Metallogenic epoch and ore-forming material source of the Tongshanling Pb-Zn polymetallic deposit in southeastern Hu'nan Province:Evidence from Sm-Nd isochron age and Pb isotope
-
摘要:
铜山岭铅锌多金属矿床位于扬子地块湘南-桂东北坳陷与华夏地块粤北坳陷的拼贴部位,是中国南岭多金属成矿区代表性矿床之一。为确定矿床成矿时代,挑选铜山岭铅锌多金属矿床中含矿矽卡岩的石榴子石进行Sm-Nd同位素定年,获得的等时线年龄为173±3Ma,指示成矿作用发生于燕山早期。对金属硫化物矿物进行了Pb同位素分析,其206Pb/204Pb、207Pb/204Pb、208Pb/204Pb平均值分别为18.602、15.701、38.729,表明成矿物质来源于相对富集铀铅、略微亏损钍铅的上地壳源区。从(207Pb/204Pb)i-(206Pb/204Pb)i铅同位素演化模式图可知,寄主花岗闪长岩是铜山岭铅锌多金属矿床的重要物质来源,且成矿物质中可能含有寄存在花岗闪长岩中的地幔组分。
-
关键词:
- 铜山岭铅锌多金属矿床 /
- 成矿时代 /
- 成矿物质来源 /
- Sm-Nd等时线年龄 /
- Pb同位素
Abstract:The Tongshanling Pb-Zn polymetallic deposit is located in the collage part between the southern Hu'nan-northeastern Guangxi depression in the Yangtze Block and the northern Guangdong depression in the Cathaysia Block.It is one of the representa-tive deposits in the Nanling metallogenic province.In order to determine the metallogenic epoch of the Tongshanling Pb-Zn polymetallic deposit, the authors analyzed garnets in mineralized skarn from the deposit using Sm-Nd isotopic system and obtained an isochron age of 173±3Ma which corresponds to early Yanshanian.The metal sulfides were analyzed using Pb isotope compositions and their average ratios of 206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb are 18.602, 15.701 and 38.729, respectively, indicating that they were mainly derived from relatively uranium lead-enriched and slightly thorium lead-defected upper crust.According to analyzing the dia-gram of (207Pb/204Pb)i-(206Pb/204Pb)i, the hosted granodiorite seems to have been an important material source for the Tongshanling PbZn polymetallic deposit.In addition, ore-forming material probably contained mantle components hosted in the granodiorite of the Tongshanling Pb-Zn polymetallic deposit.
-
-
图 2 铜山岭矿区地质简图(据参考文献①修改)
Figure 2.
图 6 铜山岭铅锌多金属矿床硫化物矿物Pb同位素Δβ-Δγ成因分类图解(底图据参考文献[56])
Figure 6.
表 1 铜山岭铅锌多金属矿床石榴子石Sm-Nd同位素数据分析结果
Table 1. Sm-Nd isotope compositions of garnets from the TongshanlingPb-Zn polymetallic deposit
样品号 Sm/10-6 Nd/10-6 147Sm/144Nd 143Nd/144Nd 2σ (143Nd/144Nd)t=173Ma TSL-13 0.6108 1.849 0.1999 0.512267 0.000004 0.512041 TSL-10-3 0.4662 1.488 0.1896 0.512254 0.000008 0.512039 TSL-22-1 0.4412 1.565 0.1706 0.512230 0.000007 0.512037 TSL-22-2 1.375 1.774 0.4687 0.512568 0.000005 0.512037 TSL-23 1.392 2.212 0.3808 0.512474 0.000006 0.512043 注:衰变常数λ(147Sm)=6.54×10-12a-1 表 2 铜山岭铅锌多金属矿床硫化物矿物Pb同位素数据
Table 2. Pb isotope compositions and relevant parameters of sulfides from the Tongshanling Pb-Zn polymetallic deposit
样品号 测试矿物 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb Δβ Δγ μ Th/U TSL-04 闪锌矿 18.614 15.671 38.750 22.467 41.556 9.58 3.77 TSL-05 闪锌矿 18.609 15.682 38.755 23.184 41.690 9.60 3.78 TSL-06 闪锌矿 18.613 15.671 38.718 22.467 40.696 9.58 3.76 TSL-12 闪锌矿 18.594 15.654 38.663 21.357 39.217 9.55 3.74 TSL-33 黄铜矿 18.165 15.649 38.114 21.096 38.492 9.59 3.73 TSL-06 黄铁矿 18.693 15.714 38.857 25.272 44.432 9.66 3.81 TSL-11 黄铁矿 18.627 15.686 38.772 23.445 42.147 9.61 3.78 TSL-05 方铅矿 18.707 15.798 38.185 22.336 43.760 9.82 3.92 TSL-06 方铅矿 18.640 15.709 38.904 24.946 45.695 9.65 3.83 TSL-12 方铅矿 18.628 15.699 38.853 24.294 44.324 9.64 3.81 TSL-17 方铅矿 18.646 15.712 38.909 25.142 45.829 9.66 3.83 TSL-290-7 方铅矿 18.642 15.732 38.998 26.447 48.222 9.70 3.87 TSL-290-15 方铅矿 18.653 15.736 39.000 26.708 48.275 9.71 3.86 注:Δβ=(β/βM(t)-1)×1000,Δγ=(γ/γM(t)-1)×1000,β为样品的207Pb/204Pb值,γ为样品的208Pb/204Pb值;β=β0+μ0/137.88×(eλ5T -eλ5t),γ=γ0+μ0k×(eλ2T -eλ2t),λ5=0.985 ×10-9/a, λ2=0.0495 ×10-9/a;β0 =10.294,γ0 =29.476,232Th/238U= 4.04,T=4.57Ga, k=w/μ0,w=232Th/204Pb, μ0=238U/204Pb;M代表地幔,采用单阶段演化公式计算时间t=173Ma时地幔Pb同位素组成 表 3 铜山岭铅锌多金属矿床寄主花岗闪长岩石Pb同位素数据
Table 3. Pb isotope compositions of the host granodiorite from the Tongshanling Pb-Zn polymetallic deposit
样品号 测定结果 U/10-6 Th/10-6 Pb/10-6 (206Pb/204Pb)t=173Ma (207Pb/204Pb)t=173Ma (208Pb/204Pb)t=173Ma 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb TSL-40-1 19.121 15.750 39.338 6.19 17.39 22.46 18.660 15.724 38.862 TSL-40-7 19.146 15.764 39.208 10.15 17.02 32.38 18.542 15.717 38.885 TSL41-1 19.149 15.804 39.570 5.20 23.22 35.08 18.749 15.785 39.001 TSL-41-2 19.940 15.778 39.347 5.73 24.60 44.48 18.692 15.766 39.007 注:表中206Pb/204Pb、207Pb/204Pb、208Pb/204Pb、U、Th、Pb的值据参考文献[14];Pb同位素参数计算采用的年龄为173Ma -
[1] 吴志华.南岭地区铜山岭区域构造组合分析及其与矿产关系[J].中国矿业, 2010, 19(5):107-110. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201005040.htm
[2] 邓汉雄, 邓起.湖南铜山岭多金属矿床的地质特征及成因[J].桂林冶金地质学院学报, 1991, 11(2):139-149. http://www.cnki.com.cn/Article/CJFDTOTAL-GLGX199102002.htm
[3] 徐峰嵘.铜山岭岩体基本特征及其与矿产的关系[J].西部探矿工程, 2010, 22(5):94-96. http://www.cnki.com.cn/Article/CJFDTOTAL-XBTK201005037.htm
[4] 龙汉春.铜山岭多金属矿床的成因特点和矿质来源[J].大地构造与成矿学, 1983, 7(3):198-208. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK198303001.htm
[5] 陈臻.铜山岭"层间矽卡岩型"多金属矿床成因探讨[J].矿床地质, 1986, 5(2):36-42. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198602005.htm
[6] 张湘炳.湖南铜山岭矿田构造-岩浆活动与成矿作用分析[J].大地构造与成矿学, 1986, 10(1):53-70. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK198601005.htm
[7] 刘雄.湖南铜山岭矿田控矿因素及成矿模式探讨[J].矿产与地质, 2006, 20(4):442-445. http://www.cnki.com.cn/Article/CJFDTOTAL-KCYD2006Z1022.htm
[8] 王岳军, 范蔚茗, 郭峰, 等.湘东南中生代花岗闪长岩锆石U-Pb法定年及其成因指示[J].中国科学(D辑), 2001, 31(9):745-751. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200109005.htm
[9] 魏道芳, 鲍征宇, 付建明.湖南铜山岭花岗岩体的地球化学特征及锆石SHRIMP定年[J].大地构造与成矿学, 2007, 31(4):482-489. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200704014.htm
[10] 全铁军, 王高, 钟江临, 等.湖南铜山岭矿区花岗闪长岩岩石成因:岩石地球化学, U-Pb年代学及Hf同位素制约[J].矿物岩石, 2013, 33(1):43-52. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201301007.htm
[11] 卢友月, 付建明, 刘树生, 等.湘南铜山岭多金属矿田成岩作用年代学研究[J].大地构造与成矿学, 2015, 39(6):1061-1071. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201506009.htm
[12] 谭克仁.湖南铜山岭花岗闪长斑岩地球化学特征及其成矿作用[J].大地构造与成矿学, 1983, 7(1):66-80. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK198301006.htm
[13] 欧超人.湖南铜山岭矽卡岩型伴生金银矿的地质地球化学特征[J].桂林工学院学报, 1990, 10(1):27-37. http://www.cnki.com.cn/Article/CJFDTOTAL-GLGX199001002.htm
[14] 蔡应雄, 谭娟娟, 杨红梅, 等.湘南铜山岭铜多金属矿床成矿物质来源的S, Pb, C同位素约束[J].地质学报, 2015, 28(1):1792-1803. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201510007.htm
[15] 贾大成, 胡瑞忠, 李东阳, 等.湘东南地幔柱对大规模成矿的控矿作用[J].地质与勘探, 2004, 40(2):32-35. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200402007.htm
[16] 吴守福.铜山岭多金属矿田的若干地球化学特征[J].地质与勘探, 1983, 4:56-59. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT198304006.htm
[17] 蒋少涌, 赵葵东, 姜耀辉, 等.十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及成因讨论[J].高校地质学报, 2008, 14(4):496-509. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200804006.htm
[18] Zhao K D, Jiang S Y, Yang S Y, et al. Mineral chemistry, trace ele-ments and Sr-Nd-Hf isotope geochemistry and petrogenesis of Cailing and Furong granites and mafic enclaves from the Qitianling batholith in the Shi-Hang zone, South China[J]. Gondwana Re-search, 2012, 22:310-324. doi: 10.1016/j.gr.2011.09.010
[19] 湖南省地质矿产局.湖南省区域地质志[M].北京:地质出版社, 1988:1-1100.
[20] 杨红梅, 段桂玲, 刘重芃, 等.荆州市郊土壤中铅来源的同位素示踪研究[J].第四纪研究, 2012, 32(2):346-352. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201206007.htm
[21] 杨红梅, 段桂玲, 童喜润, 等.荆州市郊主要农产品中铅来源的同位素示踪研究[J].地球化学, 2012, 41(6):576-584. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201206007.htm
[22] 杨红梅, 路远发, 吕红, 等.土壤及其他背景样品中铅同位素比值的测定方法[J].分析化学, 2005, 11(33):1603-1606. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX200511022.htm
[23] Ludwig K R. User's manual for Isoplot/EX Version 3.00. A geo-chronological toolkit for Microsoft Excel[J]. Berkeley Geochronolo-gy Center Speial Publicatiocn, 2003, 4:1-71.
[24] 杨杰东, 王银喜, 王宗哲.吉林大阳岔寒武系/奥陶系界线地层化石中Sm-Nd同位素的研究[J].科学通报, 1988, 36(16):1247-1249. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198816012.htm
[25] 张宗清, 伍家善, 叶笑江.阜平群下部太古代变质岩石的REE, Rb-Sr和Sm-Nd年龄及其意义[J].地球化学, 1991, 2:118-126. doi: 10.3321/j.issn:0379-1726.1991.02.003
[26] Munoz M, Premo W R, Courjault-Radé P. Sm-Nd dating of flu-orite from the worldclass Montroc fluorite deposit, southern Massif Central, France[J]. Mineralium Deposita, 2005, 39:970-975. doi: 10.1007/s00126-004-0453-9
[27] Barker S L, Bennett V C, Cox S F, et al. Sm-Nd, Sr, C and O iso-tope systematics in hydrothermal calcite-fluorite veins:implications for fluid-rock reaction and geochronology[J]. Chemical Geology, 2009, 268:58-66. doi: 10.1016/j.chemgeo.2009.07.009
[28] Faure G. Principles of isotope geology[M].Wiley, 1977.
[29] 黄建国, 李虎杰, 李文杰, 等.贵州戈塘金矿萤石微量元素特征及钐-钕测年[J].地球科学进展, 2012, 27(10):1087-1093. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201210008.htm
[30] 刘义茂, 戴橦谟, 卢焕章, 等.千里山花岗岩成岩成矿的40Ar-39Ar和Sm-Nd同位素年龄[J].中国科学(D辑), 1997, 27(5):425-430.
[31] 彭建堂, 胡瑞忠, 毕献武, 等.湖南芙蓉锡矿床40Ar/39Ar同位素年龄及地质意义[J].矿床地质, 2007, 26(3):237-248.
[32] 彭建堂, 胡瑞忠, 袁顺达, 等.湘南中生代花岗质岩石成岩成矿的时限[J].地质论评, 2008, 54(5):617-625. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200805009.htm
[33] 彭建堂, 胡瑞忠, 林源贤, 等.锡矿山锑矿床热液方解石的Sm-Nd同位素定年[J].科学通报, 2002, 47(10):789-792. doi: 10.3321/j.issn:0023-074X.2002.10.014
[34] 毛景文, 李晓峰, 陈文, 等.湖南芙蓉锡矿床锡矿石和有关花岗岩的40Ar-39Ar年龄及其地球动力学意义[J].矿床地质, 2004, 23(2):164-175.
[35] 袁顺达, 刘晓菲, 王旭东, 等.湘南红旗岭锡多金属矿床地质特征及Ar-Ar同位素年代学研究[J].岩石学报, 2012, 28(32):3787-3797. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201212001.htm
[36] 甄世民, 祝新友, 李永胜, 等.湖南仙人岩与金矿床有关的二长岩锆石U-Pb年龄, Hf同位素及地质意义[J].吉林大学学报(地球科学版), 2012, 42(6):1740-1756. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201206019.htm
[37] 郭春丽, 李超, 伍式崇, 等.湘东南锡田辉钼矿Re-Os同位素定年及其地质意义[J].岩矿测试, 2014, 33(1):142-152. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201401023.htm
[38] 伍光英. 湘东南多金属矿集区燕山期花岗岩类及其大规模成矿作用[D]. 中国地质大学(北京)博士学位论文, 2005: 1-218.
[39] 李献华, 李武显, 李正祥, 等.再论南岭燕山早期花岗岩的成因类型与构造意义[J].科学通报, 2007, 52(9):981-991. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200709000.htm
[40] 华仁民, 陈培荣, 张文兰, 等.南岭与中生代花岗岩类有关的成矿作用及其大地构造背景[J].高校地质学报, 2005, 11(3):291-304. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200503002.htm
[41] 沈渭洲.稳定同位素地质[M].北京:原子能出版社, 1987:1-425.
[42] Carr G R, Dean J A, Suppel D W, et al. Precise lead isotope finger-printing of hydrothermal activity associated with Ordovician to Carboniferous metallogenic events in the Lachlan Fold Belt of New South Wales[J]. Economic Geology, 1995, 90:1467-1505. doi: 10.2113/gsecongeo.90.6.1467
[43] Haest M, Schneider J, Cloquet C, et al. Pb isotopic constraints on the formation of the Dikulushi Cu-Pb-Zn-Ag mineralisation, Kundelungu Plateau (Democratic Republic of Congo)[J]. Minerali-um Deposita, 2010, 45:393-410. doi: 10.1007/s00126-010-0279-6
[44] 王道华, 傅德鑫, 吴履秀.长江中下游区域铜, 金, 铁, 硫矿床基本特征及成矿规律[M].北京:地质出版社, 1987:1-196.
[45] 陈能松, 王新宇, 张宏飞, 等.柴-欧微地块花岗岩地球化学和Nd-Sr-Pb同位素组成:基底性质和构造属性启示[J].地球科学(中国地质大学学报), 2007, 32(1):7-21. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200701001.htm
[46] Sun S S. Lead isotopic study of young volcanic rocks from midocean ridges, ocean islands and island arcs[J]. Philosophical Transac-tions of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 1980, 297:409-445. doi: 10.1098/rsta.1980.0224
[47] Doe B R, Zartman R E. Plumbotectonics, The phanerozoic[C]//Barnes H I. Geochemistry of Hydrothermal Ore Deposits. 1979:22-70.
[48] Zartman R, Doe B. Plumbotectonics-the model[J]. Tectonophys-ics, 1981, 75:135-162. doi: 10.1016/0040-1951(81)90213-4
[49] 张理刚.长石铅和矿石铅同位素组成及其地质意义[J].矿床地质, 1988, 7(2):55-64. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198802008.htm
[50] 吴开兴, 胡瑞忠, 毕献武, 等.矿石铅同位素示踪成矿物质来源综述[J].地质地球化学, 2002, 30(3):73-81. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200203012.htm
[51] 李荣清.湘南多金属成矿区方解石稀土元素分布特征及其成因意义[J].矿物岩石, 1995, 15(4):72-77. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS504.010.htm
[52] Zindler A, Hart S. Chemical geodynamics[J]. Annual Review of Earth and Planetary Sciences, 1986, 14:493-571. doi: 10.1146/annurev.ea.14.050186.002425
[53] Hofmann A. Sampling mantle heterogeneity through oceanic ba-salts:isotopes and trace elements[J]. Treatise on Geochemistry, 2003, 2:61-101.
[54] Hart S R. A large-scale isotope anomaly in the Southern Hemi-sphere mantle[J]. Nature, 1984, 309:753-757. doi: 10.1038/309753a0
[55] 李龙, 郑永飞, 周建波.中国大陆地壳铅同位素演化的动力学模型[J].岩石学报, 2001, 17(1):61-68. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200101007.htm
[56] 朱炳泉.地球科学中同位素体系理论与应用:兼论中国大陆壳幔演化[M].北京:科学出版社, 1998:224-226.
[57] Zhu B Q. The mapping of geochemical provinces in China based on Pb isotopes[J]. Journal of Geochemical Exploration, 1995, 55:171-181. doi: 10.1016/0375-6742(95)00011-9
① 湖南省地质调查院. 铜山岭地区锡多金属矿远景调查成果报告. 2010.
-