40Ar-39Ar ages of the ductile decollement shear zone in the Zhongba microterrane of Saga region, southwest Tibet, and their geological significance
-
摘要:
仲巴微地体夹持于雅江缝合带西段分支的南、北亚带之间,地体内发育韧性滑脱型剪切带。对该类高应变构造带活动时间进行厘定,不仅可以为其形成演化提供制约,而且也可为印度-欧亚板块碰撞过程提供重要的年代学佐证信息。在该剪切带不同变形部位采集了含白云母、黑云母糜棱质岩样品,进行云母类单矿物40Ar-39Ar测年。获取年龄数据3组:53.39±0.57 Ma、39.45±0.42 Ma、29.41±0.32 Ma,表明该剪切带具有多期次构造活动叠加特征。其中第1组年龄代表在印度-欧亚板块初始碰撞阶段,剪切带形成的时代下限(最小年龄),因该剪切带是两大板块初始碰撞的产物,所以可佐证板块起始碰撞时间为53.39±0.57 Ma之前的晚白垩世末—始新世初期;第2组年龄代表在板块主碰撞阶段,发生继承性的近南北向挤压剪切作用后白云母的冷却年龄;第3组年龄代表了后碰撞阶段,剪切带的再次滑动后低温隆升时期的黑云母年龄。
-
关键词:
- 韧性滑脱剪切带 /
- 云母40Ar-39Ar年龄 /
- 多期次活动 /
- 板块碰撞时间 /
- 仲巴微地体
Abstract:The ductile decollement shear zones are in Zhongba microterrane which lies between southern subbelt and northern sub-belt in the western part of the Yarlung Zangbo suture zone.The determination of the activity time about the high strain tectonic belt can not only provide constraints for its formation evolution but also provide the important corroborative evidence for the India-Eur-asia collision.The samples of muscovite and biotite mylonitic rock were collected from the different parts of deformation in the shear zone to analyze the chronology with the mica 40Ar-39Ar dating.The tested ages including 53.39±0.57 Ma, 39.45±0.42 Ma and 29.41±0.32 Ma in three groups indicate that the shear zone has multi-period tectonic activities.Group one which represents the initial stage of the India-Eurasia collision is the age limit of the shear zone (minimum age).Thus the initial time of plate collision should be the end of the Late Cretaceous to the Early Eocene before 53.39±0.57 Ma because the shear zone was the product of the initial collision.Group two which is the cooling age of muscovite that formed under the SN-trending shearing compressive stress represents the peri-od of main collisions.Group three which is the biotite age that formed after the reslip of the shear zone slip at low temperature uplift-ing stage represents the period of post-collision.
-
图 图版Ⅰ a.仲巴微地体滑脱韧性剪切带宏观分布位置(达吉岭组内);b.中央强变形带糜棱岩中长英质小透镜体(红色箭头所指部分);c.强变形带外侧紫曲石组黄褐色片理化大理岩(青色箭头所指土黄色部分“mb”,肉眼所见互层之单层极薄)与青灰色绿泥绢云片岩(红色箭头所指灰色部分)互层;d.强变形带长英质糜棱片岩中,由多晶石英为主组成的条带状或眼球状集合体(红色箭头所指部分),以及孤立分布发生重结晶的旋转状长石、石英单体;e.糜棱岩化石英片岩中,石英呈重结晶状,可见“S”旋转形的长石斑晶,具有压力影,影子矿物为长石或云母,红色箭头指示三边节点平衡结构;f.弱变形带绿泥石长石二云片岩中长石变斑晶中双晶及解理纹;Qz—石英;Ms—白云母;Fel—长石;Bt—黑云母;Chl—绿泥石
Figure 图版Ⅰ.
表 1 巴微地体韧性滑脱剪切带40Ar-39Ar测年样品镜下主要特征及温度
Table 1. Microscopic identification results and formation temperature estimates of samples for 40Ar-39Ar dating of the ductile decollement shear zone in the Zhongba microterrane
样品号 岩石类型 矿物组合 石英主要变形特征 长石主要变形特征 温度估计 CZ20-A45 /PM026-TW1 长英质糜棱片岩 残斑:(30%)Fel +Qz
基质:(70%)Fel +Qz+Ms亚颗粒多晶条带状或眼球状集合体,孤立石英旋转单体SGR+BLG 旋转单体;重结晶,与石英颗粒构成定向、片状构造;强剪切部位可见残斑边缘细粒化和透镜化BLG 400~600℃ GZ20-A46 /PM026-TW2 糜棱岩化白云石英片岩(初糜棱岩) 残斑:(55%)Fel +Qz+Ms
基质:(45%)Fel +Qz+Ms+ Bt可见三结点平衡重结晶结构GBM “S”旋斑;具压力影,影子矿物为长石或云母BLG 500~600℃ GZ20-A47 /PM027-TW1 绿泥石长石二云片岩 Bt +Ms+ Fel +Chl+Qz 少量,颗粒均径0.1mm,定向排列 呈变斑晶,可见双晶及解理纹 <300℃ 注:Fel—长石;Qz—石英;Ms—白云母;Bt—黑云母;Chl—绿泥石 表 2 40Ar-39Ar定年分析数据
Table 2. Results of 40Ar-39Ar dating of the sample
加热阶段 36Ar(a)[fA] 37Ar(Ca)[fA] 38Ar(Cl)[fA] 39Ar(K)[fA] 40Ar(r)[fA] 视年龄/Ma±2σ 40Ar(r)/% 39Ar(K)/% K/Ca±2σ 15WHA0024B-005 3.8% 0.65300 0.87192 0.00000 226.769 716.327 54.81± 0.88 78.73 0.63 146± 39 15WHA0024B-006 4.2% 0.71451 1.10130 0.00000 235.016 746.821 55.13± 0.96 77.92 0.65 120± 33 15WHA0024D-001 4.6% 0.64605 0.43048 0.00000 248.696 790.669 55.15± 0.86 80.50 0.69 324± 94 15WHA0024D-002 5.0% 0.97669 1.31700 0.00000 446.225 1426.86 55.47± 0.72 83.13 1.24 190±34 15WHA0024D-003 5.5% 1.25427 2.29701 0.00000 730.435 2309.23 54.85± 0.67 86.12 2.03 178±14 15WHA0024D-004 6.0% 4 1.54475 3.98124 0.00000 851.880 2649.12 53.97± 0.67 85.25 2.37 120± 5 15WHA0024D-005 6.5% 4 1.72817 6.42891 0.00000 992.268 3055.59 53.45± 0.65 85.63 2.76 86± 4 15WHA0024D-006 7.0% 4 1.74512 4.45973 0.00000 1133.59 3514.17 53.80± 0.64 87.15 3.16 142± 10 15WHA0024F-001 8.0% 4 1.79539 3.58805 0.00000 1386.18 4309.24 53.95± 0.61 88.98 3.86 216± 19 15WHA0024F-002 10.0% 4 3.07161 8.68843 0.0000 2449.01 7548.44 53.50± 0.62 89.21 6.82 158± 8 15WHA0024F-003 13.0% 4 5.36809 10.82452 0.00000 4235.91 13028.84 53.39± 0.60 89.09 11.79 219± 15 15WHA0024F-004 16.0% 4 4.68188 11.26160 0.00000 3842.00 11766.95 53.16± 0.59 89.42 10.70 191± 11 15WHA0024F-005 20.0% 4 6.62380 13.82360 0.00000 5804.36 17705.38 52.95± 0.58 89.98 16.16 235± 14 15WHA0024F-006 30.0% 4 8.06352 17.40050 0.00000 7846.06 23937.25 52.96± 0.57 90.88 21.84 253± 13 15WHA0024H-001 35.0% 4 2.32662 1.83880 0.00000 5101.94 15599.31 53.07± 0.54 95.71 14.20 1554± 211 15WHA0024H-002 40.0% 4 0.16158 0.00000 0.00000 391.09 1203.68 53.42± 0.65 96.11 1.09 1405± 214 41.35503 88.31372 0.00000 35921.44 110307.90 J(照射参数) 结果 40(r)/39(K)±2σ 年龄/Ma±2σ MSWD 39Ar(K)/% K/Ca±2σ 0.00974131 ± 0.00004871 坪年龄 3.07582 ± 0.01295 53.39 ± 0.57 1.47 94.75 126± 34 ± 0.42% ±1.07% 15% 11 外部误差 ±1.04 1.89 2σ置信区间 分析误差 ±0.22 1.2107 误差放大率 总气体年龄 3.07081 ± 0.01214 53.30 ±0.56 16 228± 5 ± 0.40% ±1.06% 外部误差 ±1.04 分析误差 ±0.21 15WHA0025B-001 3.0% 1.09277 2.91587 0.11299 130.284 268.449 36.07± 1.89 45.37 0.35 25.0± 2.0 15WHA0025B-002 3.5% 0.81963 3.40334 0.15934 167.388 350.639 36.67± 1.23 59.11 0.45 27.5± 2.2 15WHA0025B-003 4.0% 0.63558 3.54015 0.15792 183.755 386.087 36.78± 1.10 67.22 0.50 29.1± 2.1 15WHA0025B-004 4.5% 0.65487 4.79156 0.18511 288.525 610.205 37.02± 0.63 75.86 0.78 33.7± 1.8 15WHA0025B-005 5.0% 0.69999 6.16125 0.21335 356.667 741.697 36.40± 0.56 78.13 0.97 32.4± 1.8 15WHA0025B-006 5.5% 0.76874 7.69031 0.38710 493.831 1054.974 37.39± 0.53 82.21 1.34 36.0± 1.5 15WHA0025D-001 6.0% 0.51702 4.31610 0.00000 754.891 1794.784 41.56± 0.45 92.07 2.05 97.9± 9.9 15WHA0025D-002 7.0% 4 0.95172 12.48628 0.14067 1093.507 2470.361 39.51 ±0.48 89.70 2.97 49.0± 2.5 15WHA0025D-003 9.0% 4 1.60178 42.94399 0.66257 1872.665 4228.629 39.50± 0.48 89.85 5.08 24.4± 0.9 15WHA0025D-004 11.0% 4 2.43831 46.68131 1.61871 2499.360 5601.810 39.21± 0.47 88.52 6.78 30.0± 1.0 15WHA0025D-005 13.0% 4 3.42585 44.03029 2.40131 3498.183 7846.827 39.24± 0.45 88.49 9.50 44.5± 1.5 15WHA0025D-006 15.0% 4 2.57358 34.84346 1.67362 3443.420 7734.114 39.29± 0.46 90.96 9.35 55.3± 1.9 15WHA0025F-001 17.0% 4 2.02905 28.71874 0.00000 4095.101 9298.728 39.71 ±0.42 93.85 11.12 79.9± 2.9 15WHA0025F-002 20.0% 4 3.90159 64.76987 3.09422 5002.145 11329.602 39.61 ±0.43 90.68 13.58 43.2± 1.6 加热阶段 36Ar(a)[fA] 37Ar(Ca)[fA] 38Ar(Cl)[fA] 39Ar(K)[fA] 40Ar(r)[fA] 视年龄/Ma±2σ 40Ar(r)/% 39Ar(K)/% K/Ca±2σ 15WHA0025F-003 25.0% 4 5.88571 97.38479 7.48374 6958.918 15572.019 39.14±0.46 89.87 18.89 40.0±1.3 15WHA0025F-004 30.0% 4 3.39525 77.99223 2.54374 5400.930 12227.847 39.60±0.41 92.33 14.66 38.8±1.3 15WHA0025F-005 35.0% 4 0.53475 19.50041 0.30100 597.177 1351.427 39.58±0.54 89.45 1.62 17.1±0.7 31.9262 502.16996 21.13537 36836.746 82868.198 J(照射参数) 结果 40(r)/39(K)±2σ 年龄/Ma±2σ MSWD 39Ar(K)/% K/Ca±2σ 0.00981622 ± 0.00004908 坪年龄 2.25525 ±0.00835 39.45 ±0.42 0.81 93.55 31.1± 8.7 ±0.37% ±1.05% 61% 10 外部误差 ±0.77 1.94 2σ置信区间 分析误差 ±0.14 1.000 误差放大率 总气体年龄 2.24961 ±0.00871 39.35 ±0.42 17 41.1± 0.5 ±0.39% ±1.06% 外部误差 ±0.77 分析误差 ±0.15 加热阶段 36Ar(a)[fA] 37Ar(Ca)[fA] 38Ar(Cl)[fA] 39Ar(K)[fA] 40Ar(r)[fA] 视年龄/Ma±2σ 40Ar(r)/% 39Ar(K)/% K/Ca±2σ 15WHA0026B-003 3.0% 0.86654 2.62108 0.01269 170.126 237.450 24.61 ± 1.34 48.08 0.35 36.3± 6.8 15WHA0026B-004 3.4% 0.76747 1.24777 0.00000 168.439 273.083 28.55 ± 1.35 54.59 0.34 75.6± 16.9 15WHA0026B-005 3.8% 1.98261 5.68783 0.03733 437.812 655.718 26.39 ± 1.05 52.77 0.89 43.1± 2.9 15WHA0026B-006 4.2% 2.17637 7.50656 0.09366 608.895 950.208 27.49 ± 0.83 59.58 1.24 45.4± 2.6 15WHA0026D-001 4.6% 2.90526 14.54504 0.12748 959.883 1454.617 26.70 ± 0.71 62.82 1.95 37.0± 1.7 15WHA0026D-002 5.0% 3.42207 15.06347 0.39913 1461.764 2264.750 27.29 ± 0.60 69.06 2.98 54.3± 2.1 15WHA0026D-003 5.5% 4 4.54451 33.15492 0.76547 2651.962 4386.404 29.12 ± 0.48 76.48 5.40 44.8± 1.7 15WHA0026D-004 6.0% 4 5.65588 39.16490 1.20877 3047.881 5117.497 29.56 ± 0.50 75.30 6.21 43.6± 1.6 15WHA0026D-005 6.5% 4 5.32852 34.10790 1.32271 3159.383 5222.611 29.11 ± 0.47 76.75 6.43 51.9± 1.9 15WHA0026D-006 7.0% 4 3.73318 33.57538 0.60854 2908.313 4845.572 29.34 ± 0.41 81.36 5.92 48.5± 1.7 15WHA0026F-001 8.0% 4 3.29312 36.27046 0.00000 3183.789 5349.936 29.58 ± 0.38 84.51 6.48 49.2± 1.8 15WHA0026F-002 10.0% 4 3.58472 59.31566 1.13800 4048.138 6815.340 29.64 ± 0.39 86.44 8.24 38.2± 1.3 15WHA0026F-003 13.0% 4 4.47006 98.65875 3.03799 5472.979 9158.280 29.46 ± 0.35 87.29 11.14 31.1± 1.1 15WHA0026F-004 16.0% 4 4.79961 99.88785 2.91098 5211.687 8760.033 29.59 ± 0.36 85.96 10.61 29.2± 1.0 15WHA0026F-005 20.0% 4 5.67678 110.09566 4.67810 6692.627 11056.245 29.09 ± 0.34 86.72 13.63 34.0± 1.1 15WHA0026F-006 30.0% 4 4.45686 128.59410 2.58228 8924.761 14940.129 29.47 ± 0.31 91.78 18.17 38.9± 1.3 57.663564 719.49734 18.92313 49108.438 81487.871 J(照射参数) 结果 40(r)/39(K)±2σ 年龄/Ma±2σ MSWD 39Ar(K)/% K/Ca±2σ 0.00981622 ± 0.00004908 坪年龄 1.67039 ±0.00761 29.41 ±0.32 1.18 92.25 37.6±4.8 ±0.46% ±1.09% 31% 10 外部误差 ±0.58 1.94 2σ置信区间 分析误差 ±0.13 1.0843 误差放大率 总气体年龄 1.65935 ±0.00675 29.22 ±0.31 16 38.2±0.4 ±0.41% ±1.07% 外部误差 ±0.57 分析误差 ±0.12 -
[1] 李祥辉, 王成善, 李亚林, 等.仲巴微地体之定义及构成[J].地质学报, 2014, 88(8):1372-1381. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201408002.htm
[2] 商咏梅. 西藏南部仲巴微地体脆-韧性剪切带变形特征分析[D]. 中国地质大学(北京)硕士学位论文, 2015.
[3] 潘桂棠, 王立全, 张万平, 等.青藏高原及邻区大地构造图及说明书(1:1500000)[M].北京:地质出版社, 2013:1-208.
[4] 李亚林, 王成善, 胡修棉, 等.西藏南部始新世早期放射虫动物群及其对特提斯闭合时间的约束[J].科学通报, 2007, 52(12):1430-1435. doi: 10.3321/j.issn:0023-074X.2007.12.013
[5] 孙高远, 胡修棉.仲巴地体的板块亲缘性:来自碎屑锆石U-Pb年代学和Hf同位素的证据[J].岩石学报, 2012, 28(5):1635-1646. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201205026.htm
[6] 罗凯, 李祥辉, 王成善, 等.西藏仲巴地区早古生代鹦鹉螺化石的发现及地质意义[J].地质通报, 2012, 31(4):36-39. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20120405&journal_id=gbc
[7] 张振利, 专少鹏, 李广栋, 等.藏南仲巴地层分区才巴弄组变质玄武质火山岩的发现及其意义[J].地质通报, 2007, 26(4):410-416. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20070467&journal_id=gbc
[8] Tullis J, Yund R A. Diffuse creep infeld aggregates:Experimental evidence[J]. J. Struct. Geol., 1991, 13(9):987-1000. doi: 10.1016/0191-8141(91)90051-J
[9] Pryer L L.Microstructures in feldspars from a major crustal thrust zone:The Grenville Front, Ontario, Canada[J]. J. Struct. Geol., 1993, 15(1):21-36. doi: 10.1016/0191-8141(93)90076-M
[10] Stipp M, Stunitz H, Heilbronner R, et al. The eastern Tonale fauit zone:A natural laboratory for crystal plastic deformation of quartz over a temperature range from 250 to 700℃[J] J. Struct. Geol., 2002, 24(12):1861-1884. doi: 10.1016/S0191-8141(02)00035-4
[11] Dodson M H. Closure temperature in cooling geochronological and petrological systems[J]. Contrib. Mineral Petrol., 1973, 40(3):259-274. doi: 10.1007/BF00373790
[12] Passchier C W, Trouw R A J. Microtectonics(2nd ed)[M]. Berlin:Springer, 2005:57-61.
[13] 纪沫, 胡玲, 刘俊来, 等.主要造岩矿物动态重结晶作用及其变质条件[J].地学前缘, 2008, 12:226-233. doi: 10.3321/j.issn:1005-2321.2008.03.019
[14] 胡玲, 刘俊来, 纪沫, 等.变形显微构造识别手册[M].北京:地质出版社, 2009:1-96.
[15] Harrison T M, McDougall I. Excess 40Ar in metamorphic rocks from Broken Hill, New South Wales:implications for 40Ar/39Ar age spectra and the thermal history of the region[J]. Earth Planet. Sci. Lett., 1981, 55:123-149. doi: 10.1016/0012-821X(81)90092-3
[16] Harrison T M, Duncan I, McDougall I. Diffusion of 40Ar in biotite:temperature, pressure and compositional effects[J]. Geochim. Cosmochim Acta, 1985, 49:2461-2468. doi: 10.1016/0016-7037(85)90246-7
[17] Hames W E, Bowring S A. An empirical evaluation of the argon diffusion geometry in muscovite[J]. Earth Planet. Sci. Lett., 1994, 124:161-169. doi: 10.1016/0012-821X(94)00079-4
[18] Dunlap W J.Neocrystallization or cooling? 40Ar/39Ar age of white micas from low-grade mylonites[J].Chem. Geol., 1997, 143(3/4):181-203.
[19] McDougall I, Harrison T M. Geochronology and Thermochronology by the 40Ar/39Ar Method.(2nd ed)[M]. Oxford:Oxford University Press, 1999:269.
[20] 陈文, 刘新宇, 张思红.连续激光阶段升温40Ar/39Ar地质年代测定方法研究[J].地质评论, 2002, 48(增刊):127-134. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzlp2002s1022&dbname=CJFD&dbcode=CJFQ
[21] 刘艳红, 刘永江. 40Ar/39Ar同位素测年方法及应用测定方法研究[J].世界地质, 2004, 23(3):245-251.
[22] Xu Z Q. Large shear zones in the main orogenic belts of China[J].Episodes, 1995, 18(1/2):41-43.
[23] Hanmer S. Shear zone reactivation at granulite facies:the importance of piutons in the localization of viscous flow[J].Journal of the Geological Society, 1997, 154(1):111-116. doi: 10.1144/gsjgs.154.1.0111
[24] Whitmeyer S J, Simpson C, Miro R, et al. High temperature, high strain-rate fabrics define a major ductile shear zone in the eastern Sierras Pampeanas, Argentina[C]//GSA Annual Meeting, Boston, Session, 2001:136.
[25] Christine K, Uwe R, Stephanie B, et al. The extensional Messaria shear zone and associated brittle detachment faults, Aegean Sea, Greece[J]. Journal of the Geological Society, 2005, 162(4):701-721. doi: 10.1144/0016-764904-041
[26] Rowley D B. Age of initiation of collision between India and Asia:Areview of stratigraphic data[J]. Earth Planet. Sci. Lett., 1996, 145:1-13. doi: 10.1016/S0012-821X(96)00201-4
[27] Willems H, Zhou Z, Zhang B, et al. Stratigraphy of the Upper Cretaceous and Lower Tertiary strata in the Tethyan Himalay as of Tibet(Tingri area, China)[J].Geology Rundsch, 1996, 85:723-754. doi: 10.1007/BF02440107
[28] Yin A, Hasrison T M. Geologic evolution of the Himalayan-Tibet[J]. Orogen Annu. Rev. Earth Planet. Sci., 2000, 28:211-280. doi: 10.1146/annurev.earth.28.1.211
[29] Wang C S, Li X H, Hu X M, et al. Latest marine horizon north of Qomolangma(Mt Everest):Implications for closure of Tethys seaway and collision tectonics[J].Terra Nova, 2002, 14:114-120. doi: 10.1046/j.1365-3121.2002.00399.x
[30] 王成善, 李祥辉, 胡修棉, 等.再论印度-亚洲大陆碰撞的启动时间[J].地质学报, 2003, 77(1):16-24. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200301005.htm
[31] Aitchison J C, Ali J R, Davis A M. When and where did India and Asia collide?[J]. Journal of Geophysical Research, 2007, 112:B05423:1-69.
[32] 丁林.西藏雅鲁藏布江缝合带古新世深水沉积和放射虫动物群的发现及对前陆盆地演化的制约[J].中国科学(D辑), 2003, 33(1):47-58. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200301005.htm
[33] 梁银平, 何红卫, 朱杰, 等.西藏南部古近纪放射虫研究进展[J].地质科技情报, 2011, 33(3):18-24. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201103004.htm
[34] Jaeger J J, courtillot V, Tapponnier P. Paleontological view of the ages of the Deccan Traps, the Cretaceous/Tertiary boundary and the India-Asia collision[J].Geology, 1989, 17:316-319. doi: 10.1130/0091-7613(1989)017<0316:PVOTAO>2.3.CO;2
[35] Patzelt A, Li H M, Wang J D, et al. Paleomagnetism of Cretaceous to Tertiary sediments from southern Tibet:Evidence for the extent of the northern margin of India prior to the collision with Eurasia[J]. Tectonophysics, 1996, 259(4):259-284. doi: 10.1016/0040-1951(95)00181-6
[36] Najman Y. The detrital record of orogenesis:A review of approaches and techniques used in the Himalayan sedimentary basins[J]. Earth-Science Reviews, 2006, 74(1/2):1-72. http://www.research.lancs.ac.uk/portal/en/publications/-(afcbf71e-8c42-43cf-a5db-6359af007be1).html
[37] 黄宝春, 陈军山, 易治宇.再论印度与亚洲大陆何时何地发生初始碰撞[J].地球物理学报, 2010, 53(9):2045-2058. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201009006.htm
[38] 莫宣学, 赵志丹, 周肃, 等.印度-亚洲大陆碰撞的时限[J].地质通报, 2007, 26(10):1240-1244. doi: 10.3969/j.issn.1671-2552.2007.10.002 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=2007010204&journal_id=gbc
[39] 李才, 胡敬仁, 翟庆国, 等.印度与亚洲板块碰撞及碰撞时限的新证据——日喀则卡堆蓝片岩Ar-Ar定年[J].地质通报, 2007, 26(10):1299-1303. doi: 10.3969/j.issn.1671-2552.2007.10.008 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=2007010210&journal_id=gbc
[40] 朱弟成, 潘桂棠, 莫宣学, 等.印度大陆和欧亚大陆的碰撞时代[J].地球科学进展, 2004, 19(4):564-571. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200404012.htm
[41] Cai F, Ding L, Yue Y. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet:Implications for timing of India-Asia collision[J]. Earth Planet. Sci. Lett., 2011, 305:195-206. doi: 10.1016/j.epsl.2011.02.055
[42] 莫宣学.岩浆作用与青藏高原演化[J].高校地质学报, 2011, 17(3):351-367. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201103003.htm
[43] Hu X, Sinclair H D, Wang J, et al. Late Cretaceous-Paleogene stratigraphic and basin evolution in the Zhepure Mountain of southern Tibet:implications for the timing of India-Asia initial collision[J]. Basin Research, 2012, 24:520-543. doi: 10.1111/bre.2012.24.issue-5
[44] Aitchison J C, Davis A M, Badengzhu B, et al. New constraints on the India-Asia collision:the Lower Miocene Gangrinboche conglomerates, Yarlung Tsangpo suture zone, SE Tibet[J]. Journal of Asian Earth Sciences, 2002, 21:251-263. doi: 10.1016/S1367-9120(02)00037-8
[45] Van Hinsbergen D J J, Lippert P C, Dupont-Nivet G, et al. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia[J]. Proceedings of the National Academy of Sciences, 2012, 109:7659-7664. doi: 10.1073/pnas.1117262109
[46] White L, Lister G. The collision of India with Asia[J]. Journal of Geodynamics, 2012, 56:7-17. https://scholars.uow.edu.au/display/publication111595
[47] Wang J G, Hu X M, Jansa L, et al. Provenance of the Upper Cretaceous-Eocene Deep-Water Sandstones in Sangdanlin, Southern Tibet:Constraints on the Timing of Initial India-Asia Collision[J]. Journal of Geology, 2011, 119:293-309. doi: 10.1086/659145
[48] Zhang Q, Willems H, Ding L, et al. Initial India-Asia Continental Collision and Foreland Basin Evolution in the Tethyan Himalaya of Tibet:Evidence from Stratigraphy and Paleontology[J]. The Journal of Geology, 2012, 120:175-189. doi: 10.1086/663876
[49] 刘增乾, 徐宪, 潘桂棠, 等.青藏高原大地构造与形成演化[M].北京:地质出版社, 1990:1-174.
[50] 莫宣学, 赵志丹, 喻学惠, 等.青藏高原新生代碰撞-后碰撞火成岩[M].北京:地质出版社, 2009:1-396.
① 中国地质大学(北京)地质调查研究院. 江木那幅、格绒松多幅、岗珠淌幅、穷果公社幅. 中华人民共和国区域地质调查报告. 2014.
② 湖北省地质调查院. 牛库幅、达吉岭幅、亚当幅、布扎公社幅. 中华人民共和国区域地质调查报告. 2015.