LA-ICP-MS zircon U-Pb dating of Paleoproterozoic pluton in northern Altun area and its geological implications
-
摘要:
北阿尔金是塔里木克拉通变质基底的主要出露区之一。对该区具有侵入接触关系的正长花岗岩和花岗片麻岩进行了LA-ICP-MS锆石U-Pb定年研究。正长花岗岩中的锆石多呈椭圆状,具有振荡环带结构,部分颗粒中可见老锆石残核,Th/U值较高,亏损轻稀土元素,富集重稀土元素,具有负Eu异常和正Ce异常的特点,表明该组锆石为岩浆成因。定年结果获得1903±13 Ma和2506±55 Ma两组年龄加权平均值,前者代表岩体的结晶年龄,后者为捕获锆石年龄,结合区域年代学资料,认为正长花岗岩岩浆侵入过程中可能捕获了太古宇米兰群的古老基底锆石。花岗片麻岩中16个测点的锆石207Pb/206Pb年龄集中于1802±28 Ma,代表了岩体侵位时代,其余5个测点的锆石207Pb/206Pb年龄为1911~1951 Ma,说明岩浆侵位过程中捕获了部分正长花岗岩的物质。区域地质与同位素年代学研究表明,北阿尔金地区广泛存在2.0~1.8 Ga的构造-热事件。获得的花岗质岩石的1.9~1.8 Ga的年龄结果,直接证实了北阿尔金存在约1.9 Ga的岩浆作用,可能为古元古代Columbia超大陆汇聚事件在该地区的响应,为探讨塔里木板块前寒武纪构造-热事件演化历史提供了新资料。古元古代末期约1.8 Ga的花岗片麻岩,代表了后造山伸展阶段的岩浆活动。
-
关键词:
- 北阿尔金 /
- LA-ICP-MS锆石U-Pb定年 /
- 古元古代 /
- 构造热事件
Abstract:North Altun region is one of the main regions where the metamorphic basement of the Tarim craton is exposed.In this pa-per, LA-ICP-MS U-Pb dating was conducted on zircon grains from syenogranite and granitic gneiss that have intrusive contact rela-tionship with each other.Most zircons from the syenogranite are characterized by oval shape, typical oscillatory zoning, and residual cores in some grains.The higher Th/U ratios, depletion of LREE and enrichment of HREE, an obvious negative Eu anomaly, and positive Ce anomaly indicate that they are of magmatic origin.The dating results yielded two age groups of weighted mean ages of 1903±13 Ma and 2506±55 Ma.The former age represents the crystallization age of the intrusions, and the latter one represents the age of inherited zircon.Combined with available regional chronologic data, the authors hold that ancient basement zircons of Archean Milan Group may have been involved in the process of granite magma intrusion.Most analyzed spots are clustered around 1802±28 Ma, which represent the crystallization age of the granitic gneiss.The other five analyzed spots yielded 207Pb/206Pb ages of 1911~1951 Ma, implying that part of the granite material was captured in the process of magmatic emplacement.The existing regional geo-logical and isotopic chronologic data suggest that northern Altun region may exist 2.0~1.8 Ga tectonic thermal events.So the crystalli-zation age of granitic rocks 1.9~1.8 Ga directly confirms the existence of the magmatism at 1.9 Ga, such a tectonic magmatic event is consistent with the global collisional orogeny events related to the evolution of Columbia supercontinent, and this can provide new evidence for the exploration of Precambrian tectonic thermal event and its evolution history along the Altun tectonic belt.The forma-tion of granitic gneiss in Late Paleoproterozoic at 1802±28 Ma may represent the post-orogenic stage in North Altun region.
-
-
图 1 塔里木盆地周缘及邻区前寒武纪基底分布(据参考文献[1]修改)
Figure 1.
表 1 正长花岗岩和花岗片麻岩LA-ICP-MS锆石U-Th-Pb同位素测年结果
Table 1. LA-ICP-MS U-Th-Pb data of zircons from the syenogranite and granitic gneiss
测点号 含量/10-6 Th/U 同位素比值 年龄/Ma Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 正长花岗岩 A233-1-1 274 280 381 0.74 0.11747 0.19672 5.6454 10.189 0.34773 0.30577 1918 30 1923 16 1924 15 A233-1-2 282 58 915 0.06 0.11970 0.19020 5.7729 12.133 0.34878 0.48195 1952 28 1942 18 1929 23 A233-1-4 558 364 552 0.66 0.17222 0.25870 11.848 24.468 0.49984 1.01683 2579 26 2592 19 2613 44 A233-1-5 182 146 384 0.38 0.11567 0.17341 5.5709 11.124 0.34880 0.54336 1900 26 1912 17 1929 26 A233-1-6 287 232 387 0.60 0.13709 0.18069 7.7272 13.109 0.40763 0.43277 2191 22 2200 15 2204 20 A233-1-7 494 220 764 0.29 0.15864 0.20611 10.245 21.172 0.46540 0.60897 2443 22 2457 19 2463 27 A233-1-9 823 434 1030 0.42 0.16228 0.21871 10.759 15.942 0.48003 0.36044 2479 23 2503 14 2527 16 A233-1-10 431 140 720 0.19 0.15229 0.32891 10.235 50.894 0.47808 1.59237 2372 37 2456 46 2519 69 A233-1-11 315 67 908 0.07 0.12146 0.16765 5.8847 9.168 0.35120 0.34599 1977 24 1959 14 1940 17 A233-1-12 972 495 1140 0.43 0.16550 0.24985 10.919 24.153 0.47520 0.63511 2513 26 2516 21 2506 28 A233-1-13 223 141 379 0.37 0.13418 0.20850 7.2456 12.785 0.39176 0.45130 2153 26 2142 16 2131 21 A233-1-14 493 303 914 0.33 0.12581 0.18364 6.3393 11.766 0.36464 0.40733 2040 26 2024 16 2004 19 A233-1-16 452 197 677 0.29 0.17139 0.22420 11.548 20.123 0.48729 0.49161 2572 23 2568 16 2559 21 A233-1-17 248 188 316 0.59 0.14595 0.22638 8.5963 23.150 0.42303 0.66651 2299 27 2296 25 2274 30 A233-1-18 286 126 399 0.32 0.16569 0.20996 10.986 18.232 0.47982 0.46414 2515 21 2522 16 2526 20 A233-1-19 285 298 407 0.73 0.11315 0.14468 5.4469 8.0647 0.34899 0.30732 1850 23 1892 13 1930 15 A233-1-20 625 401 620 0.65 0.17288 0.21492 11.580 23.477 0.48509 0.74530 2587 21 2571 19 2549 32 A233-1-22 331 131 499 0.26 0.15544 0.20812 9.9811 24.324 0.46370 0.81488 2406 23 2433 23 2456 36 A233-1-23 329 179 571 0.31 0.13394 0.21439 7.6310 12.798 0.41337 0.37936 2150 33 2189 15 2230 17 A233-1-24 191 163 351 0.46 0.11645 0.22750 5.5864 12.130 0.34846 0.44172 1902 2.8 1914 19 1927 21 花岗片麻岩 A233-2-1 932 396 3019 0.13 0.11467 0.22911 5.2764 10.840 0.33173 0.27237 1876 36 1865 18 1847 13 A233-2-2 268 286 507 0.56 0.10954 0.23135 5.0162 10.671 0.33035 0.26282 1792 39 1822 18 1840 13 A233-2-3 312 323 624 0.52 0.10995 0.21755 5.0357 9.9929 0.33053 0.27197 1798 37 1825 17 1841 13 A233-2-4 151 111 389 0.29 0.10879 0.22454 5.0017 10.193 0.33183 0.26235 1789 37 1820 17 1847 13 A233-2-5 185 136 469 0.29 0.11103 0.22405 5.0879 10.489 0.33058 0.28214 1817 32 1834 18 1841 14 A233-2-6 398 121 1240 0.10 0.11828 0.23148 5.8910 13.541 0.35885 0.45349 1931 35 1960 20 1977 22 A233-2-8 447 125 1429 0.09 0.11752 0.24380 5.8464 12.675 0.35878 0.35710 1920 43 1953 19 1976 17 A233-2-9 253 261 478 0.55 0.11027 0.25472 5.0684 12.041 0.33154 0.32716 1806 47 1831 20 1846 16 A233-2-10 732 293 2048 0.14 0.11446 0.26814 5.6009 13.168 0.35299 0.32183 1872 42 1916 20 1949 15 A233-2-11 301 278 637 0.44 0.10852 0.27492 4.9707 12.430 0.33058 0.30814 1776 46 1814 21 1841 15 A233-2-12 872 569 2473 0.23 0.10891 0.29091 5.0070 14.086 0.33143 0.41457 1781 49 1821 24 1845 20 A233-2-14 634 59 2476 0.02 0.11416 0.32061 5.2298 14.569 0.33051 0.32288 1866 50 1857 24 1841 16 A233-2-15 223 150 591 0.25 0.10723 0.29010 4.9117 13.226 0.33045 0.30973 1754 54 1804 23 1841 15 A233-2-16 228 57 678 0.08 0.11955 0.29521 5.4870 13.745 0.33088 0.30182 1950 44 1899 22 1843 15 A233-2-17 450 325 1167 0.28 0.10711 0.24115 4.9109 11.556 0.33058 0.34257 1751 41 1804 20 1841 17 A233-2-18 267 56 845 0.07 0.11963 0.25462 6.0942 13.264 0.36744 0.34273 1951 33 1989 19 2017 16 A233-2-20 631 499 1511 0.33 0.10537 0.19888 4.8315 9.2529 0.33059 0.26338 1721 34 1790 16 1841 13 A233-2-21 434 426 830 0.51 0.10639 0.20274 4.8730 9.0190 0.33053 0.26505 1739 35 1798 16 1841 13 A233-2-22 401 176 1095 0.16 0.11504 0.20734 5.7029 10.704 0.35748 0.34007 1881 37 1932 16 1970 16 A233-2-23 289 161 738 0.22 0.11701 0.22032 5.3756 10.027 0.33140 0.27561 1911 34 1881 16 1845 13 A233-2-24 604 437 1592 0.27 0.10643 0.19839 4.8850 9.6258 0.33079 0.32991 1739 34 1800 17 1842 16 表 2 正长花岗岩和花岗片麻岩锆石稀土元素分析结果
Table 2. REE compositions of the inherited zircons from syenogranite granitic gneiss
10-6 测点号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Ti Nb Ta Nb/Ta (Yb/Gd)N ΣREE 正长花岗岩 A233-1-1 2.00 35.73 0.66 3.28 3.10 0.56 8.97 2.72 30.51 11.65 53.25 13.37 132.30 24.14 6.01 1.96 0.75 2.63 17.84 322.25 A233-1-2 4.83 15.43 1.18 2.43 1.11 0.10 3.05 1.68 29.35 14.66 85.41 25.43 290.68 57.00 6.34 7.16 6.05 1.19 115.39 532.34 A233-1-4 22.29 98.61 6.27 16.62 9.46 0.51 22.38 7.50 98.10 39.85 189.66 48.35 470.53 82.17 12.97 6.41 2.82 2.28 25.42 1112.31 A233-1-5 14.57 33.16 2.97 5.87 1.94 0.13 5.49 2.33 35.27 15.72 83.89 22.93 240.83 41.70 6.72 5.95 5.76 1.03 53.07 506.80 A233-1-6 13.12 36.89 1.24 2.81 2.52 0.21 9.69 3.74 48.09 20.11 96.73 24.50 238.75 42.32 6.99 2.73 1.51 1.80 29.79 540.73 A233-1-7 2.08 20.03 0.63 2.90 3.30 0.17 13.61 5.42 74.57 32.13 161.31 42.60 435.09 81.97 9.44 5.44 2.85 1.91 38.65 875.80 A233-1-9 231.94 227.80 33.86 75.49 15.26 0.77 19.39 6.51 86.53 37.49 189.25 51.10 524.26 95.43 13.17 8.32 3.93 2.12 32.69 1595.08 A233-1-10 33.44 24.92 4.45 9.87 3.44 0.18 9.69 4.12 59.06 26.01 134.68 36.97 389.41 73.69 9.25 8.49 8.36 1.02 48.58 809.92 A233-1-11 5.10 14.79 1.05 2.86 1.55 0.15 3.01 1.31 21.26 10.62 60.95 18.54 210.86 44.52 5.22 4.66 3.71 1.26 84.80 396.58 A233-1-12 107.72 119.38 12.09 26.02 12.70 1.76 32.98 11.80 156.13 65.82 312.99 77.60 733.48 127.41 25.53 9.77 3.84 2.55 26.89 1797.86 A233-1-13 2.28 22.71 0.59 1.87 1.51 0.42 5.05 1.91 25.21 10.67 52.82 14.16 146.37 28.30 7.07 3.08 1.60 1.92 35.04 313.86 A233-1-14 427.59 176.08 36.01 61.18 15.22 1.35 29.24 8.61 98.72 35.92 158.80 37.81 367.18 65.59 7.67 7.11 2.66 2.68 15.18 1519.27 A233-1-16 1.29 18.75 0.63 3.08 4.17 0.16 17.53 6.87 93.82 40.04 196.56 51.04 524.91 100.63 10.68 4.73 2.42 1.95 36.19 1059.48 A233-1-17 0.49 25.15 0.42 2.68 4.52 0.20 19.25 6.91 88.96 35.50 163.38 39.41 375.17 65.07 9.96 3.75 1.82 2.06 23.56 827.11 A233-1-18 1003.95 352.37 76.16 120.62 19.41 1.05 19.06 4.85 57.94 23.45 114.07 29.48 306.68 59.18 7.54 4.41 2.06 2.14 19.45 2188.26 A233-1-19 0.77 30.30 0.27 1.72 3.04 0.62 9.87 3.34 40.31 15.32 72.03 18.35 189.51 35.85 8.20 2.12 0.74 2.87 23.22 421.30 A233-1-20 52.97 72.53 9.07 22.48 9.97 0.38 31.11 11.21 146.23 58.13 266.66 63.77 611.14 102.30 12.30 8.65 3.20 2.70 23.74 1457.94 A233-1-22 73.39 190.19 29.61 105.52 23.74 1.96 19.30 2.81 26.61 9.88 47.82 12.99 150.07 32.03 14.34 3.07 1.53 2.01 9.40 725.92 A233-1-23 40.26 92.47 7.38 18.35 9.91 0.67 23.78 8.17 100.25 39.05 174.67 41.73 398.14 70.59 11.33 3.05 1.48 2.05 20.24 1025.42 A233-1-24 0.81 17.69 0.16 0.63 1.09 0.25 4.45 1.69 21.81 9.13 45.20 12.14 129.14 24.18 5.64 2.52 1.33 1.90 35.07 268.39 花岗片麻岩 A233-2-1 3.86 49.98 1.29 5.09 3.02 0.79 8.07 2.27 27.55 10.74 51.83 14.19 152.09 27.68 2.34 0.85 0.28 3.01 22.77 358.45 A233-2-2 0.005 9.71 0.06 1.04 2.15 0.60 8.28 2.66 30.16 10.62 46.87 12.05 119.09 20.72 0.71 0.41 0.14 3.02 17.39 264.03 A233-2-3 0.03 12.05 0.17 1.65 2.27 0.67 7.84 2.56 29.56 10.53 47.46 12.06 122.06 21.12 0.86 0.43 0.14 2.96 18.81 270.03 A233-2-4 0.01 7.31 0.01 0.18 0.25 0.08 1.26 0.44 5.44 2.06 9.45 2.43 25.94 4.68 1.32 0.47 0.16 2.91 24.88 59.53 A233-2-5 0.13 8.94 0.04 0.39 0.82 0.19 2.82 1.03 13.21 4.96 24.41 6.65 68.11 12.63 0.93 0.48 0.17 2.85 29.16 144.34 A233-2-6 0.01 0.28 0.01 0.06 0.07 0.01 0.27 0.11 1.58 0.64 3.02 0.79 8.72 1.56 1.05 0.29 0.09 3.45 39.12 17.12 A233-2-8 0.02 0.34 0.01 0.05 0.07 0.02 0.25 0.10 1.16 0.41 2.12 0.58 5.67 1.03 2.51 0.30 0.08 3.79 26.95 11.82 A233-2-9 0.03 11.06 0.07 0.68 1.43 0.46 5.66 1.80 21.40 7.12 31.66 8.10 76.86 12.85 0.93 0.50 0.16 3.09 16.41 179.17 A233-2-10 1.73 11.70 1.07 5.86 2.90 0.47 4.97 1.33 15.56 5.48 25.18 6.18 56.12 9.25 2.56 0.54 0.07 7.52 13.66 147.78 A233-2-11 0.004 13.63 0.03 0.37 0.84 0.22 2.94 1.04 11.86 4.33 19.10 4.75 48.01 8.30 0.54 0.59 0.17 3.46 19.72 115.44 A233-2-12 6.91 38.04 1.52 5.41 2.67 0.61 8.29 2.79 35.05 13.59 66.62 17.71 182.67 32.77 1.78 1.17 0.38 3.09 26.63 414.65 A233-2-14 0.23 2.34 0.20 1.07 0.22 0.05 0.55 0.14 1.47 0.50 2.37 0.62 5.71 0.98 1.25 0.26 0.09 3.00 12.51 16.44 A233-2-15 0.02 9.36 0.02 0.28 0.79 0.18 2.62 0.89 11.80 4.22 19.95 5.19 52.20 9.13 0.94 0.43 0.14 2.98 24.09 116.63 A233-2-16 0.02 0.91 0.03 0.18 0.20 0.07 0.87 0.28 3.20 1.15 4.99 1.23 11.56 2.12 3.27 0.45 0.16 2.85 15.99 26.82 A233-2-17 0.03 14.28 0.06 0.57 1.35 0.40 5.60 1.96 24.72 8.95 40.91 10.28 103.49 17.53 0.31 0.52 0.16 3.14 22.34 230.13 A233-2-20 0.02 18.66 0.06 0.78 2.36 0.67 9.72 3.36 40.40 14.45 64.23 16.04 161.08 27.47 0.60 0.45 0.17 2.64 20.03 359.30 A233-2-21 0.54 17.09 0.52 2.74 3.09 0.80 9.72 3.07 37.47 14.48 67.64 17.51 173.08 31.08 0.86 0.51 0.17 3.05 21.52 378.85 A233-2-22 0.56 3.75 0.47 3.02 1.22 0.17 1.69 0.39 4.34 1.58 7.31 1.74 16.59 2.80 2.32 0.39 0.09 4.41 11.89 45.63 A233-2-23 0.15 3.46 0.12 0.61 0.81 0.23 2.82 0.88 10.68 3.80 16.94 4.35 43.31 7.49 3.27 0.40 0.14 2.94 18.54 95.65 A233-2-24 0.16 19.21 0.19 1.73 3.01 0.77 10.77 3.70 43.26 15.56 69.87 17.83 180.83 31.03 0.31 0.47 0.18 2.60 20.30 397.92 -
[1] 张建新, 李怀坤, 孟繁聪, 等.塔里木盆地东南缘(阿尔金山)"变质基底"记录的多期构造热事件:锆石U-Pb年代学的制约[J].岩石学报, 2011, 27(1):23-46. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201101003.htm
[2] 新疆维吾尔自治区地质矿产局.新疆维吾尔自治区区域地质志[M].北京:地质出版社, 1993:1-941.
[3] 陆松年, 于海峰, 金巍, 等.塔里木古大陆东缘的微大陆块体群[J].岩石矿物学杂志, 2002, 21(4):317-326. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200204002.htm
[4] 陆松年, 于海峰, 李怀坤, 等.中国前寒武纪重大地质问题研究——中国西部前寒武纪重点地质事件群及全球构造意义[M].北京:地质出版社, 2006:1-197.
[5] Lu S N, Li H K, Zhang C L, et al. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments[J]. Precambrian Research, 2008, 160:94-107. doi: 10.1016/j.precamres.2007.04.025
[6] Gehrels G E, Yin A, Wang X F. Magmatic history of the northeastern Tibetan Plateau[J]. Journal of Geophysical Research, 2003, 108(B9):2423. https://arizona.pure.elsevier.com/en/publications/magmatic-history-of-the-northeastern-tibetan-plateau
[7] Gehrels G E, Yin A, Wang X F. Detrital zircon geochronology of the northeastern Tibetan plateau[J]. Geological Society of America Bulletin, 2003, 115:881-896. doi: 10.1130/0016-7606(2003)115<0881:DGOTNT>2.0.CO;2
[8] 李惠民, 陆松年, 郑健康, 等.阿尔金山东端花岗片麻岩中3.6Ga锆石的地质意义[J].矿物岩石地球化学通报, 2001, 20(4):259-262. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200104015.htm
[9] 张建新, 张泽明, 许志琴, 等.阿尔金构造带西段榴辉岩的Sm-Nd及U-Pb年龄:阿尔金构造带中加里东期山根存在的证据[J].科学通报, 1999, 44(10):1109-1112. doi: 10.3321/j.issn:0023-074X.1999.10.021
[10] 许志琴, 杨经绥, 张建新, 等.阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J].地质学报, 1999, 73(13):193-205. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199903000.htm
[11] 刘永顺, 于海峰, 辛后田, 等.阿尔金山地区构造单元划分和前寒武纪重要地质事件[J].地质通报, 2009, 28(10):1430-1438. doi: 10.3969/j.issn.1671-2552.2009.10.009 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20091009&journal_id=gbc
[12] 吴玉, 陈正乐, 陈柏林, 等.阿尔金北缘脆-韧性剪切带内变形闪长岩的年代学、地球化学特征及其对北阿尔金早古生代构造演化的指示[J].岩石学报, 2016, 32(2):555-570. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201602019.htm
[13] 陈柏林, 崔玲玲, 陈正乐, 等.阿尔金山喀腊大湾地区变形岩石EBSD组构分析[J].地质学报, 2014, 88(8):1475-1484. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201408009.htm
[14] 韩凤彬, 陈柏林, 崔玲玲, 等.阿尔金山喀腊大湾地区中酸性侵入岩SHRIMP年龄及其意义[J].岩石学报, 2012, 28(7):2277-2291. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201207028.htm
[15] Wiedenbeck M E, Leske R A. The isotopic composition of irongroup galactic cosmic rays[J]. Advances in Space Research, 1995, 15(1):25-33. doi: 10.1016/S0273-1177(99)80120-3
[16] Sláma J, Košler J, Condon D J, et al. Plešovice zircon-a new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1):1-35. https://www.researchgate.net/publication/292726909_Plesovice_zircon-A_new_natural_reference_material_for_U-Pb_and_Hf_isotopic_microanalysis
[17] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refine-ment of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15):1535-1546. doi: 10.1007/s11434-010-3052-4
[18] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-lCP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2):34-43. https://www.researchgate.net/profile/Yongsheng_Liu5/publication/222034389_In_situ_analysis_of_major_and_trace_elements_of_anhydrous_minerals_by_LA-ICP-MSLA-ICP-MS_without_applying_an_internal_standard/links/54067d610cf2c48563b2536f/In-situ-analysis-of-major-and-trace-elements-of-anhydrous-minerals-by-LA-ICP-MSLA-ICP-MS-without-applying-an-internal-standard.pdf
[19] Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2):59-79. https://www.researchgate.net/publication/222924679_Correction_of_common_lead_in_U-Pb_analyses_that_do_not_report_204Pb
[20] Ludwig K R. User's Manual for A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center, CA:Special Publication, 2003, 4:1-70.
[21] Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):27-62. doi: 10.2113/0530027
[22] 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
[23] Geisler T, Ulonska M, Schleicher H, et al. Leaching and differential recrystallization of metamict zirconunder experimental hydrothermal conditions[J]. Contributions to Mineralogy and Petrology, 2001, 141(1):53-65. doi: 10.1007/s004100000202
[24] Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2000, 18:423-439. https://www.researchgate.net/publication/229968849_Metamorphic_zircon_formation_by_solid-state_recrystallization_of_protolith_igneous_zircon
[25] 刘函, 王国灿.北阿尔金拉配泉米兰群片麻岩及其中两期基性岩墙群LA-ICP-MS锆石U-Pb年龄及地质意义[J].地质通报, 2012, 31(9):1461-1468. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20120910&journal_id=gbc
[26] 辛后田. 塔里木盆地东南缘阿克塔什塔格地区早前寒武纪年代格架及重大地质事件序列研究[D]. 中国地质大学(北京)博士学位论文, 2012: 1-99.
[27] 辛后田, 刘永顺, 罗照华, 等.塔里木盆地东南缘阿克塔什塔格地区新太古代陆壳增生:米兰岩群和TTG片麻岩的地球化学及年代学约束[J].地学前缘, 2013, 20(1):240-259. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201301022.htm
[28] 邬光辉, 孙建华, 郭群英, 等.塔里木盆地碎屑锆石年龄分布对前寒武纪基底的指示[J].地球学报, 2010, 31(1):65-72. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201001010.htm
[29] Xu B, Jian P, Zheng H F, et al. U-Pb zircon geochronology and geochemistry of Neoproterozoic volcanic rocks in the Tarim Block of northwest China:Implications for the breakup of Rodinia supercontinent and Neoproterozoic locations[J]. Precambrian Research, 2005, 136:107-123. doi: 10.1016/j.precamres.2004.09.007
[30] 胡霭琴, 韦刚健.塔里木盆地北缘新太古代辛格尔灰色片麻岩形成时代问题[J].地质学报, 2006, 80(1):126-134. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601017.htm
[31] Zhang C L, Li Z X, Li X H, et al. An early Paleoproterozoic high-K intrusive complex in southwestern Tarim Block, NW China:Age, geochemistry, and tectonic implications[J]. Gondwana Research, 2007, 12(12):101-112. https://www.researchgate.net/publication/229306506_An_early_Paleoproterozoic_high-K_intrusive_complex_in_southwestern_Tarim_Block_NW_China_Age_geochemistry_and_tectonic_implications
[32] 邓兴梁, 舒良树, 朱文斌, 等.新疆兴地断裂带前寒武纪构造-岩浆-变形作用特征及其年龄[J].岩石学报, 2008, 24(11):2800-2808. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200812015.htm
[33] 董昕, 张泽明, 唐伟, 等.塔里木克拉通北缘的前寒武纪构造-热事件:新疆库尔勒铁门关高级变质岩的锆石U-Pb年代学限定[J].岩石学报, 2011, 27(1):47-58. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201101004.htm
[34] 郭召杰, 张志诚, 刘树文, 等.塔里木克拉通早前寒武纪基底层序与组合:颗粒锆石U-Pb年龄新证据[J].岩石学报, 2003, 19(3):537-542. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200303019.htm
[35] 董富荣, 李高龄, 冯新昌, 等.库鲁克塔格地区新太古代深沟片麻杂岩特征[J].新疆地质, 1999, 17(1):82-87. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI901.011.htm
[36] 黎敦朋, 李新林, 周小康, 等.塔里木西南缘新太古代变质辉长岩脉的锆石SHRIMP U-Pb定年及其地质意义[J].中国地质, 2007, 34(2):262-269. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200702007.htm
[37] Zhu W B, Zheng B H, Shu L S, et al. Neoproterozoic tectonic evolution of the Precambrian Aksu blueschist terrane, northwestern Tarim, China:Insights from LA-ICP-MS zircon U-Ph ages and geochemical data[J]. Precambrian Research, 2011, 185:215-230. doi: 10.1016/j.precamres.2011.01.012
[38] 梅华林, 于海峰, 李铨, 等.甘肃北山地区首次发现榴辉岩和古元古花岗质岩石[J].科学通报, 1998, 43(19):2105-2111. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199819022.htm
[39] 修群业, 陆松年, 于海峰, 等.龙首山岩群主体划归古元古代的同位素年龄证据[J].前寒武纪研究进展, 2002, 25(2):93-96. http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200202004.htm
[40] 修群业, 于海峰, 李铨, 等.龙首山岩群成岩时代探讨[J].地质学报, 2004, 78(3):366-373. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200403009.htm
[41] 何艳红, 孙勇, 陈亮, 等.陇山杂岩的LA-ICP-MS锆石U-Pb年龄及其地质意义[J].岩石学报, 2005, 1:125-134. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501013.htm
[42] 何世平, 王洪亮, 徐学义, 等.北祁连东段红土堡基性火山岩锆石LA-ICP-MS U-Pb年代学及其地质意义[J].地球科学进展, 2007, 22(2):143-151. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200702003.htm
[43] Zhao G C, Sun M, Wilde S A, et al. Assembly, Accretion and Breakup of the Paleo-Mesoproterozoic Columbia Supercontinent:Records in the North China Craton[J]. Gondwana Research, 2003, 6(3):417-434. doi: 10.1016/S1342-937X(05)70996-5
[44] Rogers J J W, Santosh M. Tectonics and surface effects of the supercontinent Columbia[J]. Gondwana Research, 2009, 15(3/4):373-380. https://www.researchgate.net/publication/222061589_Tectonics_and_surface_effects_of_the_supercontinent_Columbia
[45] 董国安, 杨怀仁, 杨宏仪, 等.祁连地块前寒武纪基底锆石SHRIMP U-Pb年代学及其地质意义[J].科学通报, 2007, 52(13):1572-1585. doi: 10.3321/j.issn:0023-074X.2007.13.015
-