.08 9.97 9.46 5.99 16.77 Ho 1.07 1.95 1.12 2.04 2.23 1.44 1.72 1.71 1.15 3.09 Er 3.06 5.65 3.34 5.72 6.2 4.27 5.03 4.87 3.39 8.00 Tm 0.48 0.91 0.53 0.91 0.94 0.71 0.84 0.75 0.57 1.18 Yb 2.94 5.38 3.25 5.58 5.76 4.18 5.01 4.36 3.34 6.66 Lu 0.43 0.81 0.49 0.87 0.86 0.63 0.79 0.68 0.52 0.95 Y 27.61 50.15 28.73 57.03 58.78 38.08 45.87 45.54 28.88 89.56 ΣREE 178.56 250.70 194.10 285.96 254.11 156.21 268.15 234.62 202.35 304.89 LREE 158.33 215.2 173.07 247.89 214.34 132.12 233.92 202.41 180.77 251.84 HREE 20.23 35.50 21.03 38.07 39.77 24.09 34.23 32.21 21.58 53.06 LREE/ LaN 7.83 6.06 8.23 6.51 5.39 5.48 6.83 6.28 8.38 4.75 HREE/ YbN 9.81 6.53 9.32 7.71 6.30 4.37 8.62 7.76 9.23 6.55 δEu 0.50 0.46 0.53 0.48 0.46 0.42 0.44 0.44 0.45 0.43 δCe 0.86 0.91 0.98 0.89 0.83 1.39 0.78 0.89 1.06 0.80 注:样品从左到右序号为1~10,与图 7中序号对应 -
[1] 钟大赉.滇川西部古特提斯造山带[M].北京:科学出版社, 1998: 1-231.
[2] 范蔚茗, 彭头平, 王岳军.滇西古特提斯俯冲-碰撞过程的岩浆作用记录[J].地学前缘, 2009, 16(6):291-302. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200906039.htm
[3] 云南地矿局.云南省区域地质志[M].北京:地质出版社, 1990: 400-450.
[4] 方维萱, 胡瑞忠, 谢桂青, 等.云南哀牢山地区构造岩石地层单元及其构造演化[J].大地构造与成矿学, 2002, 26(1):28-36. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200201005.htm
[5] Fan W M, Wang Y J, Zhang F F, et al. Permian arc-back-arc basin development along the Ailaoshan tectoniczone: Ceochemical, isotopic and geochronol evidence from the Mojiang volcanic rocks, Southwest china[J].Lithos, 2010, 119(3/4):553-568. https://www.researchgate.net/publication/240426841_Permian_arc-back-arc_basin_development_along_the_Ailaoshan_Tectonic_Zone_geochemical_isotopic_and_geochronological_evidence_from_the_Mojiang_volcanic_rocks_Southwest_China
[6] Jian P, Liu D Y, Kroner A, et al. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (1):Geochemistry of ophiolites, arc/back-arc assemblages and within-plate igneous rocks[J].Lithos, 2009, 113(3/4): 748-766. https://www.researchgate.net/publication/235686160_Devonian_to_Permian_plate_tectonic_cycle_of_the_Paleo-Tethys_Orogen_in_southwest_China_I_Geochemistry_of_ophiolites_arcback-arc_assemblages_and_within-plate_igneous_rocks
[7] Wang Y J, Zhang A M, Fan W M, et al. Petrogenesis of late Triastonic zone, southwest China, and tectonic implications for the evolution of theeastern Paleotethys Geochronological and geochemical constraints[J]. Lithos, 2010, 120(3/4):529-546.
[8] Lepvrier C, Maluski H, Van Tich V, et al. The Early Triassic Indosinian orogeny in Vietoam (Truong Sun Belt and Kontun Massif): Implieations for the geodynamic evolution of Indochina[J]. Tectonophysics, 2004, 393(1/4): 87-118. https://www.researchgate.net/publication/229416421_The_Early_Triassic_Indosinian_orogeny_in_Vietnam_Truong_Son_Belt_and_Kontum_Massif_implications_for_the_geodynamic_evolution_of_Indochina
[9] 刘俊来, 唐渊, 宋志杰, 等.滇西哀牢山构造带:构造与演化[J].吉林大学学报 (地球科学报), 2011, 41(5):1285-1303. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201105004.htm
[10] Metcalfe I. Paleozoic and Mesozoic tectonic evolution and palaeogeography of East Asia crustal fragments:The Korean Peninsula in context[J].Gondwana Research, 2006, 9(1/2):24-46. http://www.sciencedirect.com/science/article/pii/S1342937X05000043
[11] 李宝龙, 季建清, 付孝悦, 等.滇西点苍山-哀牢山变质岩系锆石SHRIMP定年及其地质意义[J].岩石学报, 2008, 24(10):207-211. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200810013.htm
[12] 董云鹏, 朱炳泉, 常向阳, 等.哀牢山缝合带中两类火山岩地球化学特征及其构造意义[J].地球化学, 2000, 29(1):6-13. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200001001.htm
[13] Jackson S E, Pearson N J, Criffin W L, et al. The application of laser ablation of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J].Chemical Geology, 2004, 211(1/2):47-69. http://www.sciencedirect.com/science/article/pii/S0009254104002074
[14] Andersont T. Correction of common lead in U-Pb analyses that do not report Pb204[J].Chemical Geology, 2002, 192(1/2):59-79. https://www.researchgate.net/publication/222924679_Correction_of_common_lead_in_U-Pb_analyses_that_do_not_report_204Pb
[15] Ludwig K R. Sqind 1.02:A user manual[M].Berkeley: Berkeley Geochronological Cener Special publication, 2001: 1-219.
[16] Li X H, Qi C S, Liu Y, et al. Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze Block:New constraints from Hf isotopes and Fe/Mn rations[J].Chinese Science Bull., 2005, 50: 2481-2486. doi: 10.1360/982005-287
[17] 刘颖, 刘海臣, 李献华.用ICP-MS准确测量岩石样品中的40余种微量元素[J].地球化学, 1996, 25(26):552-558. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX606.003.htm
[18] 黎彤, 饶紀龙.论化学元素在地壳及其基本构造单元中的丰度[J].地质学报, 1965, 45(1): 82-97. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE196501006.htm
[19] Batchelor R A, Bowden P. Petrorgenetic interpretation of granitoid rock series using multicationic parameters[J].Chemistry Geology, 1985, 50:63-81. http://www.sciencedirect.com/science/article/pii/0009254185900348
[20] Pearce J A, Harris N B L, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25:956-983. doi: 10.1093/petrology/25.4.956
[21] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[22] 邓翠, 邓晋福, 刘俊来, 等.哀牢山构造岩浆带晚二叠世-早三叠世火山岩特征及其构造环境[J].岩石学报, 2011, 27(12):3599-3602. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201112008.htm
[23] 刘汇川, 王岳军, 蔡永丰, 等.哀牢山构造带新安寨晚二叠世末期过铝质花岗岩锆石U-Pb年代学及Hf同位素组成研究[J].大地构造与成矿学, 2013, 37(1):87-98. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201301015.htm
[24] Chappel B W, White A J R.Two contrasting granite types[J]. Pacific Geology, 1974, 8:173-174.
[25] Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202
[26] 吴福元, 李献华, 杨进辉, 等.花岗岩研究的若干成因问题[J].岩石学报, 2007, 23(6):1217-1238. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200706000.htm
[27] Chappel B W, White A J R. I-and S-type granites in the Lachlan Fold Belt[J]. Trans Royal Soc Edinburgh: Earth Sci, 1992, 83: 1-26. http://specialpapers.gsapubs.org/content/272/1
[28] 高山, 骆庭川, 张本仁, 等.中国东部地壳的结构和组成[J].中国科学 (D辑), 1999, 29(3): 204-213. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199903001.htm
[29] 章邦桐, 凌洪飞, 沈渭洲.浙江绍兴西裘双溪坞群细碧-角斑岩的Sm-Nd等时线年龄[J].南京大学学报 (地球科学), 1990, 2:9-14. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199104003.htm
[30] Jian P, Liu D Y, Kroner A, et al. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (Ⅱ):Geochemistry of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province[J]. Lithos, 2009, 113(3/4):767-784. http://www.sciencedirect.com/science/article/pii/S0024493709001480
[31] Li G Z, Li C S, Ripley M E, et al. Geochronology, petrology and geochemistry of the Nanlinshan and Banpo mafic-ultramafic intrusions:Implications for subduction initiation in the eastern Paleo-Tethys[J].Contributions to Mineralogy and Petrology, 2012, 164(5): 773-778. doi: 10.1007/s00410-012-0770-4
[32] Zi J W, Cawood P A, Fan W M, et al. Generation of Early Indosinian enriched mantle-derived granitoid pluton in the Sanjiang Orogen (S W China) in response to closure of the Paleo-Tethys[J].Lithos, 2012, 140(5):166-182. http://www.sciencedirect.com/science/article/pii/S0024493712000503
-